首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) envelope protein gp41 mediates viral fusion with human host cells. The peptide segment T20/DP178, located in the C-terminus of the ectodomain of gp41, interacts with the N-terminal leucine zipper-like domain on gp41 to establish the fusogenic conformation of the virus. Synthetic T20/DP178 peptide is highly efficacious in inhibiting HIV-1 infection in vitro by disrupting the transformation of fusogenic status of viral gp41; thus, it has been proposed for clinical trial. We report that synthetic T20/DP178 is a chemoattractant and activator of human peripheral blood phagocytes but not of T lymphocytes. We further demonstrate that T20/DP178 specifically activates a seven-transmembrane, G-protein-coupled phagocyte receptor for N-formylated chemotactic peptides, formyl peptide receptor (FPR). Moreover, synthetic T20/DP178 analogs lacking N-terminal amino acids acted as FPR antagonists. Our results suggest that gp41 peptides regulate phagocyte function via FPR and identify a novel mechanism by which HIV-1 may modulate innate immunity.  相似文献   

2.
The envelope glycoprotein (Env) of HIV-1 is displayed on the surface of the virion or infected cell as an oligomer of multiple gp120/gp41 complexes. We sought to unravel the relationships between this oligomeric structure and the requirements for sequential interactions with CD4 and coreceptor (CCR5 or CXCR4). We used a quantitative cell fusion assay to examine the effects of coexpressing pairs of Envs, each nonfunctional because of a specific defect in one of the essential properties. We observed efficient fusion activity upon coexpression of two Env variants, one containing a gp41 subunit with a mutated fusion peptide and the other containing a gp120 subunit with a mutated CD4 binding site or a mismatched coreceptor specificity. We also observed fusion upon coexpression of two Env variants with distinct gp120 defects, i.e., a CD4 binding site mutation and the incorrect coreceptor specificity determinants. Coimmunoprecipitation experiments verified the efficient formation of mixed oligomers, suggesting that the observed fusion reflected subunit complementation within the oligomeric complex. These results support a model in which cooperative subunit interactions within the Env oligomer result in concerted conformational changes upon receptor binding, resulting in activation for fusion. The implications of these findings for Env function and virus neutralization are discussed.  相似文献   

3.
The surface molecule CD4 plays a key role in initiating cellular entry by the human immunodeficiency virus type 1 (HIV-1), and it is now recognized as acting synergistically with select chemokine receptors (coreceptors) in the infection process. The present study was undertaken to determine whether the extracellular region of CD4 is sufficient to induce fusion of HIV-1 virions with target cells in the absence of its anchoring function. Using pseudotype reporter viruses to quantitate infection, soluble CD4 (sCD4) was tested for its ability to induce fusion by viruses utilizing CCR5 as their coreceptor. We found that sCD4 was competent to replace membrane-bound CD4 to trigger infection mediated by several HIV-1 envelopes. Furthermore, in a comparison of the envelopes of HIV-1 NL4-3 and a chimera containing the gp120 V3 loop of Ba-L, the V3 region was found to be one factor affecting susceptibility to induction by sCD4. In addition, using truncated and mutant derivatives of sCD4, the amino-terminal D1 domain of CD4 was found to be necessary and sufficient for induction of fusion and to require an intact gp120-binding site for this activity. These results delineate determinants on CD4 and gp120 required for fusion induction in collaboration with a coreceptor, and suggest a mechanism whereby CD4 may contribute to viral infection in trans.  相似文献   

4.
The initial step in HIV-1 infection occurs with the binding of cell surface CD4 to trimeric HIV-1 envelope glycoproteins (Env), a heterodimer of a transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120). The design of soluble versions of trimeric Env that display structural and functional properties similar to those observed on intact viruses is highly desirable from the viewpoint of designing immunogens that could be effective as vaccines against HIV/AIDS. Using cryoelectron tomography combined with subvolume averaging, we have analyzed the structure of SOSIP gp140 trimers, which are cleaved, solubilized versions of the ectodomain of trimeric HIV-1 Env. We show that unliganded gp140 trimers adopt a quaternary arrangement similar to that displayed by native unliganded trimers on the surface of intact HIV-1 virions. When complexed with soluble CD4, Fab 17b, which binds to gp120 at its chemokine coreceptor binding site, or both soluble CD4 and 17b Fab, gp140 trimers display an open conformation in which there is an outward rotation and displacement of each gp120 protomer. We demonstrate that the molecular arrangements of gp120 trimers in the closed and open conformations of the soluble trimer are the same as those observed for the closed and open states, respectively, of trimeric gp120 on intact HIV-1 BaL virions, establishing that soluble gp140 trimers can be designed to mimic the quaternary structural transitions displayed by native trimeric Env.  相似文献   

