首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monoclonal antibodies as probes of tetanus toxin structure and function   总被引:5,自引:8,他引:5  
Monoclonal antibodies specific for fragment B, fragment C, and light chain of tetanus toxin were prepared by fusion of P3X63Ag8 BALB/c myeloma cells with spleen cells from BALB/c mice immunized with tetanus toxoid or fragment B. Hybridoma colonies were assayed for antibody production by an enzyme-linked immunosorbent assay. Fourteen positive clones were identified, cloned by limiting dilution, and injected intraperitoneally into mice to obtain ascites fluids. Thirteen of the monoclonal antibodies were of the immunoglobulin G1 subclass and one was immunoglobulin G2. Two of the antibodies were directed against sites on fragment C, nine were directed against the light chain, and three were directed against the portion of fragment B which does not comprise the light chain of tetanus toxin. At least one antibody in each group exhibited significant toxin neutralization activity. However, only one of these neutralizing antibodies strongly inhibited the binding of 125I-tetanus toxin to ganglioside-coated plates. These data indicate that interference with receptor recognition is not the only means of neutralizing tetanus toxin. Monoclonal antitoxins as potential therapeutic and prophylactic reagents are discussed.  相似文献   

2.
Cloning and expression of functional fragment C of tetanus toxin.   总被引:5,自引:3,他引:5       下载免费PDF全文
A segment of Clostridium tetani DNA corresponding to fragment C of tetanus toxin was amplified by using the polymerase chain reaction. This fragment was cloned into expression vector pTTQ8, under the control of the tac promoter. Expression of this plasmid in Escherichia coli resulted in the production of a protein consisting of 8 amino acids of the vector fused to the C-terminal 460 amino acids of tetanus toxin. This protein (rFragment C) was recognized by an antipeptide antibody specific for fragment C in an enzyme-linked immunosorbent assay and on immunoblots. rFragment C could be purified significantly in one step by immunoaffinity chromatography. Immunization of mice with rFragment C resulted in the production of antibodies that were able to protect the mice against a challenge with tetanus toxin. rFragment C bound to ganglioside GT1b and to neuronal cells in a manner indistinguishable from that of fragment C obtained by papain cleavage of tetanus toxin. For many applications, rFragment C appears to be a suitable alternative to tetanus toxin or toxin-derived fragment C.  相似文献   

3.
We have constructed vectors that permit the expression in Escherichia coli of Schistosoma mansoni fatty acid-binding protein 14 (Sm14) in fusion with the nontoxic, but highly immunogenic, tetanus toxin fragment C (TTFC). The recombinant six-His-tagged proteins were purified by nickel affinity chromatography and used in immunization and challenge assays. Animals inoculated with TTFC in fusion with or coadministered with Sm14 showed high levels of tetanus toxin antibodies, while animals inoculated with Sm14 in fusion with or coadministered with TTFC showed high levels of Sm14 antibodies. In both cases, there were no changes in the type of immune response (Th2) obtained with the fusion proteins compared to those obtained with the nonfused proteins. Mice immunized with the recombinant proteins (TTFC in fusion with or coadministered with Sm14) survived the challenge with tetanus toxin and did not show any symptoms of the disease. Control animals inoculated with either phosphate-buffered saline (PBS) or Sm14 died with severe symptoms of tetanus after 24 h. Mice immunized with the recombinant proteins (Sm14 in fusion with or coadministered with TTFC) showed a 50% reduction in worm burden when they were challenged with S. mansoni cercariae, while control animals inoculated with either PBS or TTFC were not protected. The results show that the expression of other antigens in fusion at the carboxy terminus of TTFC is feasible for the development of a multivalent recombinant vaccine.  相似文献   

