首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Recent studies have demonstrated that increased expression of coding region determinant‐binding protein (CRD‐BP) in response to β‐catenin signaling leads to the stabilization of β‐TrCP1, a substrate‐specific component of SCF E3 ubiquitin ligase complex, resulting in an accelerated degradation of IκBα and activation of canonical nuclear factor‐κB (NF‐κB) pathway. Here, we show that the noncanonical NF‐κB1 p105 pathway is constitutively activated in colorectal carcinoma specimens, being particularly associated with β‐catenin‐mediated increased expression of CRD‐BP and β‐TrCP1. In the carcinoma tissues exhibiting high levels of nuclear β‐catenin the phospho‐p105 levels were increased and total p105 amounts were decreased in comparison to that of normal tissue indicating an activation of this NF‐κB pathway. Knockdown of CRD‐BP in colorectal cancer cell line SW620 resulted in significantly higher basal levels of both NF‐κB inhibitory proteins, p105 and IκBα. Furthermore decreased NF‐κB binding activity was observed in CRD‐BP siRNA‐transfected SW620 cells as compared with those transfected with control siRNA. Altogether, our findings suggest that activation of NF‐κB1 p105 signaling in colorectal carcinoma might be attributed to β‐catenin‐mediated induction of CRD‐BP and β‐TrCP1. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
NF‐κB is a key regulator of inflammatory response and is frequently activated in human cancer including the undifferentiated nasopharyngeal carcinoma (NPC), which is common in Southern China including Hong Kong. Activation of NF‐κB is common in NPC and may contribute to NPC development. The role of NF‐κB activation in immortalization of nasopharyngeal epithelial (NPE) cells, which may represent an early event in NPC pathogenesis, is unknown. Examination of NF‐κB activation in immortalization of NPE cells is of particular interest as the site of NPC is often heavily infiltrated with inflammatory cellular components. We found that constitutive activation of NF‐κB signaling is a common phenotype in telomerase‐immortalized NPE cell lines. Our results suggest that NF‐κB activation promotes the growth of telomerase‐immortalized NPE cells, and suppression of NF‐κB activity inhibits their proliferation. Furthermore, we observed upregulation of c‐Myc, IL‐6 and Bmi‐1 in our immortalized NPE cells. Inhibition of NF‐κB downregulated expression of c‐Myc, IL‐6 and Bmi‐1, suggesting that they are downstream events of NF‐κB activation in immortalized NPE cells. We further delineated that EGFR/MEK/ERK/IKK/mTORC1 is the key upstream pathway of NF‐κB activation in immortalized NPE cells. Elucidation of events underlying immortalization of NPE cells may provide insights into early events in pathogenesis of NPC. The identification of NF‐κB activation and elucidation of its activation mechanism in immortalized NPE cells may reveal novel therapeutic targets for treatment and prevention of NPC.  相似文献   

5.
BIRC2 and BIRC3 are closely related members of the inhibitor of apoptosis (IAP) family of proteins and play pivotal roles in regulation of nuclear factor‐κB (NF‐κB) signaling and apoptosis. Copy number loss for and somatic mutation of BIRC2 and BIRC3 have been frequently detected in lymphoid malignancies, with such genetic alterations being thought to contribute to carcinogenesis through activation of the noncanonical NF‐κB signaling pathway. Here we show that BIRC2 and BIRC3 mutations are also present in a wide range of epithelial tumors and that most such nonsense or frameshift mutations confer direct transforming potential. This oncogenic function of BIRC2/3 mutants is largely independent of their ability to activate NF‐κB signaling. Rather, all of the transforming mutants lack an intact RING finger domain, with loss of ubiquitin ligase activity being essential for transformation irrespective of NF‐κB regulation. The serine‐threonine kinase NIK was found to be an important, but not exclusive, mediator of BIRC2/3‐driven carcinogenesis, although this function was independent of NF‐κB activation. Our data thus suggest that, in addition to the BIRC2/3–NIK–NF‐κB signaling pathway, BIRC2/3–NIK signaling targets effectors other than NF‐κB and thereby contributes directly to carcinogenesis. Identification of these effectors may provide a basis for the development of targeted agents for the treatment of lymphoid malignancies and other cancers with BIRC2/3 alterations.  相似文献   

