首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary hyperoxalurias are rare disorders of glyoxylate metabolism. Accurate diagnosis is essential for therapeutic and management strategies. We conducted a molecular study on patients suffering from recurrent calcium-oxalate stones and nephrocalcinosis and screened primary hyperoxaluria causing genes in a large cohort of early-onset cases. Disease-associated pathogenic-variants were defined as missense, nonsense, frameshift-indels, and splice-site variants with a reported minor allele frequency <1% in controls. We found pathogenic-variants in 34% of the cases. Variants in the AGXT gene causing PH-I were identified in 81% of the mutation positive cases. PH-II-associated variants in the GRHPR gene are found in 15% of the pediatric PH-positive population. Only 3% of the PH-positive cases have pathogenic-variants in the HOGA1 gene, responsible to cause PH-III. A population-specific AGXT gene variant c.1049G>A; p.Gly350Asp accounts for 22% of the PH-I-positive patients. Pathogenicity of the identified variants was evaluated by in-silico tools and ACMG guidelines. We have devised a rapid and low-cost approach for the screening of PH by using targeted-NGS highlighting the importance of an accurate and cost-effective screening platform. This is the largest study in Pakistani pediatric patients from South-Asian region that also expands the mutation spectrum of the three known genes.  相似文献   

2.
3.
Our increasing knowledge of how genomic variants affect human health and the falling costs of whole‐genome sequencing are driving the development of individualized genomic medicine. This new clinical paradigm uses knowledge of an individual's genomic variants to anticipate, diagnose and manage disease. While individualized genetic medicine offers the promise of transformative change in health care, it forces us to reconsider existing ethical, scientific and clinical paradigms. The potential benefits of pre‐symptomatic identification of at‐risk individuals, improved diagnostics, individualized therapy, accurate prognosis and avoidance of adverse drug reactions coexist with the potential risks of uninterpretable results, psychological harm, outmoded counseling models and increased health care costs. Here we review the challenges, opportunities and limits of integrating genomic analysis into pediatric clinical practice and describe a model for implementing individualized genomic medicine. Our multidisciplinary team of bioinformaticians, health economists, health services and policy researchers, ethicists, geneticists, genetic counselors and clinicians has designed a ‘Genome Clinic’ research project that addresses multiple challenges in pediatric genomic medicine – ranging from development of bioinformatics tools for the clinical assessment of genomic variants and the discovery of disease genes to health policy inquiries, assessment of clinical care models, patient preference and the ethics of consent.  相似文献   

4.
5.
Variants of cancer susceptibility genes other than BRCA1/2 have been proved to be associated with increased risks of breast cancer. This study was performed to investigate the spectrum and prevalence of mutations in 10 cancer susceptibility genes in paired tumor/normal tissues of 292 unselected Chinese breast cancer patients. We performed an analysis of germline and somatic variants in ATM, CDH1, CHEK2, ESR1, GATA3, MAP3K1, MSH2, PALB2, RB1 and STK11 genes by integrating microfluidic PCR‐based target enrichment and next‐generation sequencing technologies. In total, 3 germline and 25 somatic deleterious mutations were found among 27 patients (9.25%), and 17 of them were novel mutations. Most deleterious mutations were prevalent in luminal A invasive breast cancer (P = .014). We also observed 83 variants of uncertain significance (VUS) in 100 patients (34.25%), 23 of which were predicted to be deleterious by in silico prediction programs (MetaSVM and MetaLR). VUS carriers had higher positive rate of lymph node metastasis than non‐carriers (P = .008) and were predominantly present in ER+ tumors (P = .018). Our findings would enhance the understanding of the molecular mechanisms of breast cancer in Chinese population.  相似文献   