5.
OBJECTIVE: To characterize putative binding sites for HIV-1 gp41 to H9 cells. DESIGN: Based on accumulating evidence in the literature that HIV-1 can bind to cell surfaces independent of CD4, we attempted to clarify whether gp41, the transmembrane HIV-1 protein, contributes to CD4-independent binding. We therefore tested binding of gp41 to cells. METHODS: Using fluorescence-activated cell-sorter analysis, we examined the binding of recombinant gp160 (gp160) and soluble gp41 (sgp41; Env amino acids 539-684) to H9 cells, and located the putative binding site(s) of gp41 by inhibition using 16 HIV-1 Env peptides. Putative HIV-1 receptor proteins in H9 cell lysates were Western blotted and precipitated using sgp41. RESULTS: sgp41 bound to the CD4+ H9 cells and rgp160 bound to H9 cells independent of gp120-binding sites on CD4 molecules. Two gp41 peptides (Env amino acids 591-605 and 651-665) inhibited the binding of sgp41 to H9 cells. Four bands, of 37, 40, 55 and 97 kD, were blotted in H9 cell lysates, and three bands, 40, 97 and 108 kD, were observed in the precipitation analysis using lysates of 125I-surface-labelled H9 cells and sgp41 attached to sepharose beads. CONCLUSIONS: HIV-1 gp41 contains two putative binding sites to H9 cells. These sites may be located within Env amino acids 591-605 (ERYLKDQQLLGIWGC) and 651-665 (TLLEESQNQQEKNEQ). Using two different techniques, five proteins (37, 40, 55, 97 and 108 kD) were identified in H9 lysates as possible candidates for gp41 binding.  相似文献   

6.
OBJECTIVES: To study the kinetics of the interactions between soluble (s) CD4 and HIV-1-Env-expressing cells in relation to subsequent events leading to cell fusion and inhibition of syncytia formation. DESIGN: Vaccinia-HIV-1 (Env)-infected CD4- T-cells were used to study the kinetics of sCD4-gp120/41 interactions and syncytia formation (with CD4+ T-cells) under identical conditions. METHODS: sCD4 association and dissociation rates for HIV-1-Env-expressing cells, and quantification of sCD4-induced gp120 shedding was determined by a quantitative flow cytometry assay. Syncytia inhibition was measured in the continuous presence of sCD4, or after washing of HIV-1-Env-expressing cells following pre-incubation with sCD4. RESULTS: The kinetics of syncytia inhibition correlated with sCD4 binding when sCD4 was maintained during the culture. When Env-expressing cells, which had been pre-incubated with sCD4, were washed to remove unbound sCD4, no syncytia formation inhibition was observed, even following sCD4-induced shedding of greater than 50% of surface gp120 molecules. CONCLUSIONS: The lack of syncytia inhibition seen after removal of unbound sCD4, even after pre-incubation of cells under saturation and gp120 shedding conditions, indicated that sufficient numbers of fusogenic molecules remained on the sCD4-treated cells. In addition, fast dissociation of pre-bound sCD4 occurred in culture. These results are important for understanding HIV-1-Env-mediated cell fusion and AIDS therapy.  相似文献   