4.
The currently available diphtheria-tetanus-whole-cell pertussis (DTP) vaccines are associated with a variety of problems, including undesirable side effects and inconsistent efficacy. These problems are probably related to the poor definition of such vaccines, especially with respect to the whole-cell component against pertussis. Ideal vaccines should include only immunoprotective antigens with no toxin activity. As an initial step towards obtaining a well-defined and simplified DTP vaccine, a pertussis toxin-tetanus toxin chimeric protein was constructed. A soluble form of the pertussis toxin S1 subunit was fused to the protective fragment C of tetanus toxin, and the recombinant hybrid protein was produced in Escherichia coli. The 75-kDa fusion protein (p75) was overexpressed as a soluble molecule and purified to near homogeneity by two consecutive chromatographic steps. Purified p75 retained its ability to bind to ganglioside GT1b, the receptor for tetanus toxin, and to be recognized by protective and neutralizing anti-pertussis toxin antibodies specific for conformational epitopes. When administered to mice, the hybrid protein was found to be nontoxic but immunogenic. In addition, it was capable of inducing strong protection against tetanus and some protection against pertussis, as well as eliciting a pertussis toxin-neutralizing antibody response. Although the levels of anti-pertussis toxin antibodies were rather low, neutralizing titers of the immunized mice correlated well with anti-pertussis toxin titers, indicating that protective epitopes are conserved in the recombinant protein.  相似文献   

5.
Fifty-seven hybridomas producing antibodies to tetanus toxoid or to the Ibc or B-IIb fragment of the toxin were isolated independently. Competitive inhibition studies demonstrated that monoclonal antibodies from mice immunized with the toxoid bound to at least 20 different epitopes on the toxoid molecule. Similar competitive binding studies revealed eight distinct epitopes on the B-IIb fragment and three to five epitopes on the Ibc fragment of the toxin. Neutralization of toxicity was effected by nine distinct monoclonal antibodies from hybridomas of toxoid-immunized mice and by one monoclonal antibody from B-IIb-immunized mice. Mixtures of two, three, and four different monoclonal antibodies in a variety of combinations exerted a synergistic effect of ca. 200-fold over that observed with individual monoclonal antibodies, indicating that efficient neutralization may involve the simultaneous binding of at least two antibody molecules to different specific regions of the toxin molecule. Only one toxoid-induced monoclonal antibody failed to bind to tetanus toxin. All neutralizing antibodies bound to epitopes on the heavy chain of tetanus toxin. Six of these were directed toward epitopes on the NH2-terminal half, whereas four bound to epitopes on the carboxy-terminal half of the heavy chain. Only one monoclonal antibody bound preferentially to the light chain, but two other monoclonal antibodies appeared to bind to both chains, indicating some homology between these two chains.  相似文献   

6.
Monoclonal antibodies against tetanus toxin were produced to obtain highly specific antisera. Ten hybridoma cell lines producing monoclonal antibodies were derived from the fusion of rat myeloma cells and spleen cells from rats immunized with tetanus toxoid. Eight produced monoclonal antibodies specific for determinants on toxin and toxoid, whereas two were specific only for determinants on the toxoid. The antibodies produced by hybridomas were characterized by determination of the class of light and heavy chain components, epitope specificity, toxin neutralization, and subunit specificity. All of the antibodies contained kappa light chain, eight contained the gamma 1 heavy chain, and the remaining two contained the gamma 2a heavy chain. Five distinct epitopes were indicated by competition assay of paired monoclonal antibodies, and 4 of the 10 monoclonal antibodies neutralized the in vivo activity of tetanus toxin. The four neutralizing monoclonal antibodies and one other were specific for the C fragment of the heavy chain of the toxin molecule.  相似文献   