6.
Novel genes are now identified at a rapid pace for many Mendelian disorders, and increasingly, for genetically complex phenotypes. However, new challenges have also become evident: (1) effectively managing larger exome and/or genome datasets, especially for smaller labs; (2) direct hands‐on analysis and contextual interpretation of variant data in large genomic datasets; and (3) many small and medium‐sized clinical and research‐based investigative teams around the world are generating data that, if combined and shared, will significantly increase the opportunities for the entire community to identify new genes. To address these challenges, we have developed GEnomes Management Application (GEM.app), a software tool to annotate, manage, visualize, and analyze large genomic datasets ( https://genomics.med.miami.edu/">https://genomics.med.miami.edu/">https://genomics.med.miami.edu/ ). GEM.app currently contains ~1,600 whole exomes from 50 different phenotypes studied by 40 principal investigators from 15 different countries. The focus of GEM.app is on user‐friendly analysis for nonbioinformaticians to make next‐generation sequencing data directly accessible. Yet, GEM.app provides powerful and flexible filter options, including single family filtering, across family/phenotype queries, nested filtering, and evaluation of segregation in families. In addition, the system is fast, obtaining results within 4 sec across ~1,200 exomes. We believe that this system will further enhance identification of genetic causes of human disease.  相似文献   

7.
Mutation detection through exome sequencing allows simultaneous analysis of all coding sequences of genes. However, it cannot yet replace Sanger sequencing (SS) in diagnostics because of incomplete representation and coverage of exons leading to missing clinically relevant mutations. Targeted next‐generation sequencing (NGS), in which a selected fraction of genes is sequenced, may circumvent these shortcomings. We aimed to determine whether the sensitivity and specificity of targeted NGS is equal to those of SS. We constructed a targeted enrichment kit that includes 48 genes associated with hereditary cardiomyopathies. In total, 84 individuals with cardiomyopathies were sequenced using 151 bp paired‐end reads on an Illumina MiSeq sequencer. The reproducibility was tested by repeating the entire procedure for five patients. The coverage of ≥30 reads per nucleotide, our major quality criterion, was 99% and in total ~21,000 variants were identified. Confirmation with SS was performed for 168 variants (155 substitutions, 13 indels). All were confirmed, including a deletion of 18 bp and an insertion of 6 bp. The reproducibility was nearly 100%. We demonstrate that targeted NGS of a disease‐specific subset of genes is equal to the quality of SS and it can therefore be reliably implemented as a stand‐alone diagnostic test.  相似文献   

8.
Inherited neuromuscular disorder (NMD) is a wide term covering different genetic disorders affecting muscles, nerves, and neuromuscular junctions. Genetic and clinical heterogeneity is the main drawback in a routine gene‐by‐gene diagnostics. We present Czech NMD patients with a genetic cause identified using targeted next‐generation sequencing (NGS) and the spectrum of these causes. Overall 167 unrelated patients presenting NMD falling into categories of muscular dystrophies, congenital muscular dystrophies, congenital myopathies, distal myopathies, and other myopathies were tested by targeted NGS of 42 known NMD‐related genes. Pathogenic or probably pathogenic sequence changes were identified in 79 patients (47.3%). In total, 37 novel and 51 known disease‐causing variants were detected in 23 genes. In addition, variants of uncertain significance were suspected in 7 cases (4.2%), and in 81 cases (48.5%) sequence changes associated with NMD were not found. Our results strongly indicate that for molecular diagnostics of heterogeneous disorders such as NMDs, targeted panel testing has a high‐clinical yield and should therefore be the preferred first‐tier approach. Further, we show that in the genetic diagnostic practice of NMDs, it is necessary to take into account different types of inheritance including the occurrence of an autosomal recessive disorder in two generations of one family.  相似文献   

9.
《Journal of neurogenetics》2013,27(2-3):103-116
Since its first availability in 2009, the next-generation sequencing (NGS) has been proved to be a powerful tool in identifying disease-associated variants in many neurological diseases, such as spinocerebellar ataxias, Charcot–Marie–Tooth disease, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. Whole exome sequencing and whole genome sequencing are efficient for identifying variants in novel or unexpected genes responsible for inherited diseases, whereas targeted sequencing is useful in detecting variants in previously known disease-associated genes. The trove of genetic data yielded by NGS has made a significant impact on the clinical diagnoses while contributing hugely on the discovery of molecular pathomechanisms underlying these diseases. Nonetheless, elucidation of the pathogenic roles of the variants identified by NGS is challenging. Establishment of consensus guidelines and development of public genomic/phenotypic databases are thus vital to facilitate data sharing and validation.  相似文献   