7.
Structural and functional studies were performed to assess the membrane actions of peptides based on HIV-1 glycoprotein 41,000 (gp41). Previous site-directed mutagenesis of gp41 has shown that amino acid changes in either the N-terminal fusion or N-leucine zipper region depressed viral infection and syncytium formation, while modifications in the C-leucine zipper domain both increased and decreased HIV fusion. Here, synthetic peptides were prepared corresponding to the N-terminal fusion region (FP-I; gp41 residues 519-541), the nearby N-leucine zipper domain (DP-107; gp41 residues 560-597), and the C-leucine zipper domain (DP-178; gp41 residues 645-680). With erythrocytes, FP-I or DP-107 induced dose-dependent hemolysis and promoted cell aggregation; FP-I was more hemolytic than DP-107, but each was equally effective in aggregating cells. DP-178 produced neither hemolysis nor aggregation, but blocked either FP-I- or DP-107-induced hemolysis and aggregation. Combined with previous nuclear magnetic resonance and Fourier transform infrared spectroscopic results, circular dichroism (CD) spectroscopy showed that the alpha-helicity for these peptides in solution decreased in the order: DP-107 > DP-178 > FP-I. CD analysis also indicated binding of DP-178 to either DP-107 or FP-I. Consequently, DP-178 may inhibit the membrane actions mediated by either FP-I or DP-107 through direct peptide interactions in solution. These peptide results suggest that the corresponding N-terminal fusion and N-leucine zipper regions participate in HIV infection, by promoting membrane perturbations underlying the merging of the viral envelope with the cell surface. Further, the C-leucine zipper domain in "prefusion" HIV may inhibit these membrane activities by interacting with the N-terminal fusion and N-leucine zipper domains in unactivated gp41. Last, exogenous DP-178 may bind to the N-terminal and N-leucine zipper domains of gp41 that become exposed on HIV stimulation, thereby preventing the fusogenic actions of these gp41 regions leading to infection.  相似文献   

8.
To define the domains in the envelope glycoprotein important for antibody neutralization of the human immunodeficiency virus type 1 (HIV-1), monoclonal antibodies (mAbs) were generated by immunizing mice with purified glycoprotein gp120 of the IIIB isolate. One mAb, G3-4, reacted with the gp120 of homologous (IIIB) and heterologous (RF) isolates. In addition, mAb G3-4 efficiently neutralized both IIIB and RF viruses in vitro, as well as four of nine primary HIV-1 isolates. In competition immunoassays, mAb G3-4 and soluble CD4 were found to inhibit one another in binding to gp120. However, no competition was seen between mAb G3-4 and mAbs directed to the third variable region or the fourth conserved region of gp120. In particular, mAb G3-4 did not compete with our human mAb 15e, which identifies a discontinuous epitope on gp120 involved in group-specific neutralization of HIV-1 and in gp120-CD4 binding. Epitope-mapping studies on mAb G3-4 with synthetic or unglycosylated recombinant peptides were negative, suggesting that its epitope may be discontinuous. Indeed, this hypothesis was confirmed by showing the loss of mAb G3-4 serologic reactivity when gp120 was first denatured. We conclude that the site recognized by mAb G3-4 represents another discontinuous epitope on gp120 important for neutralization of HIV-1.  相似文献   

9.
10.
Human immunodeficiency virus (HIV) infects cells after binding of the viral envelope glycoprotein gp120 to the cell surface recognition marker CD4. gp120 is noncovalently associated with the HIV transmembrane envelope glycoprotein gp41, and this complex is believed responsible for the initial stages of HIV infection and cytopathic events in infected cells. Soluble constructs of CD4 that contain the gp120 binding site inhibit HIV infection in vitro. This is believed to occur by competitive inhibition of viral binding to cellular CD4. Here we suggest an alternative mechanism of viral inhibition by soluble CD4 proteins. We demonstrate biochemically and morphologically that following binding, the soluble CD4 proteins sT4, V1V2,DT, and V1[106] (amino acids 1-369, 1-183, and -2 to 106 of mature CD4) induced the release of gp120 from HIV-1 and HIV-1-infected cells. gp120 release was concentration-, time-, and temperature-dependent. The reaction was biphasic at 37 degrees C and did not take place at 4 degrees C, indicating that binding of soluble CD4 was not sufficient to release gp120. The appearance of free gp120 in the medium after incubation with sT4 correlated with a decrease in envelope glycoprotein spikes on virions and exposure of a previously cryptic epitope near the amino terminus of gp41 on virions and infected cells. The concentration of soluble CD4 proteins needed to induce the release of gp120 from virally infected cells also correlated with those required to inhibit HIV-mediated syncytium formation. These results suggest that soluble CD4 constructs may inactivate HIV by inducing the release of gp120. We propose that HIV envelope-mediated fusion is initiated following rearrangement and/or dissociation of gp120 from the gp120-gp41 complex upon binding to cellular CD4, thus exposing the fusion domain of gp41.  相似文献   

