首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pediatric cortical glioneuronal benign tumors mainly include gangliogliomas (GG) [differential diagnoses pilocytic astrocytomas (PA) and pleomorphic xanthoastrocytomas (PXA)] and dysembryoplastic neuroepithelial tumor (DNT). DNT include the specific form and the controversial non‐specific form that lack the specific glioneuronal element. Our aims were to search for BRAFV600E mutation and CD34 expression in DNT, PXA, GG and PA to correlate BRAFV600E mutation with BRAFV600E expression and to evaluate their diagnostic and prognostic values. Ninety‐six children were included. BRAFV600E mutation was studied by sequencing and immunohistochemistry; CD34 expression was analyzed by immunohistochemistry. BRAFV600E mutation was detected in PXA (60%), GG (38.7%), DNT (30%, including 3/11 specific and 3/9 non‐specific forms) and PA (12.5%). BRAFV600E expression was recorded in PXA (60%), GG (45.2%) and DNT (30%). CD34 expression was recorded in PXA (60%), GG (58.1%), DNT (25%) and PA (12.5%). Neither CD34 expression nor BRAFV600E status was predictive of prognosis, except for PA tumors where CD34 expression was associated with a shorter overall survival. In conclusion, DNT shared with PXA and GG, BRAFV600E mutation and/or CD34 expression, which represent molecular markers for these tumors, and we recommend searching for CD34 expression and BRAFV600E mutation in all DNT, especially the non‐specific forms.  相似文献   

2.
Pleomorphic xanthoastrocytoma (PXA) is a rare localized glioma characterized by frequent BRAF V600E mutation and CDKN2A/B deletion. We explored the association of copy‐number variants (CNVs) with BRAF mutations, tumor grade, and patient survival in a cohort of 41 PXA patients using OncoScan chromosomal microarray. Primary resection specimens were available in 38 cases, including 24 PXA and 14 anaplastic PXA (A‐PXA), 23 BRAF V600E mutant tumors (61%). CNVs were identified in all cases and most frequently involved chromosome 9 with homozygous CDKN2A/B deletion (n = 33, 87%), a higher proportion than previously detected by comparative genomic hybridization (50%–60%) (37). CDKN2A/B deletion was present in similar proportion of PXA (83%), A‐PXA (93%), BRAF V600E (87%), and wild‐type (87%) tumors. Whole chromosome gains/losses were frequent, including gains +7 (n = 15), +2 (n = 11), +5 (n = 10), +21 (n = 10), +20 (n = 9), +12 (n = 8), +15 (n = 8), and losses −22 (n = 11), −14 (n = 7), −13 (n = 5). Losses and copy‐neutral loss of heterozygosity were significantly more common in A‐PXA, involving chromosomes 22 (P = 0.009) and 14 (P = 0.03). Amplification of 8p and 12q was identified in a single tumor. Histologic grade was a robust predictor of overall survival (P = 0.003), while other copy‐number changes, including CDKN2A/B deletion, did not show significant association with survival. Distinct histologic patterns of anaplasia included increased mitotic activity in an otherwise classic PXA or associated with small cell, fibrillary, or epithelioid morphology, with loss of SMARCB1 expression in one case. In 10 cases, matched specimens were compared, including A‐PXA with areas of distinct low‐ and high‐grade morphology (n = 2), matched primary/tumor recurrence (n = 7), or both (n = 1). Copy‐number changes on recurrence/anaplastic transformation were complex and highly variable, from nearly identical profiles to numerous copy‐number changes. Overall, we confirm CDKN2A/B deletion as key a feature of PXA not associated with tumor grade or BRAF mutation, but central to the underlying genetics of PXA.  相似文献   