10.
The incidence of pancreatic ductal adenocarcinoma (PDAC) is steadily increasing and the annual death‐to‐incidence ratio approaches one. This is a figure that has not changed for several decades. Surgery remains the only chance of cure; however, only less than 20% of patients are amenable to operative resection. Despite successful surgical resection, the majority of the patients still succumb to recurrent metastatic disease. Therefore, there is an urgent need to develop novel therapeutic strategies and to better select patients for current therapies. In this review, we will discuss current management by highlighting the landmark clinical trials that have shaped current care. We will then discuss the challenges of therapeutic development using the current randomized‐controlled trial paradigm when confronted with the molecular heterogeneity of PDAC. Finally, we will discuss strategies that may help to shape the management of PDAC in the near future.  相似文献   

11.
12.
13.
Meningiomas are the most frequent primary intracranial tumors. The considerable variety of histological subtypes has been expanded by the definition of molecular alterations, which can improve both diagnostic accuracy and determination of individual patient''s outcome. According to the upcoming WHO classification of brain tumors, the in‐time analysis of frequent molecular events in meningiomas may become mandatory to define meningioma subtypes. We have compiled a custom‐made amplicon‐based next generation sequencing (NGS) meningioma panel covering the most frequent known recurrent mutations in 15 different genes. In an unselected consecutive meningioma cohort (109 patients) analyzed over a period of 12 months, we detected mutations in 11 different genes, with most frequent alterations in NF2 (43%), AKT1 E17K (15%), and TRAF7 (13%). In 39 tumors (36%), two different mutations were detected, with NF2 and SUFU (n = 5) and KLF4 and TRAF7 (n = 5) being the most frequent combinations. No alterations were found in POLR2A, CDKN2A, CDKN2B, and BAP1, and no homozygous CDKN2A/B deletion was detected. NF2 mutations were found in tumors of all WHO grades, whereas mutations in KLF4, TRAF7, and SMO were restricted to WHO grade I meningiomas. In contrast, SMARCE1 and TERT mutations were associated with WHO grade II meningiomas (according to the WHO classification 2016). The distribution of mutations across histological subtypes or tumor localization was in line with the existing literature, with typical combinations like KLF4K409Q/TRAF7 for secretory meningiomas and preferential skull base localization of meningiomas harboring SMO and AKT1 E17K mutations. Thus, we present a custom‐made NGS meningioma panel providing a time and cost‐efficient reliable detection of relevant somatic molecular alterations in meningiomas suitable for daily routine.  相似文献   

14.
Adenosquamous carcinoma of the pancreas (ASCP) is a mixed tumor type which contains squamous cell carcinoma and also ductal adenocarcinoma components. Due to the rarity of this malignancy, only very limited genomic profiling has been performed. A recent paper by Fang et al. published in The Journal of Pathology contributed to our knowledge of genomic alterations by performing whole‐genome and ‐exome sequencing of 17 ASCP tumors. They found major genomic similarities to pancreatic ductal adenocarcinoma; however, the p53 pathway was altered in a greater proportion of cases, while a high frequency of 3p loss was a distinct copy number alteration pattern observed in ASCP. Laser capture microdissection revealed that adenocarcinoma and squamous carcinoma components of ASCP harbor similar genomic variations, indicating that the origin of tumor components is the same or similar. Although the study published by Fang et al. increases our knowledge of this rare mixed tumor type, further investigation, including RNA sequencing, will be needed to fully characterize this malignancy and to aid the development of novel treatment approaches. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

15.
Charcot‐Marie‐Tooth disease type 4D (CMT4D) is an autosomal‐recessive demyelinating form of CMT characterized by a severe distal motor and sensory neuropathy. NDRG1 is the causative gene for CMT4D. To date, only four mutations in NDRG1 —c.442C>T (p.Arg148*), c.739delC (p.His247Thrfs*74), c.538‐1G>A, and duplication of exons 6–8—have been described in CMT4D patients. Here, using targeted next‐generation sequencing examination, we identified for the first time two homozygous missense variants in NDRG1, c.437T>C (p.Leu146Pro) and c.701G>A (p.Arg234Gln), in two Chinese CMT families with consanguineous histories. Further functional studies were performed to characterize the biological effects of these variants. Cell culture transfection studies showed that mutant NDRG1 carrying p.Leu146Pro, p.Arg148*, or p.Arg234Gln variant degraded faster than wild‐type NDRG1, resulting in lower protein levels. Live cell confocal microscopy and coimmunoprecipitation analysis indicated that these variants did not disrupt the interaction between NDRG1 and Rab4a protein. However, NDRG1‐knockdown cells expressing mutant NDRG1 displayed enlarged Rab4a‐positive compartments. Moreover, mutant NDRG1 could not enhance the uptake of DiI‐LDL or increase the fraction of low‐density lipoprotein receptor on the cell surface. Taken together, our study described two missense mutations in NDRG1 and emphasized the important role of NDRG1 in intracellular protein trafficking.  相似文献   

