首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Morphological and metabolic development of the gustatory zone of the rostral nucleus of the solitary tract (NST) was examined in rat. Transganglionic transport of horseradish peroxidase (HRP) was used to visualize the organization of gustatory projections to the rostral gustatory NST in rats aged postnatal day 1 (P1) to P34. Golgi impregnation studies were performed to analyze morphological development of dendrites in regions of the rostral NST that were identified as anterior tongue terminal fields. Results demonstrate that afferent fibers of the anterior tongue project to the rostral NST in rats as young as P1. The volume of NST terminal fields increased from P1 to approximately P16-P20, and was adult-like after approximately P20. Developmental increases in terminal field volume resulted from a preferential expansion in the rostrocaudal plane. Planar length of first-order dendrites associated with fusiform, multipolar, and ovoid neurons, and second-order dendrites of fusiform and ovoid neurons, increased approximately three-fold between P4 and P16-20. First-order dendritic length for all morphological types was adult-like after approximately 20-25 days of age, whereas second-order dendritic length of multipolar neurons increased significantly between P30 and P60-70. Histochemical studies confirmed that activity of the mitochondrial respiratory enzymes cytochrome c oxidase (EC 1.9.3.1), succinate dehydrogenase (EC 1.3.99.1), and NADH-dehydrogenase (EC 1.6.99.3) increased monotonically during the developmental period in which planar growth of first-order dendrites was observed. The present results, in combination with results from previous studies, indicate that morphological and metabolic development fo the NST occurs concomitantly with morphological development of taste receptors and peripheral gustatory nerves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previous studies have examined pre- and postsynaptic development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST). This region of the NST is innervated by primary gustatory axons arising from the facial-intermediate nerve. However, a large portion of the gustatory NST is innervated by axons arising from the glossopharyngeal nerve, and although the time course for development of N.VII recipient zones has been defined development of glossopharyngeal afferent terminal fields has not been examined. Moreover, the time course for development of projection neurons located postsynaptic to gustatory afferent axons has not been examined in any portion of the NST. The objectives of the present study were to 1) define the time course for development of N.VII and N.IX terminal fields and 2) examine temporal relationships between development of afferent terminal fields and development of projection neurons located postsynaptic to gustatory afferent axons. To this end, triple fluorescent labeling procedures were used to simultaneously visualize developing axons and projection neurons. Results show that afferent terminal fields develop along the rostrocaudal axis of the NST. Axons of the N.VII terminal field are present in the rostral NST at P1 and develop to approximately P25. Axons and terminal endings of N.IX do not enter the NST until approximately P9-P10, and these terminal fields develop within the intermediate NST until approximately P45. Many NST neurons destined to project axons to the second-order central gustatory relay, located in the caudal parabrachial nucleus (PBN), do not possess axonal connections with the PBN during the first 2-3 weeks of postnatal life. As afferent terminal fields develop, these neurons establish connections with the PBN between the ages of approximately P7 and P45-P60. The delay between afferent terminal field development and development of PBN projection neurons in the N.VII terminal field is approximately 3 weeks. The delay between pre- and postsynaptic development in the N.IX terminal field is approximately 1 week. Potential relationships between pre- and postsynaptic development are discussed, in addition to relationships between anatomical development in the NST and the emergence of taste-guided behaviors.  相似文献   

