首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
用辣根过氧化物酶(horseradish peroxidase,HRP)逆行标记结合γ-氨基丁酸(γ-amino-butyric acid,GABA)的免疫组织化学双标技术观察大鼠的展神经核和前庭神经核内GABA阳性神经元的分布,以及其向动眼神经核的投射。结果表明:注射HRP于大鼠动眼神经核内直肌亚核后,在对侧展神经核区以及前庭神经核、脑桥旁正中网状结构中发现HRP单标记细胞;在前庭神经核内,可见HRP单标记、GABA阳性和HRP/GABA双标记三类神经元,其中HRP/GABA双标记细胞占HRP标记细胞总数的47.1%。结果表明GABA在前庭神经核向动眼神经核的抑制性投射中起一定作用,而在展神经核向动眼神经核投射的核间通路中,可能不是起主要作用的抑制性神经递质。  相似文献   

2.
用HRP逆行追踪与免疫细胞化学结合的方法,对某些投射至大鼠下丘脑室旁核的神经元的化学性质进行了研究.结果显示在视上核内存在三种标记细胞:HRP单标细胞、后叶加压素免疫反应阳性单标细胞和HRP后叶加压素双标细胞.双标细胞为大、中型椭圆形或圆形细胞,约占HRP标记细胞总数的22%.在中缝背核投射至室旁核的神经元中,部分为P物质免疫反应阳性,双标细胞为中小型梭形细胞,约占HRP标记细胞总数的20%.上述结果提示:视上核有后叶加压素能神经元、中缝背核有P物质能神经元投射到室旁核.  相似文献   

3.
用HRP逆行追踪和免疫细胞化学ABC法相结合研究了红核内酪氨酸羟化酶、生长抑素和亮啡呔免疫活性神经元至延髓外侧网状核的投射.结果表明,红核内HRP标记细胞为对侧性,主要分布于其尾侧2/3,同时,还可见酪氨酸羟化酶、生长抑素、亮啡呔单标细胞及HRP/酪氨酸羟化酶、HRP/生长抑素、HRP/亮啡呔双标细胞,其中HRP/酪氨酸羟化酶双标细胞约占HRP单标细胞25.2%,HRP/生长抑素双标细胞约占21.3%,HRP/亮啡呔双标细胞约占15.4%.红核参与镇痛和心血管活动的调节可能与上述神经递质有关.  相似文献   

4.
本实验用HRP逆行追踪和免疫细胞化学结合法研究了大鼠脑桥内GABA能神经元至小脑前叶皮质的投射。结果表明,双侧脑桥核和脑桥被盖网状核均可见到三种标记细胞,包括HRP和GABA双标记细胞。提示:脑桥核和脑桥被盖网状核至小脑皮质的投射径路部分含有GABA。这可能是脑桥影响小脑皮质功能的化学神经解剖学基础之一。本文首次证实脑桥小脑径路含有GABA。  相似文献   

5.
本文应用 HRP 逆行追踪与免疫细胞化学相结合的双重标记技术,研究了大鼠脑干至脊髓5-羟色胺(5-HT)投射纤维的起源,并对中缝核群和网状结构内5-HT 阳性细胞、HRP 标记细胞和5-HT-HRP 双重标记细胞进行了数量分析。结果表明,1.在延髓、脑桥尾侧部,5-HT-HRP双重标记细胞约占5-HT 阳性细胞的55%;占 HRP 标记细胞的45%。中脑仅有极少数5-HT-HRP双重标记细胞。2.脑干至脊髓5-HT 下行投射,主要起源于中缝苍白核、中缝隐核、中缝大核和延髓浅表弓状纤维区,所含双重标记细胞约占双重标记细胞总数的68%。3.浅表弓状纤维区、舌下神经根间核、中缝苍白核和中缝隐核主要为5-HT 下行投射;中缝大核及周围网状结构主要为非5-HT 下行投射。  相似文献   