7.
Monoclonal antibodies against tetanus toxin and its toxoid were produced by immunizing mice with toxoid or toxin. They were measured by an enzyme-linked immunosorbent assay (ELISA), by a toxin neutralization test in mice (in vivo prevention test), and by their ability to prevent binding of125I-toxin to brain membranes or gangliosides (in vitro prevention test). Six monoclonal antibodies obtained by immunization with toxoid (anti-toxoid 1–6) were investigated in more detail. They belonged to IgG class 1. Three of them (anti-toxoid 1, 2 and 3) recognized both toxoid and toxin as well as fragment B and the light chain of toxin, but not fragment C. Two other antibodies (anti-toxoid 4 and 5) were directed against toxoid only. Neither of them prevented toxin action in vitro or in vivo. Anti-toxoid 6 recognized toxin, toxoid and fragment C, but not light chain, and prevented toxin action in vitro and in vivo. Immunization against toxin was initiated with a toxin-antitoxin complex and boosted with toxin. We studied six antibodies in more detail, all of IgG type 2. Their KD against125I-tetanus toxin varied from 10–9 to 10–10 M. Anti-toxin 2 recognized toxin, toxoid, light chain and fragment B, but not fragment C. The others reacted with toxin, toxoid and fragment C, but not with light chain or fragment B. All of them prevented toxin action in vitro and in vivo. As calculated from the maximal extinction achieved in the ELISA, tetanus toxin combined with a maximum of two different antibody molecules from our set. Gel filtration data indicate that tetanus toxin reacts with monoclonal antibodies one by one. Compared with polyclonal antiserum, monoclonal antibodies yield flatter slopes in both in vitro and in vivo prevention tests. Thus, they cannot substitute for the polyclonal antibodies in clinical situations, and cannot be calibrated in international units.This communication contains parts of the M.D. thesis of K.G. and C.V.  相似文献   

8.
Tetanus is a highly fatal disease caused by tetanus neurotoxin (TeNT) and remains a major threat to human and animal health, despite preventive strategies. TeNT is composed of heavy and light chain linked by a disulfide bond. The antibody response to TeNT is polyclonal and directed to multiple epitopes within both the light and heavy chains, leading to toxin neutralization. This study was undertaken to localize and compare neutralizing epitopes recognized by human and mouse TeNT-specific antibodies at a clonal level. In the present study, 22 murine hybridoma clones and 50 human lymphoblastoid cell lines secreting monoclonal antibodies (mAb) were generated against TeNT. The specificity of these mAb was determined using different recombinant fragments of tetanus toxin. Moreover, this study investigated the in vitro toxin neutralizing activity of these mAb by a ganglioside GT1b assay. The results showed that tetanus toxoid immunization in humans and BALB/c mice induced a vigorous humoral immune response against different fragments of TeNT, particularly the carboxyl-terminal fragment of the heavy chain (known as fragment C). The fragment C-specific human and mouse mAb could largely neutralize TeNT. However, while all fragment C-specific human mAb reacted with the carboxyl-terminal part of this fragment (HCC), the majority of the mouse mAb failed to recognize this region. These results suggested that fragment C is the major target for the TeNT neutralizing antibodies, although different epitopes seem to be targeted by human and mouse antibodies.  相似文献   

9.
The partial amino acid sequence of the light-chain (Lc) component of Clostridium botulinum type C1 toxin was determined. The sequence was quite similar to those of the other types of botulinum and tetanus toxins. Nine monoclonal antibodies against botulinum type E toxin were established by immunizing BALB/c mice with type E toxoid or its Lc component. Six antibodies reacted with the heavy-chain component and three reacted with the Lc component of the toxin. One of the latter three antibodies reacted with botulinum type B, C1, and D toxins and tetanus toxin, as well as botulinum type E toxin. This antibody recognized the Lc components of these toxins, indicating that there exists one common antigenic determinant on the Lc regions of these toxins.  相似文献   

