首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
HER2/neu-derived peptides inducing MHC class II-restricted CD4+ T helper lymphocyte (Th) responses, although critical for tumour rejection, are not thoroughly characterized. Here, we report the generation and characterization of CD4+ T cell clones specifically recognizing a HER-2/neu-derived peptide (776-788) [designated HER2(776-788)]. Such clones yielded specific proliferative and cytokine [gamma-interferon(IFN)-gamma] responses when challenged with autologous dendritic cells (DCs) loaded with HER2(776-788). By performing blocking studies with monoclonal antibodies (MAbs) and by using DCs from allogeneic donors sharing certain HLA-DR alleles, we found that HER2(776-788) is a promiscuous peptide presented, at least, by DRB5*0101, DRB1*0701 and DRB1*0405 alleles. One TCRV beta 6.7+ clone recognized the HLA-DRB5*0101+ FM3 melanoma cell line transfected with a full length HER-2/neu cDNA. Moreover, this clone recognized the HER-2/neu+ SKBR3 breast cancer cell line induced to express HLA-DR, thus demonstrating that HER2(776-788) represents a naturally processed and presented epitope. Our data demonstrate that helper peptide HER2(776-788) represents a promiscuous epitope binding to at least three HLA-DR alleles, thus offering a broad population coverage. The use of antigenic peptides presented by major histocompatibility complex (MHC) class II in addition to those presented by class I may improve the therapeutic efficacy of active immunization.  相似文献   

2.
The objective of this study was to determine whether peptides consisting of the Ii-Key peptide LRMK linked to the N-terminal ends of HER-2 peptides would stimulate the expansion of antigen-specific E75-TCR+CD8+ cells. The peptides tested were N-acetylated and linked to an alpha-amide at the C-terminus; some of the peptides contained epsilon-aminovaleric acid (Ava) between the LRMK and the HER-2 peptide. Of the seven LRMK-HER-2 peptides tested to date, three effectively induced IFN-gamma production by peripheral blood mononuclear cells (PBMCs) from healthy donors and women with ductal carcinoma in situ. A fusion peptide, LRMK-Ava-HER-2(777-789), was more immunogenic than the natural HER-2(777-789) antigen, G89, with regard to IFN-gamma production. In combination with the CD8-activating peptide E75 [HER-2(369-377)] LRMK-p776 and LRMK-Ava-F7 induced the proliferation of E75-TCR(Med+Hi) CD8+ cells to a greater extent than did 1,000 or 5,000 nM of E75 alone, respectively. The induction effects were strongest at 600 nM for LRMK-p776 and 3,000 nM for LRMK-Ava-F7. At 3,000 nM, LRMK-p776 was cytotoxic to PBMCs. LRMK-p776 and F7 had a similar specificity and preferences for binding HLA-DR molecules. The molecular modeling of HLA-DR:LRMK-p776 and HLA-DR:LRMK-Ava-F7 complexes revealed the side chains of the peptides, which pointed towards the T-cell receptor. Differences in side chain orientation introduced by various N-terminal extensions of MHC class II-bound peptides should be important for directing CD4+ cells to stimulate CD8+ cells or for eliminating regulatory T cells in cancer immunotherapy.  相似文献   

