首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In acute lymphoblastic leukaemia (ALL) the karyotype provides important prognostic information which is beginning to have an impact on treatment. The most significant structural chromosomal changes include: the poor-risk abnormalities; t(9;22)(q34;q11), giving rise to the BCR/ABL fusion and rearrangements of the MLL gene; abnormalities previously designated as poor-risk; t(1;19)(q23;p13), producing the E2A/PBX1 and rearrangements of MYC with the immunoglobulin genes; and the probable good risk translocation t(12;21)(p13;q22), which results in the ETV6/AML1 fusion. These abnormalities occur most frequently in B-lineage leukaemias, while rearrangements of the T cell receptor genes are associated with T-lineage ALL. Abnormalities of the short arm of chromosome 9, in particular homozygous deletions involving the tumour suppressor gene (TSG) p16(INK4A), are associated with a poor outcome. Numerical chromosomal abnormalities are of particular importance in relation to prognosis. High hyperdiploidy (51-65 chromosomes) is associated with a good risk, whereas the outlook for patients with near haploidy (23-29 chromosomes) is extremely poor. In view of the introduction of risk-adjusted therapy into the UK childhood ALL treatment trials, an interphase FISH screening programme has been developed to reveal chromosomal abnormalities with prognostic significance in childhood ALL. Novel techniques in molecular cytogenetics are identifying new, cryptic abnormalities in small groups of patients which may lead to further improvements in future treatment protocols.  相似文献   

2.
The genetics of childhood acute lymphoblastic leukaemia.   总被引:1,自引:0,他引:1  
In childhood acute lymphoblastic leukaemia (ALL) a number of genetic changes have been identified which provide diagnostic and prognostic information with a direct impact on patient management. The most significant abnormalities include the translocation, t(12;21)(p13;q22), giving rise to the ETV6/AML1 gene fusion; BCR/ABL arising from t(9;22)(q34;q11); re-arrangements of the MLL gene; the E2A/PBX1 from the t(1;19)(q23;p13); re-arrangements of MYC with the immunoglobulin genes and re-arrangements of the T cell receptor genes. Chromosomal deletions, particularly those of the short arms of chromosomes 9 and 12 and the long arm of chromosome 6, have been postulated to be the sites of tumour suppressor genes (TSG). Numerical chromosomal abnormalities are of particular importance in relation to prognosis. High hyperdiploidy (50-65 chromosomes) is associated with a good risk, whereas the outlook for patients with near haploidy (23-29 chromosomes) is extremely poor. In view of the introduction of risk-adjusted therapy into the UK childhood ALL treatment trials, an interphase FISH screening programme has been developed to reveal chromosomal abnormalities with prognostic significance in childhood ALL.  相似文献   

3.
We evaluated major cytogenetic abnormalities associated with childhood acute lymphoblastic leukemia (ALL) through both fluorescent in situ hybridization and conventional chromosomal analysis for 132 ALL patients diagnosed at St Mary’s Hospital in Korea. Chromosome abnormalities have been detected in 92% of patients. Eighteen (14%) patients showed numerical abnormalities only, 50 (38%) patients showed structural abnormalities only, and 53 (40%) patients showed both. The simultaneous trisomies 4, 10 and 17 were observed in 23 (17%) patients. Of the patients with abnormal karyotypes, recurrent structural abnormalities were determined in 103 (78%) cases. t(12;21)(q13;q22) was found in 29 (22%) out of 132 patients, 9p abnormalities in 13 (10%) patients, t(1;19)(q23;p13.3) in 11 (8%) patients, t(9;22)(q34;q11.2) in 11 (8%) patients, and 11q23 abnormalities in 7 (5%) patients. Interestingly, we identified five uncommon translocations such as t(5;12) (q33;p13), t(14;19)(q32;q13.1), t(12;16)(p13;q13), der(1)t(1;12)(p32;p13), and t(5;15)(p15;q11.2). Our study pool is representative of pediatric ALL patients in Korea as it consists of about 20% of patients diagnosed annually in Korea. We believe that the data provided will aid in comparative studies of the treatment outcomes, as well as the type and incidence of chromosomal abnormalities associated with childhood ALL in various Asian nations and Western countries.  相似文献   