10.
The extent of immunological similarity between tetanus toxin and botulinum toxins A, B, C1, and E was studied by using 10 antibodies produced against synthetic peptides representing different sequences of tetanus toxin, mouse antitetanus serum, and human Tetanus Immune Globulin. Antibodies produced against the synthetic peptides recognized tetanus toxin in an enzyme-linked immunosorbent assay and on Western blots (immunoblots) but did not appear to recognize the native protein. One of the antitetanus peptide antibodies, which was produced against a peptide from the amino terminal, cross-reacted with three of the four botulinum toxins on immunoblots. This antibody, 1, reacted strongly with botulinum toxins B and C1 and weakly with E but did not recognize type A toxin. None of the other peptide antibodies cross-reacted with the botulinum toxins. Mouse antitetanus serum and human Tetanus Immune Globulin did not recognize any of the botulinum toxins on immunoblots. The amino-terminal region of the light chain of tetanus toxin and botulinum toxin types A, B, C1, and E are known to have sequence homology. Our data demonstrate that for tetanus toxin and botulinum toxin types B, C1, and E this region also has immunological homology. Type A, which has the least amount of homology with tetanus toxin in this region, does not share this immunological homology. These data also suggest that although the native structures of tetanus and botulinum toxins have relatively few common immunological determinants, the two toxins may contain short stretches of identical or very similar amino acid sequences.  相似文献   

11.
Two T4+ cloned T-lymphocyte lines specific for a papain digest product of tetanus toxin are functionally characterized. The two clones were obtained from peripheral blood mononuclear cells activated in vitro by tetanus toxoid, expanded with IL-2, and cloned in soft agar. Both clones could be induced to undergo blastogenesis with tetanus toxoid, tetanus toxin, and the B fragment but not the C fragment of tetanus toxin. In addition, both clones caused cytolysis of plastic adherent cell targets cocultured for 18 hr with either tetanus toxin or the B fragment. Antigen specific proliferation and cytolytic activity were MHC-class II restricted.  相似文献   

12.
The baculovirus expression vector p36C was used to express in cells of the insect Spodoptera frugiperda fragment C of tetanus toxin under the control of the strong polyhedrin promoter. Fragment C was expressed intracellularly at a high level and was soluble, allowing it to be purified by affinity chromatography with monoclonal antibody TT08. Purified fragment C from baculovirus was used to immunize mice and was shown to successfully prevent the symptoms of tetanus following a toxin challenge. The ganglioside-binding properties of baculovirus-derived fragment C were compared with those of intact tetanus toxin and native fragment C and were found to be dissimilar.  相似文献   

13.
In this study, the immunogenicities of the nontoxic H(C) fragment of tetanus toxin and derivatives lacking ganglioside binding activity were compared with that of tetanus toxoid after subcutaneous immunization of mice. Wild-type H(C) (H(C)WT) protein and tetanus toxoid both elicited strong antibody responses against toxoid and H(C) antigens and provided complete protection against toxin challenge. Mutants of H(C) containing deletions essential for ganglioside binding elicited lower responses than H(C)WT. H(C)M115, containing two amino acid substitutions within the ganglioside binding site, provided reduced protection against tetanus toxin challenge compared with H(C)WT, consistent with lower anti-H(C) and anti-toxoid antibody titers. Circular-dichroism spectroscopy and intrinsic fluorescence spectroscopy showed minimal structural perturbation in H(C)M115. We conclude that the presence of the ganglioside binding site within H(C) may be essential for induction of a fully protective anti-tetanus response comparable to that induced by tetanus toxoid by subcutaneous injection.  相似文献   

