首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spontaneous, ectopic activity in sensory nerves that is induced by peripheral nerve injury is thought to contribute to the generation of "neuropathic" pain in humans. To examine the cellular mechanisms that underlie this activity, neurons in rat L(4)-L(5) dorsal root ganglion (DRG) were first grouped as "large," "medium," or "small" on the basis of their size (input capacitance) and action potential (AP) shape. A fourth group of cells that exhibited a pronounced afterdepolarization (ADP) were defined as AD-cells. Whole cell recording was used to compare the properties of control neurons with those dissociated from rats in which the sciatic nerve had been sectioned ("axotomy" group) and with neurons from rats that exhibited self-mutilatory behavior in response to sciatic nerve section ("autotomy" group). Increases in excitability in all types of DRG neuron were seen within 2-7 wk of axotomy. Resting membrane potential (RMP) and the amplitude and duration of the afterhyperpolarization (AHP) that followed the AP were unaffected. Effects of axotomy were greatest in the small, putative nociceptive cells and least in the large cells. Moderate changes were seen in the medium and AD-cells. Compared to control neurons, axotomized neurons exhibited a higher frequency of evoked AP discharge in response to 500-ms depolarizing current injections; i.e., "gain" was increased and accommodation was decreased. The minimum current required to discharge an AP (rheobase) was reduced. There were significant increases in spike width in small cells and significant increases in spike height in small, medium, and AD-cells. The electrophysiological changes promoted by axotomy were intensified in animals that exhibited autotomy; spike height, and spike width were significantly greater than control for all cell types. Under our experimental conditions, spontaneous activity was never encountered in neurons dissociated from animals that exhibited autotomy. Thus changes in the electrical properties of cell bodies alone may not entirely account for injury-induced spontaneous activity in sensory nerves. The onset of autotomy coincided with alterations in the excitability of large, putative nonnociceptive, neurons. Thus large cells from the autotomy group were much more excitable than those from the axotomy group, whereas small cells from the autotomy group were only slightly more excitable. This is consistent with the hypothesis that the onset of autotomy is associated with changes in the properties of myelinated fibers. Changes in Ca2+ and K+ channel conductances that contribute to axotomy- and autotomy-induced changes in excitability are addressed in the accompanying paper.  相似文献   

2.
Voltage-dependent K+ currents in rat cardiac dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
We have assessed the expression and kinetics of voltage-gated K(+) currents in cardiac dorsal root ganglion (DRG) neurons in rats. The neurons were labelled by prior injection of a fluorescent tracer into the pericardial sack. Ninety-nine neurons were labelled: 24% small (diameter<30 microm), 66% medium-sized (diameter 30 microm>.48 microm) and 10% large (>48 microm) neurons. Current recordings were performed in small and medium-sized neurons. The kinetic and pharmacological properties of K(+) currents recorded in these two groups of neurons were identical and the results obtained from these neurons were pooled. Three types of K(+) currents were identified:a) I(As), slowly activating and slowly time-dependently inactivating current, with V(1/2) of activation -18 mV and current density at +30 mV equal to 164 pA/pF, V(1/2) of inactivation at -84 mV. b) I(Af) current, fast activating and fast time-dependently inactivating current, with V(1/2) of activation at two mV and current density at +30 mV equal to 180 pA/pF, V(1/2) of inactivation at -26 mV. At resting membrane potential I(As) was inactivated, whilst I(Af), available for activation. The I(As) currents recovered faster from inactivation than I(Af) current. 4-Aminopiridyne (4-AP) (10 mM) and tetraethylammonium (TEA) (100 mM) produced 98% and 92% reductions of I(Af) current, respectively and 27% and 66% of I(As) current, respectively. c) The I(K) current that did not inactivate over time. Its V(1/2) of activation was -11 mV and its current density equaled 67 pA/pF. This current was inhibited by 95% (100 mM) TEA, whilst 4-AP (10 mM) produced its 23% reduction. All three K(+) current components (I(As), I(Af) and I(K)) were present in every small and medium-sized cardiac DRG neuron.We suggest that at hyperpolarized membrane potentials the fast reactivating I(As) current limits the action potential firing rate of cardiac DRG neurons. At depolarised membrane potentials the I(Af) K(+) current, the reactivation of which is very slow, does not oppose the firing rate of cardiac DRG neurons.  相似文献   