3.
The rostral gustatory zone of the nucleus of the solitary tract (NST) exhibits extensive anatomical development during the first 3 weeks of postnatal life, and this development requires the presence of intact gustatory receptors during a critical period. We have previously shown that unilateral damage induced to fungiform papillae of the anterior tongue at postnatal day 2 (P2) alters normal migration and ramification of chorda tympani (CT) axons in the rostral NST. In addition to alterations of axonal development, P2 receptor damage decreases the intraneuronal distance between neurons that project axons to the second-order central gustatory relay, located in the caudal parabrachial nucleus (PBN). This observation suggested that P2 receptor damage may alter both axonal development and dendritic development in the rostral gustatory NST. The present study evaluated potential changes in dendritic development of PBN projection neurons following either P2 or P10 receptor damage. Morphological studies were first conducted to quantitatively define somatic characteristics of neurons that project axons to the PBN. Independent experiments used fluorescent labeling combined with subsequent Golgi-impregnation to study dendritic architecture of identified PBN projection neurons. Results confirmed that P2 receptor damage alters dendritic development of PBN projection neurons located in CT terminal fields. Anterior tongue receptor damage at P2 (1) reduces planar length of first- and second-order dendritic branches, (2) reduces the mean number of second-order branches per neuron, and (3) reduces the density of spine processes on second-order dendritic branches. A critical period exists for these effects, similar to that reported for axonal development, insofar as P2 receptor damage alters dendritic development of PBN projection neurons, whereas P10 receptor damage does not. Dendrites of identified PBN projection neurons located in regions of the NST that receive primary afferent axons from the glossopharyngeal nerve are not affected by anterior tongue damage at P2. These results show that early postnatal receptor damage influences both pre- and postsynaptic development in the rostral gustatory NST. These anatomical changes are undoubtedly related to alterations in taste-guided behaviors that are observed following P2 receptor damage.  相似文献   

4.
The solitary nuclear complex (NST) consists of a number of subdivisions that differ in their cytoarchitectonic features as well as in the amounts of inputs they receive from lingual afferent axons. In this study horseradish peroxidase (HRP) was injected into the parabrachial nucleus (PBN) of the hamster to determine which of these subdivisions contain cells that project to the pons. In the rostral, gustatory division of the NST, the rostral central subdivision contains the greatest number of labelled pontine-projection neurons. The rostral lateral subdivision contains moderate numbers of labelled cells; progressively fewer labelled cells are in the ventral, medial, and dorsal subdivisions. In the caudal, general viscerosensory division of the NST, the caudal central subdivision contains the majority of labelled cells, although fewer than its rostral counterpart. Progressively fewer cells are labelled in the medial, laminar, ventrolateral, and lateral subdivisions; none in the dorsolateral subdivision. Small horseradish peroxidase injections into the pons revealed that cells of the rostral central and rostral lateral subdivisions of the NST project to the medial subdivision of the PBN, predominantly to caudal and ventral parts of the subdivision. Cells of the caudal central and medial subdivisions of the NST project to the central lateral subdivision of the PBN, predominantly to intermediate and rostral-dorsal parts of the subdivision. Outside the NST, cells in the spinal trigeminal nucleus and parvicellular reticular formation were also labelled after PBN injections. Within the rostral central and rostral lateral (gustatory) subdivisions of the NST at least two types of neurons, distinguished on the basis of dendritic and cell body morphology, were labelled after HRP injections that included the medial PBN. Elongate cells have ovoid-fusiform somata and dendrites oriented in the mediolateral plane parallel to primary afferent axons entering from the solitary tract. Stellate cells have triangular or polygonal cell bodies and three to five dendrites oriented in all directions, although one or two often extend mediolaterally. These results indicate that cytoarchitectonic subdivisions of the NST are distinguished by their efferent ascending connections. For each subdivision within the rostral, gustatory NST there is a correlation between the density of lingual inputs it receives and the density of pontine-projection neurons it contains. Within the rostral central subdivision, which contains the densest lingual inputs and the largest collection of PBN-projection neurons, cell types previously identified in studies with the Golgi method were found to send their axons to the PBN. The presence of two types of pontine-projection cells in the rostral central subdivision provides a structural basis for parallel information processing in the ascending gustatory system. Projections to the PBN from regions outside the NST provide opportunities for convergence, at the level of the pons, between inputs arising from gustatory/general viscerosensory subdivisions of the NST and from trigeminal sensory nuclei and the reticular formation.  相似文献   