3.
Prognostic significance of histological anaplasia and BRAF V600E mutation were retrospectively evaluated in 74 patients with pleomorphic xanthoastrocytoma (PXA). Median age at diagnosis was 21.5 years (31 pediatric, 43 adult) and median follow‐up 7.6 years. Anaplasia (PXA‐AF), defined as mitotic index ≥ 5/10HPF and/or presence of necrosis, was present in 33 cases. BRAF V600E mutation was detected in 39 (of 60) cases by immunohistochemical and/or molecular analysis, all negative for IDH1 (R132H). Mitotic index ≥ 5/10HPF and necrosis were associated with decreased overall survival (OS; P = 0.0005 and P = 0.0002, respectively). In all cases except two, necrosis was associated with mitotic index ≥ 5/10HPF. Patients with BRAF V600E mutant tumors had significantly longer OS compared with those without BRAF V600E mutation (P = 0.02). PXA‐AF patients, regardless of age, had significantly shorter OS compared with those without (P = 0.0003). Recurrence‐free survival was significantly shorter for adult PXA‐AF patients (P = 0.047) only. Patients who either recurred or died ≤3 years from diagnosis were more likely to have had either PXA‐AF at first diagnosis (P = 0.008) or undergone a non‐gross total resection procedure (P = 0.004) as compared with patients who did not. This study provides further evidence that PXA‐AF behaves more aggressively than PXA and may qualify for WHO grade III “anaplastic” designation.  相似文献   

4.
Pleomorphic xanthoastrocytoma (PXA) is an astrocytic neoplasm that is typically well circumscribed and can have a relatively favorable prognosis. Tumor progression to anaplastic PXA (WHO grade III), however, is associated with a more aggressive biologic behavior and worse prognosis. The factors that drive anaplastic progression are largely unknown. We performed comprehensive genomic profiling on a set of 23 PXAs from 19 patients, including 15 with anaplastic PXA. Four patients had tumor tissue from multiple recurrences, including two with anaplastic progression. We find that PXAs are genetically defined by the combination of CDKN2A biallelic inactivation and RAF alterations that were present in all 19 cases, most commonly as CDKN2A homozygous deletion and BRAF p.V600E mutation but also occasionally BRAF or RAF1 fusions or other rearrangements. The third most commonly altered gene in anaplastic PXA was TERT, with 47% (7/15) harboring TERT alterations, either gene amplification (n = 2) or promoter hotspot mutation (n = 5). In tumor pairs analyzed before and after anaplastic progression, two had increased copy number alterations and one had TERT promoter mutation at recurrence. Less commonly altered genes included TP53, BCOR, BCORL1, ARID1A, ATRX, PTEN, and BCL6. All PXA in this cohort were IDH and histone H3 wildtype, and did not contain alterations in EGFR. Genetic profiling performed on six regions from the same tumor identified intratumoral genomic heterogeneity, likely reflecting clonal evolution during tumor progression. Overall, anaplastic PXA is characterized by the combination of CDKN2A biallelic inactivation and oncogenic RAF kinase signaling as well as a relatively small number of additional genetic alterations, with the most common being TERT amplification or promoter mutation. These data define a distinct molecular profile for PXA and suggest additional genetic alterations, including TERT, may be associated with anaplastic progression.  相似文献   

5.
6.
Brainstem gangliogliomas (GGs), often cannot be resected, have a much poorer prognosis than those located in more common supratentorial sites and may benefit from novel therapeutic approaches. Therapeutically targetable BRAF c.1799T>A (p.V600E) (BRAFV600E) mutations are harbored in roughly 50% of collective GGs taken from all anatomical sites. Large numbers of pediatric brainstem GGs, however, have not been specifically assessed and anatomic—and age‐restricted assessment of genetic and biological factors are becoming increasingly important. Pediatric brainstem GGs (n = 13), non‐brainstem GGs (n = 11) and brainstem pilocytic astrocytomas (PAs) (n = 8) were screened by standard Sanger DNA sequencing of BRAF exon 15. Five of 13 (38%) pediatric GG harbored a definitive BRAFV600E mutation, with two others exhibiting an equivocal result by this method. BRAFV600E was also seen in five of 11 (45%) non‐brainstem GGs and one of eight (13%) brainstem PAs. VE1 immunostaining for BRAFV600E showed concordance with sequencing in nine of nine brainstem GGs including the two cases equivocal by Sanger. The equivocal brainstem GGs were subsequently shown to harbor BRAFV600E using a novel, more sensitive, RNA‐sequencing approach, yielding a final BRAFV600E mutation frequency of 54% (seven of 13) in brainstem GGs. BRAFV600E‐targeted therapeutics should be a consideration for the high percentage of pediatric brainstem GGs refractory to conventional therapies.  相似文献   