3.
The role of the P/Q-type voltage-gated Ca(2+) channels (VGCCs) in release of neurotransmitters involved in nociception is not fully understood. Rolling mouse Nagoya (tg(rol)), a P/Q-type channel mutant mouse, expresses P/Q-type VGCC whose activation curve has a higher half activation potential and a smaller slope factor than the wild type channel. We previously reported that tg(rol) mice showed hypoalgesic responses to noxious stimuli. In this study, we examined the VGCC current in dorsal root ganglion (DRG) neurons by the whole-cell patch-clamp method. Both ω-agatoxin IVA (0.1 μM) and ω-conotoxin GVIA (1 μM) inhibited the VGCC current by about 40-50% in both the homozygous tg(rol) (tg(rol)/tg(rol)) and wild type (+/+) mice. The voltage-activation relationships of the total VGCC current and the ω-agatoxin IVA-sensitive component in the tg(rol)/tg(rol) mice shifted positively compared to the +/+ mice, whereas that sensitive to the ω-conotoxin GVIA was not different between the two genotypes. The time constant of activation of the VGCC current at -20 mV was longer in the tg(rol)/tg(rol) mice than in the +/+ mice. These changes in the properties of the VGCC in the tg(rol)/tg(rol) mouse may reduce the amount of the released neurotransmitters and account for the hypoalgesic responses.  相似文献   

4.
The dihydropyridines nifedipine, nimodipine and Bay K 8644 are widely used as pharmacological tools to assess the contribution of L-type voltage-gated Ca2+ channels to a variety of neuronal processes including synaptic transmission, excitability and second messenger signaling. These compounds are still used in neuronal preparations despite evidence from cardiac tissue and heterologous expression systems that they block several voltage-dependent K+ (Kv) channels. Both because these compounds have been used to assess the relative contribution of L-type Ca2+ channels to several different processes in dorsal root ganglion (DRG) neurons and because a relatively wide variety of Kv channels present in other neuronal populations is present in DRG neurons, we determined the extent to which dihydropyridines block Kv currents in these neurons. Standard whole cell patch clamp techniques were used to study acutely disassociated adult rat DRG neurons. All three dihydropyridines tested blocked Kv currents in DRG neurons; IC50 values (concentration resulting in an inhibition that is 50% of maximum) for nifedipine and nimodipine-induced block of sustained Kv currents were 14.5 and 6.6 μM, respectively. The magnitude of sustained current block was 44±1.6%, 60±2%, and 56±2.9% with 10 μM nifedipine, nimodipine and Bay K 8644, respectively. Current block was occluded by neither 4-aminopyridine (5 mM) nor tetraethylammonium (135 mM). Dihydropyridine-induced block of Kv currents was not associated with a shift in the voltage-dependence of current activation or inactivation, the recovery from inactivation, or voltage dependent block. However, there was a small use-dependence to the dihydropyridine-induced block. Our results suggest that several types of Kv channels in DRG neurons are blocked by mechanisms distinct from those underlying block of Kv channels in cardiac myocytes. Importantly, our results suggest that if investigators wish to explore the contribution of L-type Ca2+ channels to neuronal function, they should consider alternative strategies for the manipulation of these channels than the use of dihydropyridines.  相似文献   

5.
We investigated the effects of chronic compression (CCD) of the L3 and L4 dorsal root ganglion (DRG) on pain behavior in the mouse and on the electrophysiological properties of the small-diameter neuronal cell bodies in the intact ganglion. CCD is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. On days 1, 3, 5, and 7 after the onset of compression, there was a significant decrease from preoperative values in the threshold mechanical force required to elicit a withdrawal of the foot ipsilateral to the CCD (tactile allodynia). Whole cell patch-clamp recordings were obtained, in vitro, from small-sized somata and, for the first time, in the intact DRG. Under current clamp, CCD neurons exhibited a significantly lower rheobase compared with controls. A few CCD but no control neurons exhibited spontaneous action potentials. CCD neurons showed an increase in the density of TTX-resistant and TTX-sensitive Na(+) current. CCD neurons also exhibited an enhanced density of voltage-dependent K(+) current, due to an increase in delayed rectifier K(+) current, without a change in the transient or "A" current. We conclude that CCD in the mouse produces a model of radicular pain, as we have previously demonstrated in the rat. While the role of enhanced K(+) current remains to be elucidated, we speculate that it represents a compensatory neuronal response to reduce ectopic or aberrant levels of neuronal activity produced by the injury.  相似文献   