5.
Taste responsivity and organization of fungiform papillae, geniculate ganglion neurons and gustatory recipient zones of the nucleus of the solitary tract (NST) were examined in C57BL/6NCrlBR (C57) mice, BALB/c6NCrlBR (BALB/c) mice and CB6F1/CrlBr (CB6) mice, an F1 hybrid cross between BALB/c and C57 mice. Results from behavioral studies confirm that C57 and CB6 mice exhibit higher preferences to sucrose and lower preferences to NaCl, as compared to BALB/c mice. No strain differences were confirmed for aversion responses to citric acid or quinine HCl taste stimuli. Anatomical analyses show that the number and organization of fungiform papillae do not reliably differ between C57, BALB/c, and CB6 mice, nor do volumes of glossopharyngeal terminal fields in the NST. However, strain-specific differences exist in the number of neurons contained in the geniculate ganglion, volume of chorda tympani (CT) terminal fields in the rostral NST, and number of NST neurons contained in CT terminal fields. BALB/c and CB6 mice possess a greater number of geniculate ganglion neurons and larger CT terminal fields, as compared to C57 mice. However, strain differences in the number of geniculate ganglion neurons and terminal field volume are not obviously correlated with strain differences in gustatory responsivity. The only reliable relationship confirmed between taste responsivity and neuroanatomical organization of the rostral NST relates to the absolute number of neurons contained in CT terminal fields, and corresponding neuronal density within CT terminal fields. Chorda tympani terminal fields of C57 and CB6 mice contain an average of 379 neurons, whereas CT terminal fields of BALB/c mice contain an average of 531 neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The temporal correspondence between neuroanatomical and neurophysiological development of peripheral and central gustatory neurons has suggested that morphological development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST), may be dependent on afferent input from peripheral gustatory pathways. The objective of the present study was to determine the effects of perinatal receptor damage on development of gustatory recipient zones within the rostral and intermediate NST. Results show that damage induced to fungiform receptors of the anterior tongue at postnatal day 2 (P2) alters normal development of NST terminal fields associated with the chorda tympani nerve (CT) and greater superficial nerve (GSP), and that alterations in the CT/GSP terminal field persist in adulthood after peripheral gustatory receptors have regenerated. Damage induced to fungiform receptors at P2 does not alter the normal development of glossopharyngeal terminal fields in the intermediate NST. Receptor damage produced at P10 and P20 is without effect on normal development of the CT/GSP terminal field. Thus, fungiform receptor damage at P2 produces specific alterations in the development of NST terminal fields that receive projections from the facial-intermediate nerve, and receptor damage effects are only obtained during a critical period of postnatal development. P2 receptor damage has the overall effect of eliminating caudally directed migration of CT/GSP axons to additional projection neurons that establish connections with the second-order central gustatory relay located in the parabrachial nucleus (PBN). Behavioral studies were conducted to determine the functional consequences of early receptor damage. Results from behavioral studies show that bilateral damage to fungiform papillae at P2 alters normal adult preferences to low and intermediate concentrations of NaCl and sucrose tastes, yet aversions to citric acid and quinine HCl are not obviously affected. Therefore, anatomical alterations in the CT/GSP terminal field produced by P2 receptor damage are accompanied by specific changes in adult taste preference responses.  相似文献   

7.
Previous studies have shown that behavioral and neurophysiological responses to tastes develop during rat's postnatal life. The present experiments evaluated morphological and metabolic development of neurons in the gustatory zone of the caudal parabrachial nucleus (PBNc) of rat. Histological reconstruction studies were conducted to establish coordinate systems for PBNc gustatory zones in developing rats. Reliability of coordinate systems were evaluated in separate experiments following infusions of horseradish peroxidase in the thalamic taste area. Morphological and Golgi impregnation studies were performed to characterize neuronal and dendritic architecture in PBNc gustatory zones defined by coordinates. Conventional histochemical studies were performed for the mitochondrial respiratory enzymes cytochrome C oxidase (CO; EC 1.9.3.1) succinate dehydrogenase (SDH; EC 1.3.99.1), and NADH-dehydrogenase (NADH-DH; EC 1.6.99.3). Results show that two somatic morphologies can be statistically characterized in PBNc gustatory zones: Multipolar somatic types and fusiform somatic types. Multipolar and fusiform neurons of neonatal and adult rats project axons to the thalamic taste area, and dendrites of these neurons grow extensively between approximately 16 days after birth to approximately 35 days after birth. Activity of CO, SDH, and NADH-DH increases in the PBNc gustatory zones during the period of dendritic growth, and continues to increase slightly to approximately 45 days. These results provide the first demonstration of postnatal morphological and metabolic developmental in a central gustatory relay. Postnatal development of gustatory system therefore appears similar to that reported for other sensory systems, to the extent that morphological and metabolic development accompanies the ontogeny of taste responses.  相似文献   