3.
Ideally, vaccines should be designed to elicit long-lived immunity. The goal of this study was to determine whether HER-2/neu peptide-specific CD8+ T-cell immunity could be elicited using an immunodominant HER-2/neu-derived HLA-A2 peptide alone in the absence of exogenous help. Granulocyte macrophage colony-stimulating factor (GM-CSF) was used as adjuvant. Six HLA-A2 patients with HER-2/neu-overexpressing cancers received 6 monthly vaccinations with a vaccine preparation consisting of 500 microg of HER-2/neu peptide, p369-377, admixed with 100 microg of GM-CSF. The patients had either stage III or IV breast or ovarian cancer. Immune responses to the p369-377 were examined using an IFN-gamma enzyme-linked immunosorbent spot assay. Before vaccination, the median precursor frequency (range), defined as precursors per 10(6) peripheral blood mononuclear cell, to p369-377 was 0 (no range). After vaccination, the median precursor frequency to p369-377 in four evaluable patients was 0 (0-116). Overall, HER-2/neu peptide-specific precursors developed to p369-377 in two of four evaluable subjects. The responses were short-lived and not detectable at 5 months after the final vaccination. Immunocompetence was evident, because patients had detectable enzyme-linked immunosorbent spot responses to tetanus toxoid and influenza. These results demonstrate that HER-2/neu MHC class I epitopes can induce HER-2/neu peptide-specific IFN-gamma-producing CD8+ T cells. However, the magnitude of the responses were low, as well as short-lived, suggesting that CD4+ T-cell help is required for lasting immunity to this epitope.  相似文献   

4.
HER-2/neu is a "self" tumor antigen that is overexpressed in 15-30% of human adenocarcinomas. Vaccine strategies directed against HER-2/neu and other self tumor antigens require development of methods to overcome immune tolerance to self-proteins. In rats, rat neu peptide vaccines have been shown to be an effective way of circumventing tolerance to rat neu protein and generating rat neu-specific immunity. The present report validates that a similar peptide-based vaccine formulation is effective for inducing T-cell immunity to HER-2/neu protein in humans with breast and ovarian cancer. The vaccine formulation included groups of peptides derived from the HER-2/neu extracellular domain (ECD) or intracellular domain (ICD) mixed with granulocyte macrophage colony stimulating factor as an adjuvant. These peptides were 15-18 amino acids in length and designed to elicit a CD4 T helper-specific immune response. Patients underwent intradermal immunization once a month for a total of two to six immunizations. To date, all of the patients immunized with HER-2/neu peptides developed HER-2/neu peptide-specific T-cell responses. The majority of patients (six of eight) also developed HER-2/neu protein-specific responses. Responses to HER-2/neu protein occurred with epitope spreading. Immune T cells elicited by vaccination were shown to migrate outside the peripheral circulation by virtue of generating delayed type hypersensitivity responses distant from the vaccine site, which indicated the potential ability to traffic to the site of tumor. The use of peptide-based vaccines may be a simple, yet effective, vaccine strategy for immunizing humans to oncogenic self-proteins.  相似文献   

5.
The human HER-2/neu gene encodes a 185 kDa transmembrane glycoprotein recognized by MHC class I-restricted CTLs. Here, we report that HER-2/neu peptide CTL epitopes can also be recognized by cytotoxic NK-T lymphocytes. Unfractionated peptides derived from HLA-A2(+), HER-2/neu(+) tumor cells acid cell extract (ACE), collected from patients with metastatic ovarian cancer, were used as antigen to generate in vitro cytotoxic effectors. ACE was able to elicit from cancer patients' PBMCs both alphabetaTCR(+)CD3(+)CD56(-) and alphaTCR(+)CD3(+)CD56(+) (NK-T) CTLs that lysed ACE-sensitized T2 cells in an HLA-A2-restricted manner. The same CTL lines also recognized T2 cells pulsed with HER-2/neu-derived CTL peptide epitopes, a HER-2/neu-transfected HLA-A2(+) cell line and autologous tumor cells. alphaTCR(+)CD3(+)CD56(+) CTL lines also exhibited NK-like cytotoxicity against autologous tumor cells. CTL clones were isolated from alphaTCR(+)CD3(+)CD56(+) bulk cultures displaying both MHC- and non-MHC-restricted cytotoxicity, thus confirming the dual cytolytic function of such cells. Our data demonstrate that ACE from metastatic ovarian tumors can be used as multiepitope vaccines for generating in vitro, besides classical CTLs, NK-T cells exerting efficient MHC- and non-MHC-restricted cytotoxicity against autologous tumor targets. Such NK-T cells expressing dual cytotoxic activity may prove advantageous in cancer immunotherapy.  相似文献   