6.
Wu ZZ  Chen SR  Pan HL 《Neuroscience》2008,153(4):1256-1267
Both mu- and delta-opioid agonists selectively inhibit nociception but have little effect on other sensory modalities. Voltage-activated Ca(2+) channels in the primary sensory neurons are important for the regulation of nociceptive transmission. In this study, we determined the effect of delta-opioid agonists on voltage-activated Ca(2+) channel currents (I(Ca)) in small-diameter rat dorsal root ganglion (DRG) neurons that do and do not bind isolectin B(4) (IB(4)). The delta-opioid agonists [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE) and deltorphin II produced a greater inhibition of high voltage-activated I(Ca) in IB(4)-negative than IB(4)-positive neurons. Furthermore, DPDPE produced a greater inhibition of N-, P/Q-, and L-type I(Ca) in IB(4)-negative than IB(4)-positive neurons. However, DPDPE had no significant effect on the R-type I(Ca) in either type of cells. We were surprised to find that DPDPE failed to inhibit either the T-type or high voltage-activated I(Ca) in all the DRG neurons with T-type I(Ca). Double immunofluorescence labeling showed that the majority of the delta-opioid receptor-immunoreactive DRG neurons had IB(4) labeling, while all DRG neurons immunoreactive to delta-opioid receptors exhibited Cav(3.2) immunoreactivity. Additionally, DPDPE significantly inhibited high voltage-activated I(Ca) in Tyrode's or N-methyl-d-glucamine solution but not in tetraethylammonium solution. This study provides new information that delta-opioid agonists have a distinct effect on voltage-activated Ca(2+) channels in different phenotypes of primary sensory neurons. High voltage-activated Ca(2+) channels are more sensitive to inhibition by delta-opioid agonists in IB(4)-negative than IB(4)-positive neurons, and this opioid effect is restricted to DRG neurons devoid of functional T-type Ca(2+) currents.  相似文献   

7.
Section of rat sciatic nerve (axotomy) increases the excitability of neurons in the L(4)-L(5) dorsal root ganglia (DRG). These changes are more pronounced in animals that exhibit a self-mutilatory behavior known as autotomy. We used whole cell recording to examine changes in the tetrodotoxin-sensitive (TTX-S) and the tetrodotoxin-resistant (TTX-R) components of sodium channel currents (I(Na)) that may contribute to axotomy-induced increases in excitability. Cells were initially divided on the basis of size into "large," "medium," and "small" groups. TTX-S I(Na) predominated in "large" cells, whereas TTX-R I(Na) predominated in some, but not all "small cells." "Small" cells were therefore subdivided into "small-slow" cells, which predominantly exhibited TTX-R I(Na) and "small fast" cells that exhibited more TTX-S I(Na). In contrast to results obtained in other laboratories, where slightly different experimental procedures were used, we found that axotomy increased TTX-R and/or TTX-S I(Na) and slowed inactivation. The effects were greatest in "small-slow" cells and least in "large" cells. The changes promoted by axotomy were expressed more clearly in animals that exhibited autotomy. Also, the presence of autotomy correlated with a shift in the properties of I(Na) in "large" rather than "small-slow," putative nociceptive cells. These trends parallel previous observations on axotomy-induced increases in excitability, spike height, and spike width that are also greatest in "small" cells and least in "large" cells. In addition, the presence of autotomy correlates with an increase in excitability of "large" rather than "small" cells. Increases in TTX-R and TTX-S I(Na) thus coincide with axotomy-induced increases in excitability and alterations in spike shape across the whole population of sensory neurons. Injury-induced changes of this type are likely associated with the onset of chronic pain in humans.  相似文献   

