首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
BACKGROUND: Neonatal ventral hippocampal (NVH) lesions in rats induce behavioral abnormalities at adulthood thought to simulate some aspects of the positive, negative, and cognitive deficits classically observed in schizophrenic patients. Such lesions induce a postpubertal emergence of prepulse inhibition (PPI) deficits of the startle reflex reminiscent of the sensorimotor gating deficits observed in a majority of schizophrenic patients. To study the potential involvement of the glycinergic neurotransmission in such deficits, we investigated the capacity of glycine (an obligatory N-methyl-D-aspartate [NMDA] receptor co-agonist) and ORG 24598 (a selective glycine transporter 1 inhibitor) to reverse NVH lesion-induced PPI deficits in rats.METHODS: Ibotenic acid was injected bilaterally into the ventral hippocampus of 7-day-old pups. Prepulse inhibition of the startle reflex was measured at adulthood. RESULTS: Glycine (.8 and 1.6 g/kg IP) and ORG 24598 (10 mg/kg IP) fully and partially reversed lesion-induced PPI deficits, respectively. CONCLUSIONS:These findings confirm that an impaired glutamatergic neurotransmission may be responsible for PPI deficits exhibited by NVH-lesioned rats and support the hypoglutamatergic hypothesis of schizophrenia. They also suggest that drugs acting either directly at the NMDA receptor glycine site or indirectly on the glycine transporter 1 could offer promising targets for the development of novel therapies for schizophrenia.  相似文献   

2.
Prepulse inhibition of acoustic or tactile startle (PPI), a form of sensorimotor gating, occurs when a weak prestimulus precedes a startling stimulus and inhibits the startle response. Studies of PPI have revealed that schizophrenic patients exhibit a deficit in this form of sensorimotor gating. In rats, PPI is blocked by dopamine agonists such as apomorphine or quinpirole, effects that are antagonized by haloperidol. Phencyclidine (PCP) has been suggested as a possible model psychotogen and produces a deficit in PPI that is similar to what is observed in schizophrenic patients. Dizocilpine is an anticonvulsant drug that, like PCP, is a noncompetitive antagonist of N-methyl-D-aspartate (NMDA)-induced excitations in brain and also disrupts PPI. In the present study, PPI of acoustic and tactile startle was measured in male Sprague-Dawley rats after injections of 5.0 mg/kg PCP with or without pretreatment with 0.02 or 0.1 mg/kg haloperidol, or with 0.5 mg/kg dizocilpine with or without pretreatment with 0.1 mg/kg haloperidol. The 0.1 mg/kg dose of haloperidol blocks the effects of apomorphine or quinpirole on PPI in rats. Startle was elicited by noise bursts at 105 or 120 dB or by air-puffs (tactile) and was inhibited by 75 or 85 dB prepulse stimuli presented 100 msec before the startle stimuli. The different eliciting stimuli produced different levels of startle in both control and drug-treated animals. Both NMDA antagonists significantly reduced the amount of PPI induced by the 75 dB prestimulus, independently of the level of startle responses elicited by the startle stimuli. Haloperidol did not block the disruption of PPI induced by either PCP or dizocilpine. In addition, PCP was unable to block PPI when the 85 rather than the 75 dB prepulse was used to inhibit either acoustic or tactile startle. These results confirm that putative NMDA antagonists inhibit sensorimotor gating in rats and suggest that these effects are not mediated by the activation of central dopamine systems.  相似文献   