8.
The rostral nucleus of the solitary tract (NST) figures prominently in the gustatory system, giving rise to ascending taste pathways that are well documented. Less is known of the local connections of the rostral NST with sites in the medulla. This study defines the intramedullary connections of the rostral NST in the hamster. Small iontophoretic injections of horseradish peroxidase (HRP), confined to the rostral NST, resulted in Golgi-like filling of axons that exited the NST or that interconnected cytoarchitectonic subdivisions within the NST complex. The NST efferent axons terminated sparsely in the trigeminal, facial and hypoglossal motor nuclei, but axons and endings were heavily distributed in the parvicellular reticular formation ventral to the NST. HRP injections centered in this part of the reticular formation resulted in heavy projections to the orofacial motor nuclei. Intranuclear connections, labelled after NST injections, linked NST subdivisions that receive primary afferent taste inputs to subdivisions involved in (1) projections to the preoromotor reticular formation, (2) projections to swallowing motor neurons, (3) activation of preganglionic parasympathetic neurons, and (4) general viscerosensation. In general, the connections defined in the present study provide anatomical details about the substrate for gustatory-motor and gustatory-visceral interactions.  相似文献   

9.
The current investigation used double labeling for NADPHd and Fos-like immunoreactivity to define the relationship between nitric oxide synthase-containing neural elements and taste-activated neurons in the nucleus of the solitary tract (NST) and subjacent reticular formation (RF). Stimulation of awake rats with citric acid and quinine resulted in significant increases in the numbers of double-labeled neurons in both the NST and RF, suggesting that some medullary gustatory neurons utilize nitric oxide (NO) as a transmitter. Overall, double-labeled neurons were most numerous in the caudal reaches of the gustatory zone of the NST, where taste neurons receive inputs from the IXth nerve, suggesting a preferential role for NO neurons in processing gustatory inputs from the posterior oral cavity. However, double-labeled neurons also exhibited a preferential distribution depending on the gustatory stimulus. In the NST, double-labeled neurons were most numerous in the rostral central subnucleus after either stimulus but had a medial bias after quinine stimulation. In the RF, after citric acid stimulation, there was a cluster of double-labeled neurons with distinctive large soma in the parvicellular division of the lateral RF, subjacent to the rostral tip of NST. In contrast, in response to quinine, there was a cluster of double-labeled neurons with much smaller soma in the intermediate zone of the medial RF, a few hundred micrometers caudal to the citric acid cluster. These differential distributions of double-labeled neurons in the NST and RF suggest a role for NO in stimulus-specific gustatory autonomic and oromotor reflex circuits.  相似文献   

10.
The distribution of neurons in the rostral nucleus of the solitary tract (rNST) that respond to gustatory input from the anterior tongue was visualized by Fos protein immunohistochemistry following electrical stimulation of the chorda tympani (CT) nerve in rats. Maps of Fos-immunoreactive (Fos-ir) neurons were compared with the distribution of CT afferent terminal fields labeled by transganglionic transport of rhodamine-dextran in a separate group of animals. The primary concentration of Fos-ir neurons localized in register with the major terminal fields of CT afferent fibers, in the central third of the rostral 1.0 mm of the NST ipsilateral to the stimulated nerve. A similar correspondence in location and degree of labeling of Fos-ir neurons and afferent terminals was observed in the ipsilateral dorsal spinal trigeminal complex (Sp5) pars caudalis, near the obex, and the Sp5 pars oralis near the rostral pole of the rNST. Thus, the magnitude of Fos upregulation in brainstem targets of the CT nerve having chemosensory or nociceptive function, was proportional to the relative density of the CT afferent input. This correspondence, and the absence of labeling in neurons known to be one additional synapse away from the afferent input within gustatory or oral reflex pathways, suggests that the cell map obtained represents mainly neurons that are directly activated via primary afferent synapses from CT fibers. The availability of a method to histochemically identify a population of putative second-order taste neurons will facilitate analysis of the cellular/molecular properties of these neurons and of synaptic circuitry in the rNST.  相似文献   