6.
PURPOSE: We have previously reported (K. Kono et al., Int. J. Cancer, 78: 202-208, 1998) that HER-2/neu-derived peptides are naturally processed as tumor-associated antigens recognized by tumor-specific, human leukocyte antigen (HLA)-A2-restricted CTLs in gastric cancer. In the present study, we described a Phase-1 vaccination trial in gastric cancer patients using dendritic cells (DCs) pulsed with the immunodominant HER-2/neu(p369) peptides. EXPERIMENTAL DESIGN: Nine enrolled patients, who had HER-2/neu-overexpressing tumors and who were HLA-A2 positive, received four vaccinations by DCs pulsed with HER-2(p369) peptide at 2-week intervals intradermally. RESULTS: There were no serious adverse effects noted in the immunized patients. Peripheral blood mononuclear cells, preimmunization and after the fourth immunization, were cultured with autologous, HER-2(p369)-pulsed antigen-presenting cells for 12 days. Thereafter, peptide specificity was evaluated by IFN-gamma secretion assay from cultured T cells against T2 cells pulsed with HER-2(p369) peptide. HER-2/neu peptide-specific recognition could be demonstrated in six of nine patients after immunization, whereas there was no HER-2/neu peptide-specific recognition before immunization. The peptide-specific CTL lines isolated from two of the patients could also lyse a HER2/neu-transfected cell line. Furthermore, a peptide-specific delayed-type hypersensitivity response occurred in three of nine patients. One of the patients underwent a partial clinical response concurrent with a decrease of tumor marker. Another patient demonstrated a stabilization of disease status for a period of 3 months. CONCLUSIONS: Taken together, tumor vaccination therapy with DCs pulsed with HER-2/neu-peptides may be a potential candidate for the novel treatment of gastric cancer patients.  相似文献   

7.
Unfractionated peptides (MW: up to 10 kDa), derived from HLA-A2.1 positive (+) HER-2/neu-overexpressing primary tumour cell acid cell extracts (ACE), were successfully used to generate in vitro cytotoxic T lymphocytes (CTL). Primary tumour cells were collected from peritoneal malignant effusions of patients with ovarian cancer. Acid cell extracts-induced CTL specifically lysed in an HLA-A2-restricted manner HER-2/neu+ autologous primary tumour cells as well as HER-2/neu+ tumour cell lines. In addition, adoptive transfer of such CTL significantly prolonged the survival of SCID mice xenografted with HLA-A2.1+, HER-2/neu+ human breast and ovarian tumour cell lines. Acid cell extracts collected from HLA-A2.1+ HER-2/neu negative (-) primary ovarian tumours induced HLA-A2.1-restricted CTL with weak in vitro and in vivo antitumour capacity, suggesting that HER-2/neu peptides within ACE from HER-2/neu-overexpressing primary ovarian tumour cells are immunodominant. The results presented herein serve as a rationale for the initiation of vaccination studies in patients with HER-2/neu-overexpressing ovarian tumours utilising autologous tumour-derived ACE.  相似文献   

8.
HER-2/neu oncogene products have been implicated as a potential target of T cell-mediated immune responses to HER-2/neu-induced tumors. Using HER-2/neu transgenic mice (oncomice), we investigated whether, and if so how, anti-HER-2/neu immune responses are induced and modulated in these oncomice from birth to tumor initiation. Female oncomice carrying the activated HER-2/neu oncogene displayed apparent hyperplasia in mammary glands at 10 weeks of age and developed mammary carcinomas around an average age of 26 weeks. Unfractionated spleen cells from 10- to 15-week-old oncomice that were cultured without any exogenous stimuli exhibited cytotoxicity against the F31 tumor cell line established from an HER-2/neu-induced mammary carcinoma mass. The final antitumor effectors were a macrophage lineage of cells. However, this effector population was activated, depending on the stimulation of oncomouse CD4(+) T cells with oncomouse-derived antigen-presenting cell (APC) alone or with wild-type mouse APC in the presence of F31 membrane fractions, suggesting the presence of HER-2/neu-primed CD4(+) T cells and HER-2/neu-presenting APC in 10- to 15-week-old oncomice. These antitumor cytotoxic responses were detected at approximately 5 weeks of age and peaked at age 10 to 15 weeks. However, the responses then declined at tumor-bearing stages in which the expression of target proteins could progressively increase. This resulted from the dysfunction of CD4(+) T cells but not of APC or effector macrophages. These results indicate that an anti-HER-2/neu CD4(+) T cell-mediated immune response was generated at the pretumorigenic stage but did not prevent tumorigenesis and declined after the development of clinical tumors.  相似文献   