3.
The present electrophysiological study shows that manipulation with endogenous brain kynurenic acid (KYNA) is able to affect the response of central noradrenergic neurons to nicotine. Previous studies have shown that systemically administered nicotine in low doses is associated with a marked, but short-lasting increase in the firing rate of rat noradrenergic neurons in the locus coeruleus (LC). This action of nicotine is of peripheral origin and finally mediated via a release of glutamate within the LC. KYNA is an endogenous glutamate receptor antagonist, which shows an uneven distribution in human brain. Previous studies have shown that a potent inhibitor of kynurenine 3-hydroxylase, PNU 156561A, is able to dose-dependently increase the levels of KYNA in brain. Anesthetized rats were given PNU 156561A in a dose that caused a 5-fold increase in brain KYNA levels after 3-6 hours (40 mg/kg, i.v. ). This treatment was found to abolish the increase in firing rate of LC neurons induced by nicotine (25-200 microg/kg, i.v.). The results of the present study show that an increased concentration of endogenous brain KYNA is able to inhibit the activation of central noradrenergic neurons by nicotine. In addition, our results highlight the role of endogenous KYNA in brain as a potentially important modulator of brain glutamatergic responses.  相似文献   

4.
BACKGROUND: Secretin is a "gut-brain" peptide whose neural function is as yet poorly understood. Several clinical studies have reported modestly increased social interaction in autistic children following intravenous secretin administration. Very recently secretin also was administered to schizophrenic patients and found to increase social interaction in some individuals. METHODS: In light of this finding, we assessed the ability of secretin to reverse phencyclidine- (PCP) induced impairment in prepulse inhibition (PPI), a leading animal model of sensorimotor gating deficits in schizophrenia. RESULTS: Similar to atypical antipsychotics, secretin (1, 3, 10, 30, and 100 microg/kg) partially and dose-dependently reversed the PCP-induced deficit in PPI without significantly affecting baseline startle when administered intraperitoneally (IP) 10 minutes following IP administration of PCP (3 mg/kg). CONCLUSIONS: This finding may be relevant to observations of antipsychotic efficacy of secretin in schizophrenic patients as well as our previous report that systemically administered secretin is capable of modulating conditioned fear, even at quite low doses.  相似文献   

5.
Objectives : Alpha‐2 adrenergic receptors target several behavioral functions. These receptors may connect with the brain pathways mediating sensorimotor gating system that associate with psychoses, and the literature that investigate the relationship between alpha‐2 receptors and sensorimotor gating system is very limited and some results are controversial. Thus, we aimed to investigate the role of alpha‐2 receptors on prepulse inhibition (PPI) of acoustic startle reflex which is a measure of sensorimotor gating. Experimental Design : Adult male Wistar rats were subjects. PPI was measured as the per cent inhibition of the startle reflex produced by a startling pulse stimulus. The average PPI levels were used in the further analyses. Clonidine (0.03–1 mg/kg), an agonist of alpha‐2 receptors, idazoxan (10 mg/kg), an antagonist alpha‐2 receptors, and saline were injected to rats intraperitoneally. PPI was evaluated at two different startle intensity levels (78 and 86 dB, respectively). Principal Observations : Treatments produced some significant changes on PPI of startle reflex at all two levels of startle intensity. While clonidine (0.06, 0.25, 0.5, and 1 mg/kg) disrupted significantly PPI, idazoxan (10 mg/kg) did not produce any significant effect on PPI. However, pretreatment with idazoxan reversed significantly clonidine‐induced disruption of PPI. Neither idazoxan (10 mg/kg) nor clonidine (1 mg/kg) produces any significant change on locomotor activity in naive rats. Conclusion : Because idazoxan and clonidine also act through imidazoline receptors, our results suggest that alpha‐2 and/or imidazoline receptors are associated with PPI of acoustic startle reflex in rats. Stimulation of these receptors may cause sensorimotor gating disturbances.  相似文献   