6.
用WGA-HRP逆行追踪与抗FOS和抗5-羟色胺免疫组化的三重标记方法,观察向大鼠一侧有前跖部皮下注射8%福尔马林50μl后,中缝背核至缰核5-羟色胺能神经元的FOS表达.光镜下发现中缝背核内有七种阳性神经元.即HRP、FOS、5-HT单标细胞;FOS/HRP、FOS/5-HT、HRP/5-HT双标细胞;FOS/HRP/5-HT三标细胞.结果表明中缝背核至缰核的5-HT能投射神经元对躯体伤害性刺激起反应.  相似文献   

7.
用HRP与免疫细胞化学结合法和免疫电镜方法观察了大白鼠脊髓L_(4~5)节段内前角含γ-氨基丁酸(GABA)神经元的分布及其与躯体传出的关系。光镜下,在脊髓前角各层,包括位于前角的前外侧部的Rexed IX层,均有GABA免疫反应阳性神经元胞体和末梢分布。GABA阳性胞体为圆形或三角形,具有多个突起,可分大、中两型。电镜下,GABA样免疫反应产物呈细小颗粒状沉淀,分布于核周质、树突和轴突内。在轴突末梢,免疫反应产物定位于小透亮囊泡和线粒体外膜周围。GABA阳性树突接受GABA阳性或阴性轴突的传入性突触。HRP与免疫细胞化学结合法显示:在Rexed IX层存在HRP单标细胞、GABA单标细胞和HRP/GABA双标细胞。双标细胞占HRP标记细胞总数的79%。以上结果证明:在Rexed IX层的前角神经细胞内含有GABA,这些神经元参与躯体传出,并在突触水平接受来自GABA神经元的自身调节。  相似文献   

8.
将HRP分别注入18只大鼠的颈、胸、腰段脊髓背角内,应用HRP逆行追踪与免疫细胞化学结合法,对大鼠延髓缝核至脊髓背角的SP能下行投射进行了观察。至脊髓背角的SP能下行纤维主要来自大缝核(无明显定位关系),其次是隐缝核及苍白缝核。各缝核双标细胞占整个延髓缝核HRP标记细胞总数的百分比分别为:大缝核7.5%,隐缝核2.9%,苍白缝核1.4%。本文还讨论了延髓缝核SP能神经元至脊髓背角下行投射的机能意义。  相似文献   

9.
马晓凯  王滨  范凯  付元山 《解剖学报》2007,38(2):139-143
目的 探讨大鼠丘脑前核-海马下托复合体神经元环路的突触结构及谷氨酸分布特征.方法 应用HRP束路追踪结合包埋后胶体金免疫电镜技术.结果 在丘脑前核内,可见HRP顺行标记的海马下托复合体传入轴突终末,终末多为卵圆形,内含圆形透亮突触小泡和数个线粒体.其做为突触前成分与HRP标记的树突或非HRP标记的树突形成非对称性突触.在谷氨酸胶体金免疫反应切片上,胶体金颗粒标记胞体、树突、轴突终末等.HRP标记的轴突终末和一些非HRP标记的与突触后成分形成非对称性突触的轴突终末(Gray Ⅰ型)内,胶体金颗粒密度明显大于背景(胞体、树突、Gray Ⅱ型轴突终末等)的胶体金颗粒密度.其平均胶体金颗粒密度为突触后树突的3倍多,为对称性轴突终末(Gray Ⅱ型)的6倍多.在两张邻近的连续切片,γ-氨基丁酸(GABA)胶体金免疫反应切片上,GABA胶体金颗粒浓重标记Gray Ⅱ型轴突终末,背景标记极少;而非对称性轴突终末(Gray Ⅰ型)胶体金颗粒标记极弱.谷氨酸胶体金免疫反应切片上,Gray Ⅱ型轴突终末胶体金颗粒标记极弱.GABA阳性轴突终末与HRP标记的树突形成对称性突触,在同一树突上可见GABA能轴突终末形成的对称性突触和其他轴突终末形成的非对称性突触.结论 丘脑前核内来自海马下托复合体投射神经元的轴突终末是谷氨酸能的;来自海马下托复合体皮质投射神经元轴突终末,在丘脑前核与投射至海马下托皮质的神经元树突形成非对称性轴-树突触.  相似文献   