9.
Our goal is to develop peptide vaccines that stimulate tumor antigen-specific T-cell responses against frequently found cancers. Previous work has shown that to generate effective T-cell responses, peptides have to be administered in combination with strong adjuvants such as Toll-like receptor agonists. However, most animal tumor model systems used to study peptide vaccines were not truly representative of malignant diseases in humans because they solely used transplantable tumor lines, and instead of true tumor antigens, they used highly immunogenic foreign proteins. Here, we describe a peptide vaccination strategy, which is highly effective in delaying or preventing the occurrence of spontaneous breast tumors. Transgenic female BALB-neuT mice that carry the activated rat HER-2/neu oncogene were vaccinated with a synthetic peptide from the rat HER-2/neu gene product, which represents an epitope for CTLs in combination with a Toll-like receptor agonist adjuvant. Our results show that to obtain tumor antigen-specific CTL responses and antitumor effects, the vaccine had to be administered repetitively, or the function of CD4/CD25 T regulatory cells had to be blocked with anti-CD25 antibody therapy. Mice that were vaccinated with this approach remained tumor-free or were able to control spontaneous tumor growth and exhibited long-lasting CTL responses, not only against the immunizing peptide but also against other peptides derived from rat HER-2/neu product (i.e., epitope spreading). These results suggest that similar strategies should be followed for conducting clinical studies in patients.  相似文献   

10.
HER-2/neu transgene-modified dendritic cell (DC)-based vaccines are potent at eliciting HER-2/neu-specific antitumor immunity. In this study, we constructed a recombinant adenovirus (RGD)AdVneu with fiber gene modified by RGD insertion into the viral knob's H1 loop. We transfected DCs with (RGD)AdVneu, and assessed/compared HER-2/neu-specific humoral and cytotoxic T lymphocyte (CTL) responses and antitumor immunity derived from the original AdVneu-transfected DCs (DCneu1) and (RGD)AdVneu-transfected DCs (DCneu2). We demonstrated that DCneu2 displayed increased HER-2/neu expression by 8.3-fold compared to DCneu1. We also demonstrated that DCneu2 vaccination induced stronger HER-2/neu-specific humoral and CTL immune responses than DCneu1 vaccination. DCneu2 vaccination protected all the mice from HER-2/neu-expressing Tg1-1 tumor cell challenge in wild-type FVB/NJ mice, compared to a partial protection in DCneu1-immunized mice. In addition, DCneu2 vaccination also significantly delayed tumor growth than DCneu1 immunization (P<0.05) in Tg FVBneuN mice. Three immunizations of DCneu2 starting at the mouse age of 2 months also significantly delayed breast cancer development in Tg mice compared to DCneu2 vaccine (P<0.05). Importantly, DCneu2 vaccine reduced breast carcinogenesis by 9% in Tg mice with self HER-2/neu tolerance. Therefore, vaccination of fiber-modified adenovirus-transfected DCs to enhance expression of tumor antigens such as HER-2/neu is likely representative of a new direction in DC-based vaccine of breast cancer.  相似文献   