4.
In childhood acute lymphoblastic leukaemia (ALL), cytogenetics plays an essential role in diagnosis and prediction of outcome. Conventional cytogenetic analysis, complemented by fluorescence in situ hybridization (FISH), is highly effective in the accurate detection of chromosomal abnormalities. For the precise identification of specific genetic changes, molecular techniques may be applied. Chromosomal changes in ALL may be of structural or numerical type. A large number of established structural chromosomal rearrangements have now been described for which the genetic alterations and effect on prognosis are well known. These include t(9;22)(q34;q11) and BCR/ABL, rearrangements of 11q23 involving MLL, t(12;21)(p13;q22) with the ETV6/AML1 fusion, t(1;19)(q23;p13) with E2A/PBX1, t(8;14)(q24;q32) and the immunoglobulin genes. Genetic changes associated with T ALL are also known, although their effect on outcome is less pronounced. Rare chromosomal abnormalities are continually being discovered in small patient subgroups leading to the identification of new ALL associated genetic changes. Alterations in chromosome number have a strong impact on outcome in childhood ALL. The association of a high hyperdiploid karyotype (51-65 chromosomes) with a good prognosis has been known for more than 20 years. Conversely, the loss of chromosomes in the near-haploid group (23-28 chromosomes) indicates a poor outcome. New methods of cancer classification involving gene expression profiling may eventually supercede cytogenetic analysis in the diagnosis and prediction of outcome in leukaemia. It is more likely that they will be used in a complementary approach alongside cytogenetic, FISH and molecular analysis to guide patient management in childhood ALL.  相似文献   

5.
Different types of leukemia are characterized by different patterns of nonrandom chromosomal aberrations, but the frequencies with which the various karyotypic subtypes are seen differ among cytogenetic laboratories, countries, and geographic regions. During the 12-yr period 1986-1997, a total of 2054 children (< 15 yr of age) were diagnosed with acute lymphoblastic leukemia (ALL) in the five Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden). Cytogenetic analyses were successfully performed in 1372 patients, 787 (57%) of whom displayed clonal chromosomal abnormalities. ALL with > or = 47 chromosomes was the most frequent cytogenetic subgroup (63%), with massive hyperdiploidy (> or = 52 chromosomes) and chromosome numbers in the tri- and tetraploid range, constituting 46% of all abnormal cases. ALL-associated translocations were found at low frequencies [11q23 translocations in 3.7%, t(9;22)(q34;q11) or del(22q) in 2.2%, t(4; 11)(q21;q23) in 2.0%, t(11;19)(q23;p13) in 1.40%, t(1;19)(q23;p13) in 1.3%, and t(8;14)(q24;q32) in 1%]. Two rearrangements not previously reported in childhood ALL, but recurrent in this population-based material, were identified: der(7;9)(q10;q10) and t(9;12)(q22;p11-12), the molecular genetic consequences of which are unknown. Hyperdiploid childhood leukemias, especially those with a high hyperdiploid modal number, thus seem to be more frequent and ALL-specific translocations less frequent in the Nordic countries than in other geographic regions. Although technical differences among laboratories cannot be ruled out as a cause of at least some of the frequency differences observed compared with previous studies, systematic differences in exposure to environmental oncogenic factors or in geographic/ethnic origin are an intriguing possibility.  相似文献   

6.
The prognostic value of cytogenetics in adult acute lymphoblastic leukemia (ALL) is not as established as in childhood ALL. We have analyzed the outcome and prognostic value of karyotype in 84 adults diagnosed with Philadelphia-negative ALL from a single institution that received induction chemotherapy and had successful karyotype performed. The most frequent finding was normal karyotype in 35 (42%) cases, followed by aneuploidies in 20 cases (24%) and t(4;11)(q21;q23)/MLL/AF4 in 5 (6%), and the remaining 24(27%) cases carried miscellaneous clonal abnormalities. The group of patients with t(4;11)(q21;q23)/MLL/AF4, hypodiploidy and low hyperdiploidy (less than 50 chromosomes) showed a worse outcome than those with normal karyotype and miscellaneous abnormalities in terms of overall survival (OS) (3 years OS; 47% vs. 13%, p?=?0.014) and relapse-free survival (RFS) (3 years RFS; 44% vs. 27%, p?=?0.005). Other cytogenetic prognostic classifications reported to date were tested in our series, but any was fully reproducible. In conclusion, karyotype is a useful tool for risk assessment in adult ALL. We have confirmed the bad prognosis of t(4;11)(q21;q23)/MLL/AF4 and hypodiploidy. Besides, low hyperdiploidy could also define a high-risk group of patients who might be candidates for more intensive treatment.  相似文献   