16.
Genomic tests are increasingly complex, less expensive, and more widely available with the advent of next‐generation sequencing (NGS). We assessed knowledge and perceptions among genetic counselors pertaining to NGS genomic testing via an online survey. Associations between selected characteristics and perceptions were examined. Recent education on NGS testing was common, but practical experience limited. Perceived understanding of clinical NGS was modest, specifically concerning tumor testing. Greater perceived understanding of clinical NGS testing correlated with more time spent in cancer‐related counseling, exposure to NGS testing, and NGS‐focused education. Substantial disagreement about the role of counseling for tumor‐based testing was seen. Finally, a majority of counselors agreed with the need for more education about clinical NGS testing, supporting this approach to optimizing implementation.  相似文献   

17.
A whole exome sequencing approach was recently used to detect a CELSR1 truncating variant associated with lymphedema in a large pedigree. Since this first report, no other similar associations have been reported in the literature. Here, we present the genetic results of 95 probands tested using a next generation sequencing panel that covered all known lymphedema‐associated genes, including CELSR1. Five out of 95 probands (5.3%) were found to carry novel loss‐of‐function variants in CELSR1. Family segregation studies were possible in four out of five probands and showed possible sex‐specific differences: CELSR1 variants showed almost complete penetrance in females and were associated with early‐onset lymphedema, whereas in males they showed incomplete penetrance and were associated with late onset of the condition. Since the percentage of lymphedema patients carrying CELSR1 variants is not negligible, we do not hesitate to recommend including this gene in routine genetic testing.  相似文献   

18.
The aim of this study was to compare the effectiveness of the gene‐panel next‐generation sequencing (NGS) strategy versus the clinical‐based gene Sanger sequencing for the genetic diagnosis of autoinflammatory diseases (AIDs). Secondary goals were to describe the gene and mutation distribution in AID patients and to evaluate the impact of the genetic report on the patient’s medical care and treatment. Patients with AID symptoms were enrolled prospectively and randomized to two arms, NGS (n = 99) (32–55 genes) and Sanger sequencing (n = 197) (one to four genes). Genotypes were classified as ‘consistent/confirmatory’, ‘uncertain significance’ or ‘non‐contributory’. The proportion of patients with pathogenic genotypes concordant with the AID phenotype (consistent/confirmatory) was significantly higher with NGS than Sanger sequencing [10 of 99 (10·1%) versus eight of 197 (4·1%)]. MEFV, ADA2 and MVK were the most represented genes with a consistent/confirmed genotype, whereas MEFV, NLRP3, NOD2 and TNFRSF1A were found in the ‘uncertain significance’ genotypes. Six months after the genetic report was sent, 54 of 128 (42·2%) patients had received effective treatment for their symptoms; 13 of 128 (10·2%) had started treatment after the genetic study. For 59 of 128 (46%) patients, the results had an impact on their overall care, independent of sequencing group and diagnostic conclusion. Targeted NGS improved the diagnosis and global care of patients with AIDs.  相似文献   

19.
Retinitis pigmentosa (RP) is a genetically heterogeneous retinal disorder. Despite the numerous genes associated with RP already identified, the genetic basis remains unknown in a substantial number of patients and families. In this study, we performed whole‐exome sequencing to investigate the molecular basis of a syndromic RP case that cannot be solved by mutations in known disease‐causing genes. After applying a series of variant filtering strategies, we identified an apparently homozygous frameshift mutation, c.31delC (p.Q11Rfs*24) in the ADIPOR1 gene. The reported phenotypes of Adipor1‐null mice contain retinal dystrophy, obesity, and behavioral abnormalities, which highly mimic those in the syndromic RP patient. We further confirmed ADIPOR1 retina expression by immunohistochemistry. Our results established ADIPOR1 as a novel disease‐causing gene for syndromic RP and highlight the importance of fatty acid transport in the retina.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号