11.
Silybin, a main component of the milk thistle of Silybum marianum, has been reported to possess anticancer activity. We investigated the effects of IdB 1016, a complex of silybin with phosphatidylcholine, on the development of mammary tumors appearing spontaneously in HER-2/neu transgenic mice. The mechanisms involved in the antitumor effect of IdB 1016 were evaluated by studying the apoptosis, senescent-like growth arrest, intratumoral leukocyte infiltrate, and the expression of HER-2/neu and p53 in tumoral mammary glands from transgenic mice and in human breast SKBR3 tumor cells. The administration of IdB 1016 delayed the development of spontaneous mammary tumors, reduced the number and size of mammary tumor masses, and diminished lung metastasization in HER-2/neu transgenic mice. In tumoral mammary glands from IdB 1016-treated mice, a down-regulation of HER-2/neu gene expression was associated with an increased senescent-like growth arrest of tumor cells, and an increased infiltrate of neutrophils, CD4, and CD8 T cells. Both senescent-like growth arrest and apoptosis were significantly increased and were associated with a reduced p185(HER-2/neu) protein and an increased p53 mRNA in SKBR3 in vitro treated with IdB 1016 in comparison with control cells. The results show the antitumor effect of IdB 1016 in the development of spontaneous mammary tumors in HER-2/neu transgenic mice. The effect of IdB 1016 might be related to the down-regulation of HER-2/neu expression and the induction of senescent-like growth arrest and apoptosis through a p53-mediated pathway in tumor cells.  相似文献   

12.
Overexpression of HER-2/neu (c-erbB2) is associated with increased risk of recurrent disease in ductal carcinoma in situ (DCIS) and a poorer prognosis in node-positive breast cancer. We therefore examined the early immunotherapeutic targeting of HER-2/neu in DCIS. Before surgical resection, HER-2/neu(pos) DCIS patients (n = 13) received 4 weekly vaccinations of dendritic cells pulsed with HER-2/neu HLA class I and II peptides. The vaccine dendritic cells were activated in vitro with IFN-gamma and bacterial lipopolysaccharide to become highly polarized DC1-type dendritic cells that secrete high levels of interleukin-12p70 (IL-12p70). Intranodal delivery of dendritic cells supplied both antigenic stimulation and a synchronized preconditioned burst of IL-12p70 production directly to the anatomic site of T-cell sensitization. Before vaccination, many subjects possessed HER-2/neu-HLA-A2 tetramer-staining CD8(pos) T cells that expressed low levels of CD28 and high levels of the inhibitory B7 ligand CTLA-4, but this ratio inverted after vaccination. The vaccinated subjects also showed high rates of peptide-specific sensitization for both IFN-gamma-secreting CD4(pos) (85%) and CD8(pos) (80%) T cells, with recognition of antigenically relevant breast cancer lines, accumulation of T and B lymphocytes in the breast, and induction of complement-dependent, tumor-lytic antibodies. Seven of 11 evaluable patients also showed markedly decreased HER-2/neu expression in surgical tumor specimens, often with measurable decreases in residual DCIS, suggesting an active process of "immunoediting" for HER-2/neu-expressing tumor cells following vaccination. DC1 vaccination strategies may therefore have potential for both the prevention and the treatment of early breast cancer.  相似文献   

13.
HER-2/neu (HER-2) is a cell surface proto-oncogene that is often overexpressed in carcinomas. Passive administration of anti-HER-2 antibodies in breast cancer patients has achieved promising results, but less is known about the role of antibodies in active immunization. We asked whether B cells/antibodies are needed for tumor immunity induced by plasmid (HER-2 and GM-CSF) immunization. HER-2 specific tumor immunity relied completely on both CD4+ and CD8+ T cells. IFN-gamma, and to a lesser extent IL-4, seemed to be crucial cytokines during tumor rejection. Protection was associated with production of anti-HER-2 IgG antibodies in B cell competent mice. After immunization, however, B cell-deficient mice rejected HER-2-expressing tumors as efficiently as control littermates. We conclude that T cells are the main effector cells in DNA vaccine induced immunity against HER-2 and that anti HER-2 antibodies are not necessary to elicit a protective anti tumor immune response in this model.  相似文献   