7.
Between 1993 and 2001, 318 children were diagnosed with acute myeloid leukaemia (AML) in the Nordic countries. The patient group comprised 237 children < 15 years of age with de novo AML, 42 children < 15 years with Down syndrome (DS) and de novo AML, 18 adolescents 15-18 years of age with de novo AML, and 21 children < 15 years with treatment-related AML (t-AML). The first group was all-inclusive, yielding an annual childhood de novo AML incidence of 0.7/100 000. Cytogenetic analyses were successful in 288 cases (91%), and clonal chromosomal abnormalities were detected in 211 (73%). The distribution of ploidy levels were pseudodiploidy (55%), hyperdiploidy (34%) and hypodiploidy (11%). The most common aberrations (> 2%) were + 8 (23%) (as a sole change in 6.2%), 11q23-translocations, including cryptic MLL rearrangements (22%) [t(9;11)(p21-22;q23) in 11%], t(8;21)(q22;q22) (9.0%), inv(16)(p13q22) (6.2%), -7/7q- (5.2%), and t(15;17)(q22;q12) (3.8%). Except for +8, these abnormalities were rare in group 2; only one DS patient had a t(8;21) and none had 11q23-translocations, t(15;17) or inv(16). In the t-AML group, three cases displayed 11q23-rearrangements, all t(9;11); and there were no t(8;21), t(15;17) or inv(16). Overall, the observed frequencies of t(8;21) and t(15;17) were lower, and frequencies of trisomy 8 and 11q23-translocations higher, than in previous studies. Furthermore, seven abnormalities that were previously reported as only single AML cases were also seen, meaning that der(4)t(4;11)(q26-27;q23), der(6)t(1;6)(q24-25;q27), der(7)t(7;11)(p22;q13), inv(8)(p23q11-12), t(11;17)(p15;q21), der(16)t(10;16)(q22;p13) and der(22)t(1;22)(q21;q13) are now classified as recurrent abnormalities in AML. In addition, 37 novel aberrations were observed, 11 of which were sole anomalies.  相似文献   

8.
We analysed the nature and prognostic significance of secondary cytogenetic changes in 111 newly diagnosed adults with acute lymphoblastic leukaemia (ALL) and t(9;22)(q34;q11.2) or its variants. Secondary aberrations were seen in 75 (68%) patients. They included, in order of descending frequency: +der(22)t(9;22), +21, abnormalities of 9p, high hyperdiploidy (>50 chromosomes), +8, -7, +X and abnormalities resulting in loss of material from 8p, gain of 8q, gain of 1q and loss of 7p. Eighty patients (72%) had > or =1 normal metaphase in their karyotype. There were four balanced and 12 unbalanced translocations previously unreported in ALL with t(9;22). The t(2;7)(p11;p13) and der(18)t(8;18)(q11.2;p11.2) were seen in two cases each, and have never before been reported in haematological malignancy. All but four patients were treated on front-line Cancer and Leukaemia Group B clinical protocols. The presence of -7 as a sole secondary abnormality was associated with a lower complete remission (CR) rate (P = 0.004), while the presence of > or =3 aberrations was associated with a higher CR rate (P = 0.009) and +der(22)t(9;22) with a higher cumulative incidence of relapse (P = 0.02). It will be of interest to see if newly diagnosed t(9;22)-positive adult ALL patients with these and other secondary aberrations respond differently to treatment regimens that include imatinib mesylate.  相似文献   