11.
Central projections of gustatory nerves in the rat   总被引:18,自引:0,他引:18  
The central distributions of gustatory and non-gustatory branches of cranial nerves V, VII, IX, and X were examined after application of horseradish peroxidase to the cut nerve. The nerves conveying gustatory information, chorda tympani (CT), greater superficial petrosal (GSP), lingual-tonsilar branch of IX (LT-IX), superior laryngeal branch of X (SL), distributed primarily to the lateral division of the nucleus of the solitary tract (NST) from its rostral pole to the obex. The CT and GSP distributions were coextensive and terminated most densely in the rostral pole of NST. The LT-IX distribution concentrated between this major CT/GSP distribution and the area postrema with a caudal extension into the interstitial nucleus of NST. This nerve also had a substantial projection, not found in other gustatory nerves, into the dorsolateral aspect of the medial NST. The SL distribution overlapped LT-IX in the caudal medulla. The lingual and inferior alveolar nerves, two oral trigeminal branches, projected to regions of NST innervated by the gustatory nerves. The cervical vagus nerve distributed primarily to the medial NST in the caudal half of the nucleus and exhibited only minimal overlap with gustatory nerve distributions. The nucleus of the solitary tract appears to have two major functional divisions--an anterior-lateral oral-gustatory half, and a posterior-medial visceral afferent half.  相似文献   

12.
The projections of the nucleus of the solitary tract (NST) were studied by autoradiographic anterograde fiber-tracing and horseradish peroxidase (HRP) retrograde cell-labeling. Tritiated proline and leucine were deposited in electrophysiologically identified regions of NST. Injections of NST at levels caudal to where the vagus enters the nucleus, from which responses were evoked by stimulation of cranial nerves IX and X, revealed topographically organized bilateral projections to, most prominently, the ventrolateral medullary reticular formation which contains neurons of the ambiguus complex, and to the lateral and medial parabrachial nuclei, including a small portion of the medially adjacent central gray substance. Labeled fibers in the ventrolateral reticular formation were present from the nucleus retroambigualis rostralward to the retrofacial nucleus, with the densest concentration located over the nucleus ambiguus proper. The parabrachial projection was confirmed using HRP and shown to originate from cells in the medial subdivision of NST. Due to the problem of fibers en passant, it was not possible to interpret conclusively the cell-labeling seen around the solitary tract after HRP injections made in the region of the nucleus ambiguus. Labeled fibers were also traced from caudal NST to the dorsal motor nucleus of the vagus, but their origin could not be determined with certainty. Other labeled axons, traced to circumscribed parts of the inferior olivary complex and via the contralateral medial lemniscus to VPL of the thalamus, were shown in HRP experiments to originate from the dorsal column nuclei rather than NST. No labeled fibers were traced into the spinal cord, nor were any cells labeled in NST after large HRP deposits in upper cervical segments. Isotope deposits at levels of NST rostral to the entrance of the vagus, from which responses were evoked by rapid stimulation of the tongue, revealed an ipsilateral projection which ascends as a component of the central tegmental tract to the parvicellular part of the ventral posteromedial thalamic nucleus (VPMpc). After small HRP deposits in VPMpc, labeled cells in NST were restricted to the rostral part of the lateral subdivision. No labeled axons were traced from rostral NST to the ambiguus complex or parabrachial area. Injections of 3H-amino acids at intermediate levels of NST resulted in fiber-labeling in VPMpc, the parabrachial area, and the ambiguus complex.  相似文献   