11.
12.
HIV-1 is relatively resistant to antibody-mediated neutralization; however, rare antibodies to the exterior envelope glycoprotein, gp120, and the transmembrane glycoprotein, gp41, can neutralize a broad array of isolates. Two antibodies, 2F5 and 4E10, are directed against the gp41 membrane proximal external region (MPER); however, the kinetic neutralization signature of these antibodies remains unresolved. Previously, we reported that the fully cleaved, cell surface envelope glycoproteins (Env) derived from the primary isolate, JR-FL, are well recognized exclusively by gp120-directed neutralizing ligands and not by nonneutralizing gp120 antibodies. However, the gp120 nonneutralizing antibodies can recognize HIV spikes that are rendered fully cleavage defective by site-directed mutagenesis. Here, we extended such analysis to gp41 neutralizing and nonneutralizing antibodies and, relative to the rules of gp120-specific antibody recognition, we observed marked contrasts. Similar to gp120 recognition, the nonneutralizing gp41 cluster 1 or cluster 2 antibodies bound much more efficiently to cleavage-defective spikes when compared to their recognition of cleaved spikes. In contrast to gp120 neutralizing antibody recognition, the broadly neutralizing gp41 antibodies 2F5 and 4E10, like the nonneutralizing gp41 antibodies, did not efficiently recognize the predominantly cleaved, primary isolate JR-FL spikes. However, if the spikes were rendered cleavage defective, recognition by both the neutralizing and nonneutralizing ligand markedly increased. CD4 interaction with the cleaved spikes markedly increased recognition by most nonneutralizing gp41 antibodies, whereas such treatment had a minimal increase of 2F5 and 4E10 recognition. These data indicate again the profound influence that cleavage imposes on the quaternary packing of primary isolate spikes and have important implications for soluble trimer candidate immunogens.  相似文献   

13.
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.  相似文献   

14.
Sensitive enzyme-linked immunosorbent assay-based methods are described for monitoring the binding of envelope glycoproteins from HIV-1 and HIV-2 to soluble CD4 (sCD4). Each of the assays has different properties suitable for different applications, but all can be used to characterize recombinant antigens and to screen for inhibitors of the gp120-CD4 interaction. Recombinant mammalian gp120 (Celltech) binds to sCD4 with high affinity (3 nM); this interaction is inhibited by sera from HIV-infected individuals and by specific monoclonal and polyclonal antibodies raised to a component of the CD4 binding site on gp120. The affinity for sCD4 of HIV-2 viral gp120 is shown to be approximately 25-fold lower than that of HIV-1 gp120 (viral or recombinant).  相似文献   

15.
We compared four preparations of recombinant HIV-1 envelope glycoprotein: mammalian (Chinese hamster ovary cells) gp120 (Celltech); baculovirus gp120 from American Biotechnologies Inc. (ABT) and from MicroGeneSys (MGS); and baculovirus gp160 (Institute of Virology, Oxford, UK). Each envelope glycoprotein binds to a neutralizing monoclonal antibody (MAb) directed against the V3 loop, confirming the integrity of this type-specific neutralization epitope. MGS gp120 binds abnormally well to a MAb which recognizes an epitope preferentially exposed on denatured gp120. Consistent with this finding, MGS gp120 binds to soluble CD4 (sCD4) with an affinity 50-100-fold lower than that of Celltech gp120. The affinity of Celltech gp120 from sCD4 is 2.3 nM, indistinguishable from that of gp120 extracted from HIV-1 virions. Baculovirus gp120 (ABT) and gp160 also have a high affinity for sCD4. A significant proportion of anti-gp120 antibodies in HIV-positive human sera recognize epitopes that are dependent on the mammalian glycosylation pattern, and a human HIV-positive serum inhibits the binding of mammalian gp120 to sCD4 five- to 10-fold more potently than it inhibits baculovirus gp120 binding to sCD4.  相似文献   