9.
10.
Cytogenetic abnormalities in chromosomal number and structure are common in pediatric ALL and some have prognostic significance. One interesting association between cytogenetic status and treatment response involves the metabolism of methotrexate. Hyperdiploid lymphoblasts accumulate increased amounts of MTX and MTX polyglutamates, and they have higher basal apoptotic rates compared with leukemic cells with lower ploidy and normal cells. These characteristics may contribute to the better outcomes observed for patients with hyperdiploid lymphoblasts. A number of recurrent chromosomal abnormalities have been shown to have prognostic significance, especially in B-precursor ALL. Some chromosomal abnormalities are associated with more favorable outcomes, such as high hyperdiploidy (51–65 chromosomes) and the ETV6–RUNX1 fusion. Others are associated with a poorer prognosis, including the Philadelphia chromosome [t(9;22)], rearrangements of the MLL gene (chromosome 11q23), and intrachromosomal amplification of the AML1 gene (iAMP21).  相似文献   

11.
An analysis of leukemic cell chromosomal features in infants   总被引:5,自引:0,他引:5  
Leukemic cell chromosomal findings in 27 infants were analyzed. Among the 18 cases of acute nonlymphoblastic leukemia (ANLL), all but two were classified as monocytic or myelomonocytic. The remaining nine cases were acute lymphoblastic leukemia (ALL), seven lacking the common ALL antigen and two having cytoplasmic immunoglobulin (pre-B phenotype). Twenty-five cases (93%) had an abnormal karyotype, 21 (84%) being pseudodiploid. Chromosomal translocations were detected in 67% of the ANLL cases and in 78% of the ALL cases. Nonrandom chromosomal abnormalities included the t(9;11)(p21-22;q23) in three cases of monocytic leukemia, inversion of chromosome 16 in three cases of myelomonocytic leukemia with bone marrow eosinophilia, and t(4;11)(q21;q23) in one case of ALL. Chromosomal regions preferentially involved in infant leukemia included 11q23-25 (13 cases), 9p21-22 and 10p11-13. All but one of the 24 cases with chromosomal breakage or rearrangement had breakpoints that corresponded to known fragile sites, half of which were at 11q23-25, a finding that may have pathogenetic importance. The CALLA- or pre-B phenotype and the presence of chromosomal translocations in most infants with ALL provide a biological explanation for their poor prognosis.  相似文献   

12.
13.
14.
Children with Down syndrome (DS) have a markedly increased risk of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). To identify chromosomal changes cooperating with +21 that may provide information on the pathogenesis of these leukemias, we analyzed 215 DS-ALLs and 189 DS-AMLs. Unlike previous smaller series, a significant proportion of DS-ALLs had the typical B-cell precursor ALL abnormalities high hyperdiploidy (HeH; 11%) and t(12;21)(p13;q22) (10%). The HeH DS-ALLs were characterized by gains of the same chromosomes as non-DS-HeH, suggesting the same etiology/pathogenesis. In addition, specific genetic subtypes of DS-ALL were suggested by the significant overrepresentation of cases with +X, t(8;14)(q11;q32), and del(9p). Unlike DS-ALL, the common translocations associated with non-DS-AML were rare in DS-AML, which instead were characterized by the frequent presence of dup(1q), del(6q), del(7p), dup(7q), +8, +11, del(16q), and +21. This series of DS leukemias-the largest to date-reveals that DS-ALL is a heterogeneous disorder that comprises both t(12;21) and HeH as well as DS-related abnormalities. Furthermore, this analysis confirms that DS-AML is a distinct entity, originating through other genetic pathways than do non-DS-AMLs, and suggests that unbalanced changes such as dup(1q), +8, and +21 are involved in the leukemogenic process.  相似文献   