7.
The serine/threonine‐protein kinase B‐raf (BRAF) is an oncogene mutated in various neoplasms, including 5–15% of colorectal carcinomas. The T1799A point mutation, responsible for a large majority of these alterations, results in an amino acid substitution (V600E) causing the constitutive activation of a protein kinase cascade. BRAF V600E in MLH1 deficient tumors implicates somatic tumor‐only methylation of the MLH1 promoter region instead of a germline MLH1 mutation. BRAF V600E also predicts poor prognosis in microsatellite stable colorectal cancers and may be a marker of resistance to anti‐EGFR therapy in metastatic disease. Currently, only molecular methods are available for assessing BRAF mutational status. An immunohistochemical approach is evaluated here. Colon cancers from 2008 to 2012 tested by pyrosequencing for BRAF V600E mutation were selected. A total of 31 tumors with (n = 14) and without (n = 17) the BRAF V600E mutation were analyzed by immunohistochemistry using a commercially available antibody specific to the V600E‐mutated protein. All 14 colorectal carcinomas with the BRAF V600E mutation demonstrated cytoplasmic positivity in tumor cells with the anti‐BRAF antibody. In a minority of cases, staining intensity for the mutated tumor samples was weak (n = 2) or heterogeneous (n = 4); however, the majority of cases showed diffuse, strong cytoplasmic positivity (8 of 14 cases). None of the 17 BRAF wild‐type colorectal cancers showed immunoreactivity to the antibody. The overall sensitivity and specificity of the immunohistochemical BRAF V600E assay was 100%. Detection of the BRAF V600E mutation in colorectal cancer by immunohistochemistry is a viable alternative to molecular methods. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Pleomorphic xanthoastrocytoma (PXA) is a rare astrocytoma predominantly affecting children and young adults. We performed comprehensive genomic characterization on a cohort of 67 patients with histologically defined PXA (n = 53, 79%) or anaplastic PXA (A‐PXA, n = 14, 21%), including copy number analysis (ThermoFisher Oncoscan, n = 67), methylation profiling (Illumina EPIC array, n = 43) and targeted next generation sequencing (n = 32). The most frequent alterations were CDKN2A/B deletion (n = 63; 94%) and BRAF p.V600E (n = 51, 76.1%). In 7 BRAF p.V600 wild‐type cases, alternative driver alterations were identified involving BRAF, RAF1 and NF1. Downstream phosphorylation of ERK kinase was uniformly present. Additional pathogenic alterations were rare, with TERT, ATRX and TP53 mutations identified in a small number of tumors, predominantly A‐PXA. Methylation‐based classification of 46 cases utilizing a comprehensive reference tumor allowed assignment to the PXA methylation class in 40 cases. A minority grouped with the methylation classes of ganglioglioma or pilocytic astrocytoma (n = 2), anaplastic pilocytic astrocytoma (n = 2) or control tissues (n = 2). In 9 cases, tissue was available from matched primary and recurrent tumors, including 8 with anaplastic transformation. At recurrence, two tumors acquired TERT promoter mutations and the majority demonstrated additional non‐recurrent copy number alterations. Methylation class was preserved at recurrence. For 62 patients (92.5%), clinical follow‐up data were available (median follow‐up, 5.4 years). Overall survival was significantly different between PXA and A‐PXA (5‐year OS 80.8% vs. 47.6%; P = 0.0009) but not progression‐free survival (5‐year PFS 59.9% vs. 39.8%; P = 0.05). WHO grade remained a strong predictor of overall survival when limited to 38 cases defined as PXA by methylation‐based classification. Our data confirm the importance of WHO grading in histologically and epigenetically defined PXA. Methylation‐based classification may be helpful in cases with ambiguous morphology, but is largely confirmatory in PXA with well‐defined morphology.  相似文献   

9.
Ameloblastoma is an odontogenic tumor of the jaw. It most frequently occurs in the mandible, and less often in the maxilla. Mandibular ameloblastoma harbors a BRAF mutation that causes a valine (V) to glutamic acid (E) substitution at codon 600 (BRAFV600E). We examined specimens from 32 Japanese patients to detect the prevalence of the BRAFV600E mutation, and to evaluate the relationship between immunohistochemical (IHC) expression and genetic results, of BRAFV600E+ ameloblastoma. Among the 32 cases, 22 (69%) were IHC positive for BRAFV600E protein, and 10 (31%) were IHC negative; and polymerase chain reaction showed 16 of 21 tested cases (76%) carried the BRAFV600E mutation. Our findings indicate that that samples that stain IHC positive for BRAFV600E protein are more likely to carry the BRAFV600E mutation. These results support assessments for BRAF mutations, and the use of BRAF inhibitors as targeted therapy for ameloblastoma in Japanese patients.  相似文献   