14.
PURPOSE: The purpose of this study was to immunize patients with HER-2/neu-overexpressing cancer with a multipeptide vaccine comprised of four class II HER-2/neu peptides that had been identified as the most immunogenic in a previous clinical trial. Furthermore, we questioned whether MHC binding affinity could predict the in vivo immunogenicity of the HER-2/neu helper peptides. EXPERIMENTAL DESIGN: Four putative class II HER-2/neu peptides, which were found to generate detectable specific T-cell responses (stimulation index > 2) in a majority of patients in a previous study, were used to formulate a single vaccine. The multipeptide vaccine was administered intradermally with granulocyte macrophage colony-stimulating factor as an adjuvant. Ten patients with HER-2/neu overexpressing breast or lung cancer were enrolled. HER-2/neu peptide-and protein-specific T cell and antibody immune responses were measured. Competitive inhibition assays were used to analyze the class II HER-2/neu peptides for their binding affinity to 14 common HLA-DR alleles. RESULTS: Twenty-five percent of patients developed HER-2/neu peptide-specific T-cell immunity, and 50% developed HER-2/neu peptide-specific antibody immunity. No patient developed HER-2/neu protein-specific T cell or antibody immunity. The majority of peptides exhibited high binding affinity, in vitro, to >/==" BORDER="0">3 of the 14 DR alleles analyzed. CONCLUSION: The group of peptides used in this study demonstrated high binding affinity to multiple DR alleles suggesting that in vitro binding affinity may be able to predict the in vivo immunogenicity of class II peptides. However, only a minority of patients immunized with the multipeptide vaccine developed HER-2/neu peptide-specific T cell or antibody immunity, and none developed HER-2/neu protein-specific immunity.  相似文献   

15.
An effective tumor vaccine may be required to induce both CTLs and T-helper (Th) responses against tumor-associated antigens. CD4+ Th cells that recognize MHC class II-restricted epitopes play a central role in the initiation and maintenance of antitumor immune responses. Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer and thus is a potential target for prostate cancer immunotherapy. In this study, we attempted to identify Th epitopes derived from PSMA for enhancing prostate cancer vaccine by eliciting PSMA-specific Th responses. We first screened a panel of six epitope peptide candidates selected with the TEPITOPE program and found that all six peptides induced peptide-specific T-cell proliferation from one or more donors with estimated T-cell precursor frequencies of 0-4.17 x 10(-6). We then established peptide-specific T-cell clones for five of these six peptides and demonstrated that the T-cell clone specific for the PSMA(459) epitope (NYTLRVDCTPLMYSL) can recognize processed antigens from recombinant PSMA proteins. The PSMA(459) peptide was found to induce CD4+ T-cell responses in healthy individuals and prostate cancer patients with different HLA-DR alleles. To test the potential clinical application, human HLA-DR4 transgenic mice were immunized with PSMA(459) peptide and we found that PSMA(459) peptide immunization activated T cells that specifically responded to antigenic peptides derived from PSMA proteins and PSMA-positive tumor. Thus, the naturally processed Th epitope PSMA(459) could be included in prostate tumor vaccines to enhance PSMA-specific CTL responses.  相似文献   