15.
Primary established genetic abnormalities in B-cell precursor acute lymphoblastic leukemia include high hyperdiploidy (51–65 chromosomes), the translocations t(12;21)(p13;q22)/ETV6-RUNX1 fusion and t(9;22)(q34;q11)/BCR-ABL1 fusion, MLL rearrangements and intrachromosomal amplification of chromosome 21. These rearrangements are of prognostic and therapeutic relevance and are usually mutually exclusive. We identified 28 patients at diagnosis with both a primary genetic rearrangement and an immunoglobulin heavy chain locus translocation using chromosomal analysis and fluorescence in situ hybridization. Among these patients, the immunoglobulin heavy chain locus translocation partner gene was identified in six (CRLF2, CEBPA, CEBPB, TRA/D@, IGF2BP1 and IGK@). Clonal architecture was investigated in 17 patients using multiple color interphase fluorescence in situ hybridization analysis, which showed that the translocation was acquired as a secondary abnormality in ten patients, in four patients the etiology was undetermined and in three patients it was observed in a separate clone from the primary chromosomal rearrangement. These findings demonstrate the co-existence of immunoglobulin heavy chain locus translocations with other primary chromosomal rearrangements either in the same or separate clones, which may have prognostic significance in B-cell precursor acute lymphoblastic leukemia. Clinical trials: UKALLXII: Study ID n. ISRCTN77346223 and ALL2003: Study ID n. ISRCTN07355119  相似文献   

16.
The present study is a detailed analysis of the cytogenetic features of leukemic cells from 104 immunologically classified acute lymphoblastic leukemia (ALL) (78 B lineage and 26 T lineage) cases. Clonal chromosomal abnormalities were found in marrow blasts from 77 of 104 (74%) cases. Hyperdiploidy was much more frequent in B-lineage ALL cases, whereas normal diploidy was more common in T-lineage ALL cases. Fifty-nine of 104 cases (46 of 78 B-lineage ALL and 13 of 26 T-lineage ALL cases) had structural chromosomal abnormalities. Structural abnormalities involving 2p11, 7p13, 7p22, proximal q arm of 7 (7q11 or 7q22), 11q23-24, and translocations involving 12p11-13 appeared to be B-lineage specific. By comparison, structural abnormalities involving 7p15, 7q32, and 14q11 displayed T-lineage specificity. Structural abnormalities involving 9p22-p23 or 14q32, del (6)(q21-q23), del (12)(p11-p13), and the Philadelphia chromosome were found in B-lineage as well as T-lineage ALL cases. This study expands the current knowledge about immunophenotype-karyotype associations in ALL.  相似文献   

17.
Pretreatment cytogenetics is a known predictor of outcome in hematologic malignancies. However, its usefulness in adult acute lymphoblastic leukemia (ALL) is generally limited to the presence of the Philadelphia (Ph) chromosome because of the low incidence of other recurrent abnormalities. We present centrally reviewed cytogenetic data from 1522 adult patients enrolled on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. The incidence and clinical associations for more than 20 specific chromosomal abnormalities are presented. Patients with a Ph chromosome, t(4;11)(q21;q23), t(8;14)(q24.1;q32), complex karyotype (5 or more chromosomal abnormalities), or low hypodiploidy/near triploidy (Ho-Tr) all had inferior rates of event-free and overall survival when compared with other patients. In contrast, patients with high hyperdiploidy or a del(9p) had a significantly improved outcome. Multivariate analysis demonstrated that the prognostic relevance of t(8;14), complex karyotype, and Ho-Tr was independent of sex, age, white cell count, and T-cell status among Ph-negative patients. The observation that Ho-Tr and, for the first time, karyotype complexity confer an increased risk of treatment failure demonstrates that cytogenetic subgroups other than the Ph chromosome can and should be used to risk stratify adults with ALL in future trials.  相似文献   