14.
We examined the capacity of a genetically detoxified derivative of pertussis toxin (PTX), PT-9K/129G, to act as a mucosal adjuvant for an intranasally (i.n.) administered tetanus vaccine. Groups of mice were immunized i.n. with the nontoxic C-terminal 50-kDa portion of tetanus toxin (fragment C [Frg C]) either alone or mixed with PT-9K/129G, PTX, or cholera toxin (CT) or were immunized subcutaneously (s.c.) with an equivalent amount of Frg C adsorbed to alhydrogel. In response to a single immunization, mice receiving Frg C plus PT-9K/129G or CT i.n. and parenterally immunized mice developed high-titer (> 20,000) anti-Frg C antibodies, whereas mice immunized i.n. with Frg C plus PTX or with Frg C alone seroconverted only after being boosted. The serum anti-Frg C response was dominated by immunoglobulin G1 (IgG1) in mice immunized with Frg C plus PT-9K/129G, with Frg C plus PTX, or s.c. In contrast, IgG1, IgG2a, and IgG2b contributed almost equally to the Frg C response when CT was the adjuvant. Anti-Frg C IgE was detected only in the sera of mice immunized i.n. with Frg C plus PTX and immunized s.c. with Frg C plus alhydrogel. High levels of IgA antibodies were present in nasal lavage fluid from mice immunized i.n. with Frg C plus PT-9K/129G, PTX, or CT but not in that from mice given Frg C alone i.n. or parenterally. The mucosal adjuvanticity of PT-9K/129G was manifested in inbred as well as outbred mice. A single i.n. dose of Frg C plus either PT-9K/129G or PTX (with high specific activity) was sufficient to protect all immunized mice from tetanus toxin challenge, in contrast to the case for mice that received Frg C alone i.n. We conclude that the pertussis toxin analog PT-9K/129G, which is devoid of ADP-ribosyltransferase activity, is a potent mucosal adjuvant for vaccines delivered via the respiratory tract.  相似文献   

15.
Protection against tetanus toxin using a plant-based vaccine   总被引:6,自引:0,他引:6  
Plant-expressed vaccines may provide a unique opportunity for generating anti-pathogen immunity, especially in countries where cold storage is lacking. In the following study, we show that soluble protein from tobacco leaves expressing fragment C of tetanus toxin protected mice against a lethal tetanus toxin challenge. More importantly, we show that a single intranasal (i.n.) vaccination was as efficient as oral delivery, inducing high levels of activated CD4(+) T cells and anti-toxin antibody. Unlike the oral route, i.n. delivery did not require the presence of adjuvant (cholera toxin). Indeed, addition of cholera toxin induced bystander immune responses to plant proteins as well. This is the first study documenting protective immunity by a single i.n. dose of plant vaccine. Plant-based vaccines are promising because they are more heat stable, are easy to produce, cheap and do not require needles.  相似文献   

16.
Salmonella typhi vaccine strain CVD 908 can deliver heterologous antigens to the host immune system following mucosal immunization. Stable expression of foreign proteins in Salmonella cells often requires antigen-specific engineering strategies. Fusion of antigens to stabilizing proteins has proven to be a successful strategy for rescuing otherwise unstable proteins. We designed plasmids to allow the fusion of antigens to the amino terminus or carboxyl terminus of fragment C of tetanus toxin, separated by a 4-amino-acid hinge region. Towards the ultimate goal of developing a live oral diphtheria-pertussis-tetanus vaccine, we used these plasmids to stably express the S1 subunit of pertussis toxin in CVD 908. Driven by the anaerobically inducible nirB promoter, the S1 subunit alone was expressed poorly in Salmonella cytoplasm. In contrast, hybrid proteins with S1 fused to either the amino or carboxyl terminus of fragment C were expressed at a high level in CVD 908 and were recognized in Western blot (immunoblot) analysis by monoclonal antibodies directed to S1 and to fragment C. Mice were immunized by the oral or intranasal routes with CVD 908 derivatives harboring these recombinant plasmids. All fusion proteins elicited serum antibody responses to fragment C following intranasal immunization, whereas oral inoculation did not. The configuration of antigens constituting the fusion was critical; S1 fused to the amino terminus of fragment C was less effective than S1 fused to the carboxyl terminus in generating anti-fragment C antibodies. CVD 908 expressing truncated S1 fused to the carboxyl terminus of fragment C elicited neutralizing serum pertussis antitoxin following intranasal immunization of mice.  相似文献   