16.
Chen Y  Xie Y  Chan T  Sami A  Ahmed S  Liu Q  Xiang J 《Cancer gene therapy》2011,18(7):489-499
Approximately one third of patients with advanced human epidermal growth factor receptor 2 (HER-2)/neu-positive breast cancer respond to trastuzumab monotherapy, a humanized anti-HER-2/neu antibody. However, de novo and acquired antibody resistance is one of the major limitations of trastuzumab therapy warranting the search for other therapeutic strategies. One of the most remarkable features of adenovirus (AdV)-based vaccine is its ability to induce exceptionally high and sustained frequencies of transgene product-specific CD8(+) T-cell responses. In this study, we constructed two recombinant AdVs (AdV(OVA) and AdV(HER-2)) expressing ovalbumin (OVA) and HER-2/neu, and assessed AdV-induced antigen-specific cellular immune responses and preventive/therapeutic antitumor immunity. We demonstrate that AdV(OVA) stimulates efficient OVA-specific CD8(+) cytotoxic T lymphocyte (CTL) and natural killer responses, leading to preventive long-term immunity against OVA-expressing BL6-10ova melanoma in wild-type C56BL/6 mice. We further demonstrate that AdV(HER-2) stimulates HER-2/neu-specific CD8(+) CTL responses, leading to a significant reduction in breast carcinogenesis in transgenic FVBneuN mice (P<0.05), but has little therapeutic effect on pre-existing Tg1-1 tumor even at early stage (15 mm(3)). In contrast, the anti-HER-2/neu antibody therapy is capable of completely inhibiting Tg1-1 tumor growth at early stage, but fails to eradicate well-established Tg1-1 breast tumor (100 mm(3)). Interestingly, a combinatorial immunotherapy of anti-HER-2/neu antibody with AdV(HER-2) vaccine was capable of curing 4 of 10 studied mice bearing well-established Tg1-1 breast tumors and significantly delaying in death of the remaining six tumor-bearing mice (P<0.05). Taken together, our results suggest an adjuvant effect of AdV(HER-2) on anti-HER-2/neu antibody therapy for well-established breast tumor in transgenic FVBneuN mice, and this combinatorial immunotherapy of trastuzumab with AdV(HER-2) vaccine may be used as a new therapeutic strategy for treatment of advanced HER-2/neu-positive breast cancer.  相似文献   

17.
Dendritic cells (DCs) are powerful antigen-presenting cells that process antigens and present peptide epitopes in the context of the major histocompatibility complex molecules to generate immune responses. DCs are being studied as potential anticancer vaccines because of their ability to present antigens to naive T cells and to stimulate the expansion of antigen-specific T-cell populations. We investigated an antitumor vaccination using DCs modified by transfer of a nonsignaling neu oncogene, a homologue of human HER-2/neu, in a transgenic model of breast cancer. BALB-neuT mice develop breast cancers as a consequence of mammary gland-specific expression of an activated neu oncogene. We vaccinated BALB-neuT mice with bone marrow-derived DCs transduced with Ad.Neu, a recombinant adenovirus expressing a truncated neu oncoprotein. The vaccine stimulated the production of specific anti-neu antibodies, enhanced interferon-gamma expression by T cells, and prevented or delayed the onset of mammary carcinomas in the mice. Over 65% of vaccinated mice remained tumor free at 28 weeks of age, whereas all of the mice in the control groups developed tumors. When challenged with a neu-expressing breast cancer cell line, vaccinated tumor-free animals had delayed tumor growth compared with controls. The antitumor effect of the vaccine was specific for expression of neu. Studies showed that CD4+ T cells were required in order to generate antitumor immunity. Importantly, the effectiveness of the vaccine was not diminished by preexisting immunity to adenovirus, whereas the protection afforded by vaccination that used direct injection of Ad.Neu was markedly reduced in mice with anti-adenovirus antibody titers. DCs modified by recombinant adenoviruses expressing tumor-associated antigens may provide an effective antitumor vaccination strategy.  相似文献   