13.
The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2‐IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Distribution of thalamic neurons projecting to the orbital gyrus in the cat was examined by the horseradish peroxidase (HRP) method. After injection of HRP within the cortex of the orbital gyrus, thalamic neurons labeled with HRP were observed ipsilaterally within the pars parvicellularis of the nucleus ventralis posteromedialis (VPMpc) and the caudoventral portions of the nucleus centralis medialis: HRP-labeled neurons in the VPMpc were numerous and those in the nucleus centralis medialis were moderate in number. A few HRP-labeled neurons were seen occasionally in the nucleus paracentralis, nucleus centralis lateralis, nucleus submedius, and nucleus medialis. The VPMpc neurons labeled with HRP injected into the rostral portions of the orbital gyrus were seen chiefly in the dorsal aspects of the VPMpc, whereas the VPMpc neurons labeled with the enzyme injected into the caudal portions of the orbital gyrus were distributed mainly in the ventral aspects of the VPMpc: the region of distribution of the VPMpc neurons projecting onto the rostral portions of the orbital gyrus extended somewhat more rostrally than that of the VPMpc neurons projecting onto the caudal portions of the orbital gyrus. Functional significance of the VPMpc neurons that send their axons to the orbital gyrus is discussed in terms of the relay neurons of the central gustatory pathways.  相似文献   

15.
The toxic lectin ricin was applied to the hamster chorda tympani (CT), producing anterograde degeneration of its terminal boutons within the gustatory zone of the nucleus of the solitary tract (NST). Immunocytochemistry was subsequently performed with antiserum against tyrosine hydroxylase (TH), and the synaptic relationships between degenerating CT terminal boutons and either TH-immunoreactive or unlabeled dendritic processes were examined at the electron microscopic level. Degenerating CT terminal boutons formed asymmetric axodendritic synapses and contained small, clear, spherical synaptic vesicles that were densely packed and evenly distributed throughout the ending, with no accumulation at the active synaptic. The degenerating CT terminated on the dendrites of TH-immunoreactive neurons in 36% (35/97) of the cases. The most frequent termination pattern involved the CT and two or three other inputs in synaptic contact with a single immunoreactive dendrite, resulting in a glomerular-like structure that was enclosed by glial processes. In 64% (62/97) of the cases, the degenerating CT was in synaptic contact with unlabeled dendrites, often forming a calyx-like synaptic profile that surrounded much of the perimeter of a single unlabeled dendrite. These results indicate that the TH-immunoreactive neurons of the gustatory NST receive direct input from the CT and taste receptors of the anterior tongue and that the termination patterns of the CT vary with its target neuron in the gustatory NST. The glomerular-like structure that characterizes many of the terminations of the CT provides an opportunity for the convergence of several functionally distinct inputs (both gustatory and somatosensory) onto putative dopaminergic neurons that may shape their responsiveness to the stimulation of the oral cavity. J. Comp. Neurol. 392:78–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Previous studies have shown that damage induced to fungiform papillae of the anterior tongue at postnatal day 2 (P2) alters both pre- and postsynaptic development of gustatory recipient zones within the rostral nucleus of the solitary tract (NST). The present study was conducted to determine whether or not artificial rearing (AR) manipulations, which reduce normal orochemical stimulation during early postnatal development, would be sufficient to produce alterations in anatomical development of the rostral gustatory NST. Two groups of Long-Evans hooded rats were examined. One group received normal rearing with a lactating dam from birth to weaning (mother reared; MR). A second group of animals received artificial rearing via intragastric cannulae between the ages of P4 and P14, and were thereafter returned to lactating dams until the age of weaning (P21). Following weaning and maturation to adulthood (P49), the organization of gustatory afferent terminal fields in the NST was examined using fluorescent tracing procedures which permit the simultaneous visualization of gustatory afferent terminal fields arising from the seventh and ninth cranial nerves. Results show that AR manipulations between the ages of P4 and P14 produce alterations in development of gustatory afferent terminal fields in the NST that are essentially similar to those observed following early postnatal receptor damage. These results confirm previous suggestions that orochemical stimulation during a limited portion of rats' postnatal life is essential in inducing normal presynaptic development in the gustatory NST.  相似文献   