6.
Endoplasmic reticulum stress (ERS) plays an important role in the pathogenesis and development of malignant tumors, as well as in the regulation of radiochemoresistance and chemoresistance in many malignancies. ERS signaling pathway protein kinase RNA‐like endoplasmic reticulum kinase (PERK)‐eukaryotic initiation factor‐2 (eIF2α) may induce aberrant activation of nuclear factor‐κB (NF‐κB). Our previous study showed that NF‐κB conferred radioresistance in lymphoma cells. However, whether PERK‐eIF2α regulates radioresistance in oropharyngeal carcinoma through NF‐κB activation is unknown. Herein, we showed that PERK overexpression correlated with a poor prognosis for patients with oropharyngeal carcinoma (P < 0.01). Meanwhile, the percentage of the high expression level of PERK in oropharyngeal carcinoma patients resistant to radiation was higher than in patients sensitive to radiation (77.7 and 33.3%, respectively; P < 0.05). Silencing PERK and eIF2α increased the radiosensitivity in oropharyngeal carcinoma cells and increased radiation‐induced apoptosis and G2/M phase arrest. PERK‐eIF2α silencing also inhibited radiation‐induced NF‐κB phosphorylation and increased the DNA double strand break‐related proteins ATM phosphorylation. NF‐κB activator TNF‐α and the ATM inhibitor Ku55933 offset the regulatory effect of eIF2α on the expression of radiation‐induced cell apoptosis‐related proteins and the G2/M phase arrest‐related proteins. These data indicate that PERK regulates radioresistance in oropharyngeal carcinoma through NF‐kB activation‐mediated phosphorylation of eIF2α, enhancing X‐ray‐induced activation of DNA DSB repair, cell apoptosis inhibition and G2/M cell cycle arrest.  相似文献   

7.
8.
9.
10.
11.
Using high‐throughput analyses and the TRANSFAC database, we characterized TF signatures of head and neck squamous cell carcinoma (HNSCC) subgroups by inferential analysis of target gene expression, correcting for the effects of DNA methylation and copy number. Using this discovery pipeline, we determined that human papillomavirus‐related (HPV+) and HPV? HNSCC differed significantly based on the activity levels of key TFs including AP1, STATs, NF‐κB and p53. Immunohistochemical analysis confirmed that HPV? HNSCC is characterized by co‐activated STAT3 and NF‐κB pathways and functional studies demonstrate that this phenotype can be effectively targeted with combined anti‐NF‐κB and anti‐STAT therapies. These discoveries correlate strongly with previous findings connecting STATs, NF‐κB and AP1 in HNSCC. We identified five top‐scoring pair biomarkers from STATs, NF‐κB and AP1 pathways that distinguish HPV+ from HPV? HNSCC based on TF activity and validated these biomarkers on TCGA and on independent validation cohorts. We conclude that a novel approach to TF pathway analysis can provide insight into therapeutic targeting of patient subgroup for heterogeneous disease such as HNSCC.  相似文献   

12.
13.
14.
15.
β‐Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E‐cadherin in complex with β‐catenin mediates cell–cell adhesion, which suppresses β‐catenin‐dependent Wnt signaling. Recently, a tumor‐suppressive role for E‐cadherin has been reconsidered, as re‐expression of E‐cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E‐cadherin, we established an E‐cadherin‐expressing cell line, EC96, from AGS cells that featured undetectable E‐cadherin expression and a high level of Wnt signaling. In EC96 cells, E‐cadherin re‐expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor‐κB (NF‐κB) activation and consequent c‐myc expression might be involved in E‐cadherin expression‐mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF‐κB activation. Therefore, E‐cadherin re‐expression and subsequent induction of NF‐κB signaling likely enhance energy production and cell proliferation.  相似文献   