18.
Cytogenetic classification of 350 adults with acute lymphoblastic leukaemia on MRC UKALL XA trial showed the following statistically significant associations: t(9;22) (11%) increased with increasing age and leucocyte counts (WBC) and most had a C/pre-B immunophenotype. t(4;11) (3%) was associated with higher WBCs, increasing age and null immunophenotype. Other abnormalities of 11q (abn11q) (4%) were associated with male sex and T-cell ALL. High hyperdiploidy (7%) and abn9p (5%) decreased with increasing WBC. High hyperdiploid patients were younger and tended to have C/pre-B ALL. Triploidy/tetraploidy (3%) decreased and pseudodiploidy (11%) increased with increasing WBC. Cytogenetic classification was prognostically important (chi-square for heterogeneity of classification = 53.36; P  < 0.0001) and added significance to age, sex and WBC. A poor prognosis for patients classed as t(9;22) (13% disease-free survival at 3 years), as t(4;11) 24% at 3 years) and hypodiploid (11% at 3 years), and good prognosis for abn12p (4% of subjects) and high hyperdiploidy (74% and 59% at 3 years respectively) were statistically significant, but the 54% 3-year disease-free survival for patients with t(1;19) was not. The prognosis of patients classed as t(9;22) was independent of other single variables. Abn12p, abnormalities of 11q (including t(4;11) cases) and hypodiploidy added prognostic significance to all other variables combined.  相似文献   

19.
Cytogenetic analysis of small lymphocytes disorders is hindered by the low mitotic activity of the malignant cells. The use of fluorescence in situ hybridization (FISH) allows the detection of chromosomal amplifications, deletions, or translocations at a single-cell level in dividing and resting cells. The use of FISH in combination with other molecular techniques has defined the deletion in band 13q14 as the most common abnormality in chronic lymphocytic leukemia, followed by del (11)(q22-23), trisomy 12, del (17)(p13), and del (6)(q21). The del 13q14 is also found in 70% of mantle-cell lymphomas (MCLs) and in non-Hodgkin's lymphoma (NHL), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM) patients. These findings point to the existence of yet unidentified tumor-suppressor gene(s) at the 13q14 locus, the loss/inactivation of which leads to B-cell neoplasia. Del (17(p13) (involving the p53 tumor-suppressor gene) and del (11)(q22-23) (involving the ataxia-telangiectasia gene [ATM]) seem to be independent prognostic factors for poor survival in chronic lymphocytic leukemia (CLL) patients. In MCL, the t(11;14) involving the bcl-1 gene is found, but data from a bcl-1 transgenic animal model suggest that hyperexpression of bcl-1 is not sufficient for lymphomatogenesis. Similar data are observed in bcl-2 transgenic animals, a finding showing that the bcl-2 hyperexpression observed in t(14;18)-positive follicular lymphoma cells is not sufficient to confer a malignant phenotype. The contribution of other chromosomal abnormalities other than bcl-1 and bcl-2 rearrangements in the pathogenesis of MCL and follicular-cell lymphomas has to be determined.  相似文献   

20.
Cytogenetic analyses of pretreatment bone marrows were performed at local institutions as part of Childrens Cancer Group (CCG) protocol CCG- 107 for infants less than 1 year of age with previously untreated acute lymphoblastic leukemia (ALL). Cytogenetic analyses from 39 patients (17 males and 22 females) were accepted after review. Several unique cytogenetic features were observed. Twelve patients (31%) had a t(4;11)(q21;q23) and had a significantly shorter event-free survival (EFS) than did the other patients with adequate cytogenetic analyses (P = .009). Five additional patients had an 11q23 breakpoint, not associated with 4q21. When EFS for these 5 patients was compared with that of the t(4;11) patients, even with these small numbers there was a strong, although not significant, suggestion that the t(4;11) patients have a reduced EFS (P = .09), indicating that the specific translocation, t(4;11)(q21;q23), and not an 11q23 breakpoint per se, may be associated with the poor prognosis of these infants. Structural abnormalities were present in 27 of 28 patients with abnormal karyotypes. A new recurring abnormality, t(5;15)(p15:1;q11) or t(5;15)(p15.3;q13), was identified in 3 patients (Arthur et al, Blood 70:274a, 1987 [abstr, suppl 1]). Two females had structural abnormalities involving Xp11, a breakpoint rarely seen in ALL. Fourteen (36%) patients had a single structural abnormality, and 13 (33%) had complex karyotypes. No patients had hyperdiploidy with more than 50 chromosomes. Only normal chromosomes were observed in 11 patients (28%), and their outcome did not differ from patients with abnormal karyotypes. These cytogenetic abnormalities found in the leukemic cells of infants are clearly different from those in older children and adults, and may explain, in part, the unique biologic characteristics of infant ALL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号