8.
9.
10.
The ability of a series of specific Galpha carboxyl-terminal antisera, (i.e. anti-Gsalpha, anti-Gi1/2alpha, anti-Gi3alpha/Goalpha, anti-Goalpha/Gi3alpha, and anti-Gq/11alpha) to disrupt (+/-)-baclofen-stimulated high-affinity guanosine triphosphatase (GTPase) activity was explored in rat cerebral cortical membranes to identify the Galpha subunit(s) involved in gamma-aminobutyric acid(B) (GABA(B)) receptor-mediated signal transduction. Pretreatment of the membranes with the AS/7 (anti-Gi1/2alpha) antiserum inhibited GABA(B) receptor-mediated response without affecting the basal activity. The RM/1 (anti-Gsalpha) and QL (anti-Gq/11alpha) antisera failed to inhibit GABA(B) receptor-coupled responses. The results of the EC/2 (anti-Gi3alpha/Goalpha) and GO/1 (anti-Goalpha/Gi3alpha) antisera were difficult to interpret since the basal activities were influenced by these antisera. These results, in conjunction with the data in our previous reconstitution study, indicate that Gi2alpha is a main transducer of GABA(B) receptor-mediated signaling in rat cerebral cortex.  相似文献   

11.
P2X receptor-mediated ionic currents in dorsal root ganglion neurons.   总被引:11,自引:0,他引:11  
Nociceptive neurons in the dorsal root ganglia (DRG) are activated by extracellular ATP, implicating P2X receptors as potential mediators of painful stimuli. However, the P2X receptor subtype(s) underlying this activity remain in question. Using electrophysiological techniques, the effects of P2X receptor agonists and antagonists were examined on acutely dissociated adult rat lumbar DRG neurons. Putative P2X-expressing nociceptors were identified by labeling neurons with the lectin IB4. These neurons could be grouped into three categories based on response kinetics to extracellularly applied ATP. Some DRG responses (slow DRG) were relatively slowly activating, nondesensitizing, and activated by the ATP analogue alpha,beta-meATP. These responses resembled those recorded from 1321N1 cells expressing recombinant heteromultimeric rat P2X2/3 receptors. Other responses (fast DRG) were rapidly activating and desensitized almost completely during agonist application. These responses had properties similar to those recorded from 1321N1 cells expressing recombinant rat P2X3 receptors. A third group (mixed DRG) activated and desensitized rapidly (P2X3-like), but also had a slow, nondesensitizing component that functionally prolonged the current. Like the fast component, the slow component was activated by both ATP and alpha, beta-meATP and was blocked by the P2X antagonist TNP-ATP. But unlike the fast component, the slow component could follow high-frequency activation by agonist, and its amplitude was potentiated under acidic conditions. These characteristics most closely resemble those of rat P2X2/3 receptors. These data suggest that there are at least two populations of P2X receptors present on adult DRG nociceptive neurons, P2X3 and P2X2/3. These receptors are expressed either separately or together on individual neurons and may play a role in the processing of nociceptive information from the periphery to the spinal cord.  相似文献   

12.
Du Z  Meng Z 《Neuroscience letters》2006,405(1-2):147-152
This study addressed the effect of sulfur dioxide (SO(2)) derivatives on high-voltage-activated calcium currents (HVA-I(Ca)) in somatic membrane of freshly isolated rat dorsal root ganglion (DRG) neurons by using the whole-cell configuration of patch-clamp technique. High-threshold Ca(2+) channels are highly expressed in small dorsal root ganglion neurons. SO(2) derivatives increased the amplitudes of calcium currents in a concentration-dependent and voltage-dependent manner. The 50% enhancement concentrations (EC(50)) of SO(2) derivatives on HVA-I(Ca) was about 0.4 microM. In addition, SO(2) derivatives significantly shifted the activation and inactivation curve in the depolarizing direction. Parameters for the fit of a Boltzmann equation to mean values for the activation were V(1/2)=-17.9+/-1.3 mV before and -12.5+/-1.1 mV after application 0.5 microM SO(2) derivatives 2 min (P<0.05). The half inactivation of HVA-I(Ca) was shifted 9.7 mV to positive direction (P<0.05). Furthermore, SO(2) derivatives significantly prolonged the slow constant of inactivation, slowed the fast recovery but markedly accelerated the slow recovery of HVA-I(Ca) from inactivation. From HP of -60 mV 0.5 microM SO(2) derivatives increased the amplitude of HVA-I(Ca) with a depolarizing voltage step to -10 mV about 54.0% in small DRG neurons but 33.3% in large DRG neurons. These results indicated a possible correlation between the change of calcium channels and SO(2) inhalation toxicity, which might cause periphery neurons abnormal regulation of nociceptive transmission via calcium channels.  相似文献   