10.
Champion KJ, Bunag C, Estep AL, Jones JR, Bolt CH, Rogers RC, Rauen KA, Everman DB. Germline mutation in BRAF codon 600 is compatible with human development: de novo p.V600G mutation identified in a patient with CFC syndrome. BRAF, the protein product of BRAF, is a serine/threonine protein kinase and one of the direct downstream effectors of Ras. Somatic mutations in BRAF occur in numerous human cancers, whereas germline BRAF mutations cause cardio‐facio‐cutaneous (CFC) syndrome. One recurrent somatic mutation, p.V600E, is frequently found in several tumor types, such as melanoma, papillary thyroid carcinoma, colon cancer, and ovarian cancer. However, a germline mutation affecting codon 600 has never been described. Here, we present a patient with CFC syndrome and a de novo germline mutation involving codon 600 of BRAF, thus providing the first evidence that a pathogenic germline mutation involving this critical codon is not only compatible with development but can also cause the CFC phenotype. In vitro functional analysis shows that this mutation, which replaces a valine with a glycine at codon 600 (p.V600G), leads to increased ERK and ELK phosphorylation compared to wild‐type BRAF but is less strongly activating than the cancer‐associated p.V600E mutation.  相似文献   

11.
BRAF mutations are rare driver mutations in non‐small cell lung cancer (NSCLC), accounting for 1%–2% of the driver mutations, and the mutation spectrum has a wide range in contrast to other tumors. While V600E is a dominant mutation in melanoma, more than half of the mutations in NSCLCs are non‐V600E. However, treatment with dabrafenib plus trametinib targets the BRAF V600E mutation exclusively. Therefore, distinguishing between V600E and non‐V600E mutations is crucial for biomarker testing in NSCLC in order to determine treatment of choice. Immunohistochemistry (IHC) using the BRAF V600E mutation‐specific antibody is clinically used in melanoma patients, but little is known about its application in NSCLC, particularly with regard to the assay performance for non‐V600E mutations. In the present study, we examined 117 tumors with BRAF mutations, including 30 with non‐V600E mutations, using BRAF mutation‐specific IHC. None of the tumors with non‐V600E mutations, including two compound mutations, showed a positive reaction. Furthermore, all V600E mutations were positive except for one case with combined BRAF V600E and K601_W604 deletion. Our findings confirmed that the BRAF V600E mutation‐specific IHC is specific without any cross‐reactions to non‐V600E mutations, suggesting that this assay can be a useful screening tool in clinical practice.  相似文献   

12.
The activating BRAF V600 mutation is a well-established negative prognostic biomarker in metastatic colorectal carcinoma (CRC). A recently developed monoclonal mouse antibody (clone VE1) has been shown to detect reliably BRAF V600E mutated protein by immunohistochemistry (IHC). In this study, we aimed to compare the detection of BRAF V600E mutations by IHC, Sanger sequencing (SaS), and ultra-deep sequencing (UDS) in CRC. VE1-IHC was established in a cohort of 68 KRAS wild-type CRCs. The VE1-IHC was only positive in the three patients with a known BRAF V600E mutation as assessed by SaS and UDS. The test cohort consisted of 265 non-selected, consecutive CRC samples. Thirty-nine out of 265 cases (14.7 %) were positive by VE1-IHC. SaS of 20 randomly selected IHC negative tumors showed BRAF wild-type (20/20). Twenty-four IHC-positive cases were confirmed by SaS (24/39; 61.5 %) and 15 IHC-positive cases (15/39; 38.5 %) showed a BRAF wild-type by SaS. UDS detected a BRAF V600E mutation in 13 of these 15 discordant cases. In one tumor, the mutation frequency was below our threshold for UDS positivity, while in another case, UDS could not be performed due to low DNA amount. Statistical analysis showed sensitivities of 100 % and 63 % and specificities of 95 and 100 % for VE1-IHC and SaS, respectively, compared to combined results of SaS and UDS. Our data suggests that there is high concordance between UDS and IHC using the anti-BRAFV600E (VE1) antibody. Thus, VE1 immunohistochemistry is a highly sensitive and specific method in detecting BRAF V600E mutations in colorectal carcinoma.  相似文献   