17.
The rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) contains excitatory and inhibitory burst neurons that are related to the control of vertical and torsional eye movements. In the present study, light microscopic examination of the immunohistochemical localization of amino acid neurotransmitters demonstrated that the riMLF in the cat contains overlapping populations of neurons that are immunoreactive to the putative inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitters glutamate and aspartate. By using a double-labelling paradigm, GABA-, glutamate-, and aspartate-immunoreactive neurons in the riMLF were retrogradely labelled by transport of horseradish peroxidase (HRP) from the oculomotor and trochlear nuclei. Electron microscopy showed that the oculomotor and trochlear nuclei contain synaptic endings that are immunoreactive to GABA, glutamate, or aspartate. Each neurotransmitter-specific population of synaptic endings has distinctive ultrastructural and synaptic features. Synaptic endings in the oculomotor and trochlear nuclei that are anterogradely labelled by transport of biocytin from the riMLF are immunoreactive to GABA, glutamate, or aspartate. Taken together, the findings from these complimentary retrograde and anterograde double-labelling studies provide rather conclusive evidence that GABA is the inhibitory neurotransmitter, and glutamate and aspartate are the excitatory neurotransmitters, utilized by premotor neurons in the riMLF that are related to the control of vertical saccadic eye movements. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The superior laryngeal nerve (SLN) is known to innervate taste buds on the epiglottis of several mammalian species. Because of an increasing interest in the physiology of the gustatory system of hamsters, the brainstem projections of the SLN were investigated in this species. Crystallized HRP was applied to the proximal portion of the cut SLN or to one of its five distal branches. Anterograde transganglionic transport of HRP revealed afferent fibers of the SLN projecting into the ipsilateral solitary tract (ST) from 0.3 to 3.0 mm caudal to the dorsal cochlear nucleus (DCN), with the major area of termination in the nucleus of the solitary tract (NST) between 0.6 and 1.6 mm caudal to DCN. Some afferent fibers crossed the midline approximately 2.0 mm caudal to DCN to terminate contralaterally within the NST. Efferent cell bodies were retrogradely labeled within the nucleus ambiguus (NA) and in and around the more rostral portions of NST. There were five identifiable distal branches of SLN, termed A1, A2, M1, M2 and P, from anterior to posterior. Afferent fibers were carried in A2 and P, whereas efferent fibers were evident in all five branches. The heaviest projection from the NA occurred in the two middle branches (M1 and M2) and that from the NST in the posterior branch (P). Afferent projections of the Xth cranial nerve, along with those from the VIIth and IXth, into the NST provide a neural substrate for the integration of sensory inputs related to a number of oral and respiratory reflexes.  相似文献   

19.
The location of central neurons that contribute preganglionic parasympathetic axons to cranial nerves VII, IX, and X in rats has been identified using horseradish peroxidase (HRP) tracting methods. Collectively, these neurons form an uniterrupted dorsal column that extends over the entire length of the medulla. The cephalic end of this column turns ventrally with neurons scattered in the parvicellular reticular formation between the rotral pole of the nucleus of the solitary tract (NST) and the facial motor nucleus. Applying HRP crystals to the cut cervical vagus labels neurons in the classically defined dorsal motor nucleus. Rostrally, this distribution continues along the medial edge of NST, ending just caudal to neurons exiting in the lingual-tonsilar branch of IX. At the rostral pole of the NST and ventral to it, neurons occur that serve the lingual-tonsilar and tympanic branches of IX, as well as the chorda tympani and greater superficial petrosal (GSP) branches of VII. Central neurons of the chorda tympani and tympanic nerves spread ventrally from NST into a sparse but largely coextensive distribution in the reticular formation lateral to the ascending radiations of the facial motor nucleus. Immediately ventral to this distribution, a dense accumulation of GSP efferent neurons appears rostrolateral to the facial motor nucleus. Although they vary considerably in number and packing density, the neurons of the dorsal efferent column and those extending from it into the reticular formation have similar morphological characteristics. The somata are medium-sized, fusiform, or multipolar, but with usually no more than five or six major processes.  相似文献   

20.
The purpose of this study was to determine if the medullary neurons that provide the primary excitatiry drive to phrenic motoneurons (i.e., rostral ventral respiratory group, rVRG) are a source of double synapse formation in the phrenic nucleus after spinal cord hemisection. The axons of rVRG neurons either ipsilateral or contralateral to the hemisection were labeled by injection of a mixture of HRP and WGA-HRP into the rostral ventral respiratory group. Phrenic motoneurons ipsilateral and caudal to the hemisection were labeled by the retrograde transport of HRP. The ultrastructural results indicated that after hemisection, rVRG neurons from both sides of the medulla formed labelled double synapses in the phrenic nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号