13.
Chronic compression (CCD) of the dorsal root ganglion (DRG) is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. Previously, we examined electrophysiological changes in small-diameter lumbar level 3 (L3) and L4 DRG neurons treated with CCD; the present study extends these observations to medium-sized DRG neurons, which mediate additional sensory modalities, both nociceptive and non-nociceptive. Whole-cell patch-clamp recordings were obtained from medium-sized somata in the intact DRG in vitro. Compared with neurons from unoperated control animals, CCD neurons exhibited a decrease in the current threshold for action potential generation. In the CCD group, current densities of TTX-resistant and TTX-sensitive Na(+) current were increased, whereas the density of delayed rectifier voltage-dependent K(+) current was decreased. No change was observed in the transient or "A" current after CCD. We conclude that CCD in the mouse produces hyperexcitability in medium-sized DRG neurons, and the hyperexcitability is associated with an increased density of Na(+) current and a decreased density of delayed rectifier voltage-dependent K(+) current.  相似文献   

14.
Single channel Ca2+ currents inHelix pomatia neurons   总被引:4,自引:0,他引:4  
Unitary Ca2+ currents of TEA injected Helix neurons were recorded in the Giga seal situation (6, 7) from microscopic membrane patches exposed to 50 mM [Ca2+]o, O [Na+]o, 20 mM [TEA+]o and 2.5 M [TTX]o. Constant field assumptions yield a channel permeability of 2.9±1.0×10–14 cm3s–1 corresponding to slope conductances of 5 to 15 pS between 0 and –30 mV. Frequency of occurrence of the units strongly increased with depolarization. Mean open time of the Ca2+ channels was about 3 ms without obvious dependence on voltage. A similar open time was seen with [Ba2+]o, yielding about double the current strength when compared with [Ca2+]o.  相似文献   

15.
Potassium transmembrane currents induced by membrane depolarization have been studied on isolated dorsal root ganglion neruons of 5–10 day-old rats using the voltage-clamp technique. The neurons were intracellularly dialysed with solutions containing a fixed amount of K+ ions, and the correspondence between the reversal potentials of the measured currents and the theoretical potassium equilibrium potential was determined. Sodium and calcium transmembrane currents were eliminated by replacement of Na+ ions in the extracellular solution and by introduction of fluoride into the cell.In all cells studied, the total potassium current could be separated into two components—fast and slow (IKf and IKsby changing the holding potential level. IKfwas inactivated comparatively fast obeying first-order kinetics. The dependence h (V) for this current was S-shaped with meanV12 = ?75 mV. Therefore, this current could be almost completely switched off at holding potentials more positive than ?50 mV. On the contrary, the inactivation of IKs developed very slowly even at stronger depolarizing potential shifts. The mean activation time constants calculated on the basis of Hodgkin-Huxley model for potassium currents were 0.5 ms at zero testing potential for IKf and 40 ms at + 30 mV for IKs.The reversal potential for IKf determined from instantaneous current-voltage characteristics was close to the equilibrium potential for a potassium electrode. The reversal potential for IKs was shifted in the depolarizing direction by about 25 mV indicating lower selectivity of the corresponding channels.  相似文献   