13.
Chromosomal 7q34 duplication and BRAF‐KIAA1549 fusion is a characteristic genetic alteration in pilocytic astrocytomas. 7q34 gain appears to be common in diffuse astrocytomas, but its significance is unclear. We assessed BRAF gain and BRAF mutations in 123 low‐grade diffuse gliomas, including 55 diffuse astrocytomas, 18 oligoastrocytomas and 50 oligodendrogliomas. Quantitative polymerase chain reaction (PCR) revealed BRAF gain in 17/50 (34%) oligodendrogliomas, a significantly higher frequency than in diffuse astrocytomas (7/55; 13%; P = 0.0112). BRAF gain was common in low‐grade diffuse gliomas with 1p/19q loss (39%) and those lacking any of the genetic alterations analyzed (31%), but was rare in those with TP53 mutations (2%). Logistic regression analysis showed a significant positive association between 1p/19q loss and BRAF gain (P = 0.0032) and a significant negative association between TP53 mutations and BRAF gain (P = 0.0042). Fluorescence in situ hybridization (FISH) analysis of 26 low‐grade diffuse gliomas with BRAF gain additionally revealed BRAF‐KIAA1549 fusion in one oligodendroglioma. Sequencing of cDNA in 17 low‐grade diffuse gliomas showed BRAF‐KIAA1549 fusion in another oligodendroglioma. A BRAFV600E mutation was also detected in one oligodendroglioma, and a BRAFA598V in one diffuse astrocytoma. These results suggest that low‐grade diffuse gliomas with 1p/19q loss have frequent BRAF gains, and a small fraction of oligodendrogliomas may show BRAF‐KIAA1549 fusion.  相似文献   

14.
Hairy cell leukemia (HCL) is usually diagnosed by morphology and flow cytometry studies. However, it is challenging sometimes to distinguish HCL from its mimics. Recently, the BRAF V600E mutation has been described as a disease-defining molecular marker for HCL which is present in nearly all cases of HCL but virtually absent in mimics of HCL. In this study, we investigated the possibility of using immunohistochemical detection of the BRAF V600E mutant protein to differentiate HCL from its mimics. A total of twenty-eight FFPE tissue specimens were studied, including HCL (n=12), HCL variant (HCL-v, n=3), splenic marginal zone lymphoma (SMZL, n=6), and other marginal zone lymphomas (MZL, n=7). Immunohistochemical studies were performed using a mouse monoclonal antibody (clone VE1, Spring Bioscience, CA) specific for BRAF V600E mutation. Molecularly confirmed BRAF V600E mutation positive and negative cases were used as the positive and negative controls respectively. All 12 cases of HCL showed cytoplasmic BRAF V600E protein expression in leukemia cells by immunohistochemical study regardless of tumor burden, whereas all cases of HCL mimics including HCL-v, SMZL, and MZL were negative for BRAF V600E protein. Using this BRAF V600E mutation specific antibody, this immunohistochemical study has 100% sensitivity and 100% specificity for the diagnosis of HCL in our cohort. In conclusion, immunohistochemical detection of the BRAF V600E mutant protein is highly sensitive and specific for the diagnosis of HCL. Compared to PCR or sequencing-based methodologies, immunohistochemistry is a relatively rapid and inexpensive alternative for the differential diagnosis between HCL and its mimics.  相似文献   