10.
为探讨杏仁核是否参与大鼠哮喘发作及其机制,采用卵蛋白致敏哮喘大鼠模型,运用WGA-HRP逆行追踪与免疫组织化学染色相结合的双重标记方法,在光镜下观察向下丘脑室旁核(PVN)发出投射的杏仁核神经元内Fos蛋白的表达情况。结果显示:杏仁核内可观察到三种阳性细胞,即HRP逆标神经元、Fos阳性神经元和HRP/Fos双标神经元。Fos阳性细胞呈双侧分布,主要分布在杏仁核的内侧亚核(MeA)和中央亚核(CeA);HRP逆标神经元和HRP/Fos双标神经元分布在注射区同侧的内侧杏仁核,内侧杏仁核内HRP/Fos双标神经元占HRP单标神经元的33.55%。本研究结果提示,哮喘大鼠发作时,杏仁核、下丘脑室旁核的神经元兴奋,且杏仁核到下丘脑室旁核的直接投射可能参与了哮喘发作的调控。  相似文献   

11.
Summary Cell bodies of sensory neurons of the rat's hypoglossal nerve were demonstrated by the somatopetal horseradish peroxidase (HRP) transport technique. Labelled perikarya were found within the second and third cervical spinal ganglia and in the vagal sensory ganglia.After application of HRP to the cut peripheral trunk of the hypoglossal nerve about 200 labelled cell bodies were counted in each animal. The vast majority of the axons from cervical spinal ganglion cells reach the hypoglossal nerve via the descending ramus (N. descendens hypoglossi). However, there may exist an additional pathway, probably via the cervical sympathetic trunk.Application of HRP to the medial and lateral end branches led to a labelling of much fewer spinal ganglion cells while the number of labelled vagal sensory neurons remained unchanged. Thus, it is suggested that the majority of the cervical afferents of the hypoglossal nerve originates within the extrinsic tongue musculature and the geniohyoid muscle, whereas the vagal afferents may perhaps derive exclusively from the intrinsic muscles.Histograms of the mean diameters of labelled cell bodies show a predominance of very small perikarya. This contrasts with the diameter distribution of sensory perikarya labelled after HRP application to nerves supplying other skeletal muscles. It is therefore assumed that the afferent component of the hypoglossal nerve is composed mainly of small-calibre axons.Supported by the Hartmann Müller-Stiftung, ZürichPart of this work was presented at the 74. Versammlung der Anatomischen Gesellschaft in Regensburg, March 1979  相似文献   

12.
本实验用HRP轴突逆行传递法,观察了27只家兔网状脊髓束的起源。实验结果表明,网状脊髓束的起源较为广泛,包括网状结构內侧区、外侧区、中脑网状结构和旁正中网状核,不同核团的标记细胞,数目不等。脊髓不同部位,分别导入HRP时,结果不同,颈體注射例,标记细胞最多的是延體中央腹侧核。腰體注射例,标记细胞最多的是巨细胞网状核。胸髓注射例,网状脑桥尾侧核和脑桥网状嘴侧核中的标记细胞相对增多。在颈髓注射例中,网状结构各核均出现标记细胞。但在腰髓注射例,部分网状结构中的核团无标记细胞。  相似文献   