18.
This study describes a CD8(+) T-cell line specific for a MHC class I-restricted carcinoembryonic antigen (CEA) epitope, residues 526-533, isolated from CEA transgenic (CEA.Tg) mice immunized with a recombinant vaccinia-CEA vaccine. Incubation of splenocytes from the immune CEA.Tg mice with the CEA(526-533) peptide resulted in the outgrowth of low-avidity CD8(+) T cells, which produced IFN-gamma and mediated perforin-dependent tumor cell lysis. However, the CEA peptide-specific T cells killed CEA-expressing murine colorectal tumor cells only after pretreatment of the targets with murine IFN-gamma (muIFN-gamma), and lysis was H-2D(b)-restricted and involved the Fas-FasL-mediated cytotoxic pathway. When the CEA peptide-specific T cells were used as in vivo effectors in adoptive T-cell transfer studies, muIFN-gamma treatment of the CEA.Tg mice was again required for T-cell-dependent growth suppression of CEA-expressing metastatic tumors. The results indicate that (a) vaccination of mice carrying the human CEA gene with recombinant vaccinia-CEA generates a CEA epitope-specific, CD8-dependent CTL response, (b) CEA, a normal, tissue-specific antigen, can also serve as a target for antitumor immunity after the adoptive transfer of CEA peptide-specific T cells, and (c) muIFN-gamma might be an effective cancer vaccine adjuvant by virtue of its ability to augment the susceptibility of tumor targets to cell-mediated lysis.  相似文献   

19.
HER-2/neu is a self-antigen expressed by tumors and nonmalignant epithelial tissues. The possibility of self-tolerance to HER-2/neu-derived epitopes has raised questions concerning their utility in antitumor immunotherapy. Altered HER-2/neu peptide ligands capable of eliciting enhanced immunity to tumor-associated HER-2/neu epitopes may circumvent this problem. The human CTL peptide HER-2/neu (435-443) [hHER-2(9(435))] represents a xenogeneic altered peptide ligand of its mouse homologue, differing by one amino acid residue at position 4. In contrast to mHER-2(9(435)), vaccination of HLA-A*0201 transgenic (HHD) mice with hHER-2(9(435)) significantly increased the frequency of mHER-2(9(435))-specific CTL and also induced strong protective and therapeutic immunity against the transplantable ALC tumor cell line transfected to coexpress HLA-A*0201 and hHER-2/neu or rHER-2/neu. Similar results were also obtained with wild-type C57BL/6 mice inoculated with HER-2/neu transfectants of ALC. Adoptive transfer of CD8(+) CTL from mice immunized with hHER-2(9(435)) efficiently protected naive syngeneic mice inoculated with ALC tumors. In conclusion, our results show that HER-2(9(435)) serves as a tumor rejection molecule. They also propose a novel approach for generating enhanced immunity against a self-HER-2/neu CTL epitope by vaccinating with xenogeneic altered peptide ligands and provide useful insights for the design of improved peptide-based vaccines for the treatment of patients with HER-2/neu-overexpressing tumors.  相似文献   

20.
The Her2/neu oncogene encodes a transmembrane protein with homology to the epidermal growth factor receptor. Overexpression of this gene contributes to the aggressiveness of breast cancer and poor prognosis. Therefore, Her2/neu is an ideal target molecule for generating effective cytotoxic T lymphocytes (CTLs) against breast cancers. This study reports on the generation of Her2/neu-specific CTL from umbilical cord blood mononuclear cells (UCBC) using dendritic cells primed with Her2/neu-derived peptide (KIFGSLAFL, E75) for immunostimulation. The CTLs showed specific cytotoxicity to Her2/neu high expressing MDA-453 but not toward Her2/neu low expressing MDA-231 human breast cancer cells. Similarly generated CTLs stimulated with irrelevant peptide pulsed dendritic cells did not show significant cytotoxicity towards breast cancer targets. The phenotypes of cells in culture showed high percentage of CD3+, CD4+ and CD8+T cells as determined by flow cytometry. However, the antibody mediated blocking assay demonstrated that only HLA-Class I restricted CD8+ cells are involved in the cytotoxicity. Furthermore, in vivo studies showed that treatment of SCID mice bearing MDA-453 tumor with Her2/neu-specific CTLs resulted in significant inhibition of tumor growth compared to untreated tumor bearing control mice. These results demonstrate that human umbilical cord blood mononuclear cells are a good source for generating Her2/neu-specific CTLs against human breast cancer both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号