15.
16.
Epithelioid glioblastoma (eGBM) and pleomorphic xanthoastrocytoma (PXA) with anaplastically transformed foci (ePXA) show overlapping features. Eleven eGBMs and 5 ePXAs were reviewed and studied immunohistochemically. Fluorescence in situ hybridization for EGFR amplification, PTEN deletion and ODZ3 deletion was also performed, with Ilumina 450 methylome analysis obtained in five cases. The average age for eGBM was 30.9 (range 2–79) years, including five pediatric cases and a M : F ratio of 4.5. The ePXA patients had a M : F ratio of 4 and averaged 21.2 (range 10–38) years in age, including two pediatric cases. Six eGBMs and two ePXAs recurred (median recurrence interval of 12 and 3.3 months, respectively). All tumors were composed of solid sheets of loosely cohesive, “melanoma‐like” cells with only limited infiltration. ePXAs showed lower grade foci with classic features of PXA. Both tumor types showed focal expression of epithelial and glial markers, retained INI1 and BRG1 expression, occasional CD34 positivity, and lack of mutant IDH1 (R132H) immunoreactivity. BRAF V600E mutation was present in four eGBMs and four ePXAs. ODZ3 deletion was detected in seven eGBMs and two ePXAs. EGFR amplification was absent. Methylome analysis showed that one ePXA and one eGBM clustered with PXAs, one eGBM clustered with low‐grade gliomas, and two eGBMs clustered with pediatric‐type glioblastomas. Common histologic, immunohistochemical, molecular and clinical features found in eGBM and ePXA suggest that they are closely related or the same entity. If the latter is true, the nomenclature and WHO grading remains to be resolved.  相似文献   

17.
Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3‐kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real‐time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well‐differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki‐67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.  相似文献   

18.
The BRAF V600E mutation is specific for thyroid papillary cancer (PTC) and correlates with PTCs invasiveness. This study investigated whether detection of BRAF V600E mutation can be performed on routinely stained FNABs. We also examined if establishment of the BRAF V600E mutation could help in identification of patients at higher risk for metastatic disease. DNA was isolated from 134 FNABs samples (20 follicular neoplasm, ten suspicious for malignancy, and 104 malignant) using Pinpoint Slide DNA Isolation System. BRAF V600E mutation was detected by PCR followed by sequencing. DNA was successfully extracted from all examined FNABs samples. In follicular neoplasm, suspicious for malignancy and malignant FNABs, BRAF V600E mutation was found in 0/20 (0%), 2/10 (20%), and 47/104 (45.2%) of cases, respectively. Extra-thyroidal extension was detected in 35/47 (74.4%) BRAF V600E positive and in 24/57 (42.1%) wild-type BRAF cases (p = 0.001). Metastases were detected in 37/47 (78.7%) BRAF V600E positive and in 28/57 (49.1%) wild-type BRAF cases (p = 0.002). Our results showed that stained FNAB specimens can be used for DNA extraction and assessment of BRAF V600E mutation. Detection of BRAF V600E mutation had limited value in diagnoses of malignancy in follicular neoplasms but can ascertain malignancy in subset of suspicious for malignancy FNABs. In malignant FNABs, BRAF V600E mutation was significantly associated with presence of extra-thyroidal extension and metastases after surgery.  相似文献   

19.
Finkelstein A, Levy G H, Hui P, Prasad A, Virk R, Chhieng D C, Carling T, Roman S A, Sosa J A, Udelsman R, Theoharis C G & Prasad M L
(2012) Histopathology  60, 1052–1059 Papillary thyroid carcinomas with and without BRAF V600E mutations are morphologically distinct Aims: The BRAF V600E mutation resulting in the production of an abnormal BRAF protein has emerged as the most frequent genetic alteration in papillary thyroid carcinomas (PTCs). This study was aimed at identifying distinctive features in tumours with and without the mutation. Methods and results: Thirty‐four mutation‐positive and 22 mutation‐negative tumours were identified by single‐strand conformation polymorphism of the amplified BRAF V600E region in the tumour DNA. Mutation‐positive tumours were more common in patients older than 45 years (24/33, P = 0.05), in classic (23/30, P = 0.01), tall cell (4/5) and oncocytic/Warthin‐like (2/2) variants of PTC, and in subcapsular sclerosing microcarcinomas (4/4). In contrast, all 12 follicular variants (P < 0.0001) and two diffuse sclerosing variants were negative for the mutation. Mutation‐positive tumours displayed infiltrative growth (32/34, P = 0.02), stromal fibrosis (33/34, P < 0.001), psammoma bodies (17/34, P = 0.05), plump eosinophilic tumour cells (22/34, P = 0.01), and classic fully developed nuclear features of PTC (33/34, P = 0.0001). Encapsulation was significantly associated with mutation‐negative tumours (15/22, P = 0.02). Conclusions: BRAF V600E mutation‐positive and negative PTCs are morphologically different. Recognition of their morphology may help in the selection of appropriate tumours for genetic testing.  相似文献   

20.
There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced‐stage disease identified from a nation‐wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild‐type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non‐invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non‐invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号