16.
Wu ZZ  Pan HL 《Neuroscience letters》2004,368(1):96-101
Voltage-gated Ca(2+) channels in the primary sensory neurons are important for neurotransmitter release and regulation of nociceptive transmission. Although multiple classes of Ca(2+) channels are expressed in the dorsal root ganglion (DRG) neurons, little is known about the difference in the specific channel subtypes among the different types of DRG neurons. In this study, we determined the possible difference in high voltage-activated Ca(2+) channel currents between isolectin B(4) (IB(4))-positive and IB(4)-negative small-sized (15-30 microm) DRG neurons. Rat DRG neurons were acutely isolated and labeled with IB(4) conjugated to a fluorescent dye. Whole-cell patch clamp recordings of barium currents flowing through calcium channels were performed on neurons with and without IB(4). The peak current density of voltage-gated Ca(2+) currents was not significantly different between IB(4)-positive and IB(4)-negative neurons. Also, both nimodipine and omega-agatoxin IVA produced similar inhibitory effects on Ca(2+) currents in these two types of neurons. However, block of N-type Ca(2+) channels with omega-conotoxin GVIA produced a significantly greater reduction of Ca(2+) currents in IB(4)-positive than IB(4)-negative neurons. Furthermore, the IB(4)-positive neurons had a significantly smaller residual Ca(2+) currents than IB(4)-negative neurons. These data suggest that a higher density of N-type Ca(2+) channels is present in IB(4)-positive than IB(4)-negative small-sized DRG neurons. This differential expression of the subtypes of high voltage-activated Ca(2+) channels may contribute to the different function of these two classes of nociceptive neurons.  相似文献   

17.
A chronic compression of the dorsal root ganglion (CCD) produces ipsilateral cutaneous hyperalgesia that is associated with an increased excitability of neuronal somata in the compressed ganglion, as evidenced by spontaneous activity and a lower rheobase. We searched for differences in the properties of voltage-gated Na+ and K+ currents between somata of CCD- and control (unoperated) rats. CCD was produced in adult rats by inserting two rods through the intervertebral foramina, one compressing the L4, and the other, the ipsilateral, L5 dorsal root ganglion (DRG). After 5-9 days, DRG somata were dissociated and placed in culture for 16-26 h. Cutaneous neurons of medium size (35-45 microm), Fluorogold-labeled from the hindpaw, were selected for whole cell patch-clamp recording of action potentials and ion currents. In comparison with control neurons, CCD neurons had steady-state activation curves for TTX-sensitive (TTX-S) Na+ currents that were shifted in the hyperpolarizing direction, and CCD neurons had enhanced TTX-resistant (TTX-R) current. CCD neurons also had smaller, fast-inactivating K+ currents (Ka) at voltages from -30 to 50 mV. The reduction in Ka, the hyperpolarizing shift in TTX-S Na+ current activation, and the enhanced TTX-R Na+ current may all contribute to the enhanced neuronal excitability and thus to the pain and hyperalgesia associated with CCD.  相似文献   

18.
Previous studies have raised the possibility that a decrease in voltage-gated K+ currents may contribute to hyperexcitability of injured dorsal root ganglion (DRG) neurons and the emergence of neuropathic pain. We examined the effects of axotomy on mRNA levels for various Kv1 family subunits and voltage-gated K+ currents in L4-L5 DRG neurons from sham-operated and sciatic nerve-transected rats. RNase protection assay revealed that Kv1.1 and Kv 1.2 mRNAs are highly abundant while Kv1.3, Kv1.4, Kv1.5 and Kv1.6 mRNAs were detected at lower levels in L4-L5 DRGs from sham and intact rats. Axotomy significantly decreased Kv1.1, Kv1.2, Kv1.3 and Kv1.4 mRNA levels by approximately 35%, approximately 60%, approximately 40% and approximately 80%, respectively, but did not significantly change Kv1.5 or Kv1.6 mRNA levels. Patch clamp recordings revealed two types of K+ currents in small-sized L4-L5 DRG neurons: sustained delayed rectifier currents elicited from a -40 mV holding potential and slowly inactivating A-type currents that was additionally activated from a -120 mV holding potential. Axotomy decreased both types of K+ currents by 50-60% in injured DRG neurons. In addition, axotomy increased the alpha-dendrotoxin sensitivity of the delayed rectifier, but not slow A-type K+ currents in injured DRG neurons. These results suggest that Kv1.1 and Kv1.2 subunits are major components of voltage-gated K+ channels in L4-L5 DRG neurons and that the decreased expression of Kv1-family subunits significantly contributes to the reduction and altered kinetics of Kv current in axotomized neurons.  相似文献   

19.
《Neuroscience》1999,95(3):745-752
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons posses both “big” and “small” types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM ω-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 μM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM ω-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 μM ω-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM ω-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly.The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

20.
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons possess both "big" and "small" types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM omega-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 microM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM omega-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 microM omega-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM omega-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly. The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号