17.
Cloning and expression in E. coli cells of a fragment of the env gene of HTLV-III virus is described. This fragment coding for from 294 to 757 aminoacid residue of virus protein was cloned in plasmid pUC 18. Conditions are described contributing to the regulated functioning of Lac-promoter allowing the expression of proteins toxic for E. coli. Solid-phase enzyme-immunoassay demonstrated a specific reaction of polypeptides synthesized in E. coli with an AIDS patient's serum. The sizes of these polypeptides were determined by the Western-blot method. They were found to be 18, 24, and 32 kilodaltons. The polypeptides synthesized in E. coli may apparently be used for preparation of test-systems for AIDS diagnosis.  相似文献   

18.
Abstract

Clostridium tetani causes a life-threatening infectious disease by production of tetanus neurotoxin (TeNT), a 150?kDa molecule composed of light (LC) and heavy chain (HC) polypeptides. The TeNT HC contains an N-terminal domain critical for LC translocation and a C-terminal toxin receptor-binding domain known as fragment C. Despite extensive investigations on epitope specificity of anti-TeNT antibodies, the immunodominant neutralizing epitopes of the toxin are poorly defined. This study describes the generation and characterization of four monoclonal antibodies (MAb) specific for TeNT. The characteristics of each MAb were explored in terms of isotype, specificity, affinity, and immuno-globulin heavy chain variable region (IGHV) gene usage using ELISA, Western blotting, and sequencing techniques. The toxin neutralizing activity of the MAbs was also investigated using the in vitro GT1b neutralizing assay. The data demonstrated that all MAbs bind to tetanus toxin and toxoid. Sub-fragments binding analysis showed that two MAbs react with fragment C, one with both fragment C and LC, and one with LC. Only the two fragment C-specific MAbs were able to neutralize the toxin. Sequencing of the expressed VH and VL genes revealed rearrangements of various VH and VL gene segments in all hybridoma clones. Clonality of the hybridomas was also confirmed by a competition assay that showed recognition of distinct epitopes by these MAbs. The results suggest the importance of TeNT fragment C in terms of immunogenicity and toxin neutralization activity.  相似文献   

19.
A Salmonella typhimurium aroA mutant has been used as a live carrier to immunize mice against tetanus. Plasmid pTETtac4, which expresses a 50-kilodalton fragment of tetanus toxin (fragment C) under the control of the tac promoter, was introduced into SL3261 aroA. When used as a live vaccine and administered orally or intravenously, this strain was able to induce protective immunity in mice against a lethal tetanus toxin challenge. When plasmid pTETtac2, which contains the lacI gene, was used, no immunity was obtained, indicating that the expression of fragment C was repressed in vivo. We believe that this is the first example of a successful oral vaccination that uses an attenuated bacterial carrier to deliver a protective antigen derived from tetanus toxin.  相似文献   

20.
Vaccine development has been hampered by difficulties in developing new and safe adjuvants, so alternative technologies that offer new avenues forward are urgently needed. The goal of this study was to express a monoclonal recombinant immune complex in a transgenic plant. A recombinant protein consisting of a tetanus toxin C fragment-specific monoclonal antibody fused with the tetanus toxin C fragment was designed and expressed. Immune complex formation occurred between individual fusion proteins to form immune complex-like aggregates that bound C1q and FcgammaRIIa receptor and could be targeted to antigen-presenting cells. Unlike antigen alone, the recombinant immune fusion complexes were highly immunogenic in mice and did not require coadministration of an adjuvant (when injected subcutaneously). Indeed, these complexes elicited antibody titers that were more than 10,000 times higher than those observed in animals immunized with the antigen alone. Furthermore, animals immunized with only 1 mug of recombinant immune complex without adjuvant were fully protected against lethal challenge. This the first report on the use of a genetic fusion between antigen and antibody to ensure an optimal expression ratio between the two moieties and to obtain fully functional recombinant immune complexes as a new vaccine model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号