13.
The origin of the afferent fibers to the lingual muscles of the dog was investigated by means of retrograde transport of horseradish peroxidase (HRP) from injection sites in the tongue and the extrinsic lingual muscles. Intralingual injections were not satisfactory because the enzyme diffused beyond the intrinsic lingual muscles to include virtually all tissues within the tongue. Thus, the resultant retrograde labeling of cell bodies of the trigeminal, geniculate, glossopharyngeal, vagal, and first cervical (C1) spinal ganglia represented a composite of lingual sensory innervation. In order to confine HRP uptake to intramuscular nerve endings, injections were limited to surgically isolated extrinsic lingual muscles, i.e., the genioglossus, hyoglossus, and styloglossus. After these intramuscular injections, labeled neurons appeared ipsilaterally in the C1 spinal ganglion, the proximal vagal (jugular) ganglion, and trigeminal ganglion. Earlier suggestions that the lingual proprioceptive neurons of the dog reside in the distal vagal (nodose) ganglion and hypoglossal ganglia were not confirmed. The mesencephalic nucleus of the trigeminal nerve failed to label after enzyme injections into the tongue or the extrinsic lingual muscles. The retrograde labeling of cell bodies in the C1 spinal ganglion was abolished when HRP injections into the extrinsic lingual muscles were preceded by surgical interruption of the ansa cervicalis or distal section of the hypoglossal nerve. Retrograde labeling of neurons in the proximal vagal ganglion persisted after hypoglossal nerve transections.  相似文献   

14.
本文用CT-HRP追踪了环甲肌运动神经的起核及其在脑干中的位置,并用AChE组织化学和ENK免疫组化技术观察了它们的性质。家兔环甲肌运动神经元主要起自同侧疑核,约在闩上0.58—2.73mm处,90%以上的标记细胞位于内侧柱。在舌下神经核尾端(闩下1.18—3.18mm)和面后核中也有较多的HRP标记神经元。应用组织化学和免疫组化技术发现:在疑核和舌下神经核中有HRP-AChE双标神经元,在疑核内有HRP-ENK双阳性神经元。这表明家兔起自疑核和舌下神经核的环甲肌运动神经元有些是胆碱能神经元,起自疑核的神经元有的是ENK样反应阳性神经元。本文首次报告了家兔环甲肌运动神经元起自于舌下神经核和面后核以及起核的性质,并对其机能意义进行了讨论。  相似文献   

15.
The origin of the afferent fibers to the lingual muscles of the dog was investigated by means of retrograde transport of horseradish peroxidase (HRP) from injection sites in the tongue and the extrinsic lingual muscles. Intralingual injections were not satisfactory because the enzyme diffused beyond the intrinsic lingual muscles to include virtually all tissues within the tongue. Thus, the resultant retrograde labeling of cell bodies of the trigeminal, geniculate, glossopharyngeal, vagal, and first cervical (C1) spinal ganglia represented a composite of lingual sensory innervation. In order to confine HRP uptake to intramuscular nerve endings, injections were limited to surgically isolated extrinsic lingual muscles, i.e., the genioglossus, hyoglossus, and styloglossus. After these intramuscular injections, labeled neurons appeared ipsilaterally in the C1 spinal ganglion, the proximal vagal (jugular) ganglion, and trigeminal ganglion. Earlier suggestions that the lingual proprioceptive neurons of the dog reside in the distal vagal (nodose) ganglion and hypoglossal ganglia were not confirmed. The mesencephalic nucleus of the trigeminal nerve failed to label after enzyme injections into the tongue or the extrinsic lingual muscles. The retrograde labeling of cell bodies in the C1 spinal ganglion was abolished when HRP injections into the extrinsic lingual muscles were preceded by surgical interruption of the ansa cervicalis or distal section of the hypoglossal nerve. Retrograde labeling of neurons in the proximal vagal ganglion persisted after hypoglossal nerve transections.  相似文献   

16.
用HRP轴■顺、逆行追踪法观察了大鼠外侧巨细胞旁网状核(PGCL)的传出纤维联系。结果表明:①PGCL经轴■顺行传递,可投射到与痛觉及其调控有关的核团,如脊髓背角、三叉神经脊束核、导水管周围灰质、束旁核、外侧颈核、脑干网状结构核群等;PGCL还投射到与调节内脏活动有关的孤束核、迷走神经背核、导水管周围灰质背份、臂旁核、脊髓侧角等;也向三叉神经运动核、下丘等处发出投射纤维。②腰髓注射HRP后,在PGCL中见有较多的标记细胞,主要分布在锥体束外侧和面神经核腹内侧区域,部分细胞亦见于锥体束内及PGCL靠近软脑膜处。③向下丘和孤束核注入HRP以作往返印证,在PGCL见到标记细胞和纤维。  相似文献   