16.
Although the introduction of bortezomib and immunomodulatory drugs has led to improved outcomes in patients with multiple myeloma, the disease remains incurable. In an effort to identify more potent and well‐tolerated agents for myeloma, we have previously reported that 1′‐acetoxychavicol acetate (ACA), a natural condiment from South‐East Asia, induces apoptotic cell death of myeloma cells in vitro and in vivo through inhibition of NF‐κB‐related functions. Searching for more potent NF‐κB inhibitors, we developed several ACA analogs based on quantitative structure–activity relationship analysis. TM‐233, one of these ACA analogs, inhibited cellular proliferation and induced cell death in various myeloma cell lines with a lower IC50 than ACA. Treatment with TM‐233 inhibited constitutive activation of JAK2 and STAT3, and then downregulated the expression of anti‐apoptotic Mcl‐1 protein, but not Bcl‐2 and Bcl‐xL proteins. In addition, TM‐233 rapidly decreased the nuclear expression of NF‐κB and also decreased the accumulation of cytosolic NF‐κB. We also examined the effects of TM‐233 on bortezomib‐resistant myeloma cells that we recently established, KMS‐11/BTZ and OPM‐2/BTZ. TM‐233, but not bortezomib, inhibited cellular proliferation and induced cell death in KMS‐11/BTZ and OPM‐2/BTZ cells. Interestingly, the combination of TM‐233 and bortezomib significantly induced cell death in these bortezomib‐resistant myeloma cells through inhibition of NF‐κB activity. These results indicate that TM‐233 could overcome bortezomib resistance in myeloma cells mediated through different mechanisms, possibly inhibiting the JAK/STAT pathway. In conclusion, TM‐233 might be a more potent NF‐κB inhibitor than ACA, and could overcome bortezomib resistance in myeloma cells.  相似文献   

17.
Retinoid X receptor α (RXRα) plays important roles in the malignancy of several cancers such as human prostate tumor, breast cancer, and thyroid tumor. However, its exact functions and molecular mechanisms in cholangiocarcinoma (CCA), a chemoresistant carcinoma with poor prognosis, remain unclear. In this study we found that RXRα was frequently overexpressed in human CCA tissues and CCA cell lines. Downregulation of RXRα led to decreased expression of mitosis‐promoting factors including cyclin D1and cyclin E, and the proliferating cell nuclear antigen, as well as increased expression of cell cycle inhibitor p21, resulting in inhibition of CCA cell proliferation. Furthermore, RXRα knockdown attenuated the expression of cyclin D1 through suppression of Wnt/β‐catenin signaling. Retinoid X receptor α upregulated proliferating cell nuclear antigen expression through nuclear factor‐κB (NF‐κB) pathways, paralleled with downregulation of p21. Thus, the Wnt/β‐catenin and NF‐κB pathways account for the inhibition of CCA cell growth induced by RXRα downregulation. Retinoid X receptor α plays an important role in proliferation of CCA through simultaneous activation of Wnt/β‐catenin and NF‐κB pathways, indicating that RXRα might serve as a potential molecular target for CCA treatment.  相似文献   

18.
19.
20.
Double cortin‐like kinase 1 (DCLK1) plays important roles during the epithelial‐mesenchymal transition (EMT) process in human colorectal cancer (CRC). However, the role of DCLK1 in regulating the EMT of CRC is still poorly understood. In this study, we report evidence that DCLK1 acts as a potent oncogene to drive its extremely malignant character of EMT in an NF‐κB‐dependent manner in CRC cells. Mechanistic investigations showed that DCLK1 induced the NF‐κBp65 subunit expression through the PI3K/Akt/Sp1 axis and activated NF‐κBp65 through the PI3K/Akt/IκBα pathway during the EMT of CRC cells. Moreover, we found that silencing the expression of DCLK1 inhibited the invasion and metastasis of CRC cells in vivo. Collectively, our findings identify DCLK1 as a pivotal regulator of an EMT axis in CRC, thus implicating DCLK1 as a potential therapeutic target for CRC metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号