16.
The HIV-1 envelope glycoprotein complex (Env) can be stabilized by the introduction of a disulfide bond between the gp120 and gp41 subunits. The resulting protein is monomeric, but trimerization can be improved by the introduction of a single helix-breaking residue at the conserved Ile559 site in the N-terminal heptad repeat region of gp41. To provide more insight into how such a substitution in gp41 affects Env structure and function, we evaluated the effect on the wild-type Env in the context of replicating virus. The Ile559Gly and Ile559Pro mutations adversely affect Env biosynthesis and Env incorporation into virions. Biophysical studies show that the Ile559Pro mutation essentially disrupts the folding of a recombinant gp41 ectodomain core into a six-helix bundle structure. Viruses containing the Ile559Gly and Ile559Pro substitutions replicate poorly, but an evolutionary route is described that restores replication competence. In the escape virus, which contains a Pro559Leu first-site pseudoreversion, the local helical structure and, as a consequence, Env biosynthesis and function are restored.  相似文献   

17.
Conformational changes in HIV-1 envelope glycoproteins, gp120 and gp41, is a dynamic process essential for HIV-1 entry. Here we show that a small molecule HIV-1 entry inhibitor, IC9564, induces a conformational change in gp120. The conformational change in gp120 is evidenced by a significant increase in the binding of a conformational monoclonal antibody 17b. As a result of the conformational effect, IC9564 significantly enhances the neutralizing activity of 17b. Unlike CD4, IC9564 does not trigger conformational changes in gp41. In fact, IC9564 inhibits CD4-induced conformational changes in gp41. Thus, IC9564 exploits the dynamic nature of gp120 by inducing a nonproductive gp120 conformation that is not able to trigger a conformational change in gp41 for membrane fusion.  相似文献   

18.
19.
To study the membrane actions of various domains of HIV-1 glycoprotein 41,000 (gp41), synthetic peptides were prepared corresponding to the N-terminal fusion region (FP; gp41 residues 519-541), the nearby N-leucine zipper domain (N-peptides; DP-107; gp41 residues 560-597), the C-leucine zipper domain (C-peptides; DP-178; gp41 residues 645-680), and the viral envelope adjacent domain that partially overlaps DP-178 (Pre-TM; gp41 residues 671-690). With erythrocytes, FP, DP-107, and Pre-TM induced hemolysis and cell aggregation; the order for hemolytic activity was Pre-TM > FP > DP-107, but each was equally effective in aggregating cells at the highest peptide concentrations tested. DP-178 produced neither hemolysis nor aggregation, but efficiently reduced FP-, DP-107-, and Pre-TM-induced membrane actions. Fourier transform infrared spectroscopy indicated that the membrane perturbations of Pre-TM, as well as the ability of DP-178 to block membrane activities of other gp41 domains, are dependent on Pre-TM and DP-178 each maintaining helical conformations and tryptophans at residues 673, 677, and 679. These results suggest that the corresponding N-terminal fusion, N-leucine zipper, and viral membrane-adjacent regions of HIV-1 gp41 may similarly promote key membrane perturbations underlying the merging of the viral envelope with the cell surface. Further, the antiviral mechanism of exogenous DP-178 (clinically approved enfuvirtide) may be partially explained by its coordinate inhibition of the fusogenic actions of the FP, DP-107, and Pre-TM regions of gp41.  相似文献   

20.
OBJECTIVE: To evaluate the presence of IgA directed to the CD4-binding domain of gp120 and to a conserved region of gp41 (the Kennedy epitope) in serum and parotid saliva of HIV-1-seropositive patients. METHODS: IgA were separated from IgG by anion-exchange chromatography and protein G treatment. The reactivity of IgA was tested against peptides and fusion proteins of the maltose-binding protein (MBP) and the CD4-binding site (MBP24) and MBP and the Kennedy epitope (MBP42). The capacity of serum and saliva IgA to interfere with the gp120-soluble CD4 (sCD4) interaction was examined. IgA were also purified by affinity chromatography using the MBP proteins adsorbed to a resin. RESULTS: Peptides representing the CD4-binding domain and the Kennedy epitope were recognized by serum and saliva IgA of HIV-1-seropositive patients. Of the sera and saliva samples tested, 6/26 serum IgA and 5/25 saliva IgA inhibited the gp120-sCD4 interaction by approximately 50%. The gp120-sCD4 interaction was inhibited by MBP24 affinity-purified IgA but not by MBP42 affinity-purified IgA. CONCLUSION: Immunogens capable of eliciting IgA antibodies that inhibit gp120-CD4 binding might be efficiently used in vaccine to prevent mucosal transmission of HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号