17.
本文用HRP作为神经元标记的示踪剂,研究了不同年龄组大鼠舌下神经逆行轴浆运输的速度以及相同时间内不同年龄组大鼠舌下神经元中HRP的消逝程度。结果表明:随着大鼠的增龄,舌下神经中HRP逆行轴浆运输速度下降,在成年组为122.32mm/日,而老年组仅为73.34mm/日;同时,舌下神经元对HRP的清除能力也下降,在HRP标记细胞数达到最高峰后的60小时,幼年组舌下神经元对HRP的清除率为90%。成年组为87%,而老年组则降为68%。对上述发现所产生的衰老学方面的意义进行了探讨。  相似文献   

18.
Bird vocalizations are produced by contractions of syringeal muscles, which are controlled by the hypoglossal nucleus. In oscines, syringeal muscles are controlled by the hypoglossal nucleus ipsilaterally, whereas syringeal innervation is bilateral in non-oscines. We have determined the course of hypoglossal nerves in the jungle crow Corvus macrorhynchos . Our results indicate a cross-over of the hypoglossal nerve from the left side to the right side on the trachea 7 mm rostral to the Musculus sternotrachealis . We also investigated the innervation of the syringeal muscles of jungle crows from the hypoglossal nucleus using the horseradish peroxidase (HRP) method. After HRP was injected into the syringeal muscles on each side, HRP-labeled cells were found bilaterally in the hypoglossal nerve. These results suggest that the syringeal muscles of jungle crows are innervated bilaterally from the hypoglossal nucleus, although these birds are categorized as oscines.  相似文献   

19.
采用WGA-HRP和HRP逆行追踪法,对20只SD大鼠下丘脑向嗅球的投射进行了观察。在同侧下丘脑视前大细胞核均观察到较多的酶标记细胞;同侧下丘脑外侧核和室周核常出现少量酶标记细胞;偶见同侧下丘前核、乳头体外侧核、下丘脑腹内侧核前部、背内侧核腹侧部及弓状核出现少量酶标记细胞。  相似文献   

20.
Previous studies have shown the existence of a sympathetic component in some cranial nerves including the hypoglossal nerve. In this study, the horseradish peroxidase (HRP) tract-tracing retrograde technique and experimental degeneration method were used to elucidate the possible neuroanatomical relationship between the superior cervical ganglion (SCG) and the hypoglossal nerve of hamsters. About 10% of the SCG principal neurons were HRP positive following the tracer application to the trunk of hypoglossal nerve. Most of the HRP-labelled neurons were multipolar and were randomly distributed in the ganglion. When HRP was injected into the medial branch of the hypoglossal nerve, some of the SCG neurons were labelled, but they were not detected when HRP was injected into the lateral branch. The present findings suggest that postganglionic sympathetic fibres from the SCG may travel along the hypoglossal nerve trunk via its medial branch to terminate in visceral targets such as the intralingual glands. By electron microscopy, the HRP reaction product was localised in the neuronal somata and numerous unmyelinated fibres in the SCG. In addition, HRP-labelled axon profiles considered to be the collateral branches of the principal neurons contained numerous clear round and a few dense core vesicles. Besides the above, some HRP-labelled small myelinated fibres, considered to be visceral afferents, were also present. Results of experimental degeneration following the severance of the hypoglossal nerve showed the presence of degenerating neuronal elements both in the hypoglossal nucleus and the SCG. This confirms that the hypoglossal nerve contains sympathetic component from the SCG which may be involved in regulation of the autonomic function of the tongue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号