6.
Kiss C  Shepard PD  Bari F  Schwarcz R 《Brain research》2004,1002(1-2):129-135
Cortical spreading depression (CSD) is characterized by slowly propagating neuronal and astrocytic depolarization, resulting in transient, heightened resistance to subsequent neuronal injury. This study was designed to examine a possible role of the endogenous neuroprotective agent kynurenate (KYNA) in this phenomenon. Unilateral, consecutive CSDs, induced by topical application of 2 M KCl to the cortical surface of adult male rats, resulted in an ipsilateral increase (201-222% compared to controls) in KYNA levels, which was observed in the frontal, parietal and occipital cortex but not in other brain areas. This effect peaked on day 3 after CSD, and KYNA levels returned to normal on day 7. In separate rats, the lesion caused by an intracortical microinjection of the indirect excitotoxin malonate (500 nmol/0.5 microl) on days 1, 3 or 7 after CSD was reduced by 56-75% in the ipsilateral hemisphere. In normal rats, single or multiple injections of the kynurenine 3-hydroxylase inhibitor 4,5-dichlorobenzoylalanine (PNU 156561; 50 mg/kg, i.p.), which results in selective increases in brain KYNA levels, failed to protect cortical neurons against a focal malonate injection. Taken together, these findings indicate that the observed increase in brain KYNA is not responsible for CSD-induced tolerance to malonate-induced neuronal damage.  相似文献   

7.
A combination of genetic and environmental factors contributes to schizophrenia (SZ), a catastrophic psychiatric disorder with a hypothesized neurodevelopmental origin. Increases in the brain levels of the tryptophan metabolite kynurenic acid (KYNA), an endogenous antagonist of α7 nicotinic acetylcholine and NMDA receptors, have been implicated specifically in the cognitive deficits seen in persons with SZ. Here we evaluated this role of KYNA by adding the KYNA precursor kynurenine (100 mg/day) to chow fed to pregnant rat dams from embryonic day (ED) 15 to ED 22 (control: ECon; kynurenine treated: EKyn). Upon termination of the treatment, all rats received normal rodent chow until the animals were evaluated in adulthood (postnatal days 56–85). EKyn treatment resulted in increased extracellular KYNA and reduced extracellular glutamate in the hippocampus, measured by in vivo microdialysis, and caused impairments in hippocampus‐dependent learning in adult rats. Acute administration of BFF816, a systemically active inhibitor of kynurenine aminotransferase II (KAT II), the major KYNA‐synthesizing enzyme in the brain, normalized neurochemistry and prevented contextual memory deficits in adult EKyn animals. Collectively, these results demonstrate that acute inhibition of KYNA neosynthesis can overcome cognitive impairments that arise as a consequence of elevated brain KYNA in early brain development.  相似文献   

8.
OBJECTIVE: The hypo-glutamatergic hypothesis of schizophrenia is not only based on the phencyclidine-(PCP)-induced psychosis in mentally healthy humans but also on studies with schizophrenic patients showing deficits in post mortem hippocampal N-methyl-d-aspartate (NMDA) receptor gene expression and deficits in prepulse inhibition. The inbred mouse strains CPB-K and BALB/cJ display considerable differences in hippocampal NMDA receptor densities. Therefore, our working hypothesis was based on the assumption that the CPB-K mouse strain, which has a lower NMDA receptor density in hippocampal CA1, might be a possible animal model for schizophrenia. For this purpose, the inbred mouse strains CPB-K and BALB/cJ were compared by using a sensorimotor gating paradigm. METHODS: Acoustic startle response (ASR) and prepulse inhibition (PPI) of the startle reflex were measured. RESULTS: CPB-K mice displayed a significantly higher ASR and a significantly lower magnitude of PPI as compared to BALB/cJ mice. The test-retest reliability was approved for PPI in both mouse strains, which was performed in repeated sessions over 13 weeks. In summary, our working hypothesis was confirmed that lower levels of hippocampal NMDA receptor densities correspond to lower sensorimotor gating in CPB-K mice. Based on this finding, further experiments using different behavioral paradigms have to be carried out to establish the CPB-K mouse strain as an animal model of schizophrenia.  相似文献   

9.
Epidemiological studies suggest that prenatal malnutrition increases the risk of developing schizophrenia. Animal models indicate that prenatal protein deprivation (PPD) affects many aspects of adult brain function. We tested the hypothesis that PPD in rats would alter prepulse inhibition (PPI), which is an operational measure of sensorimotor gating that is deficient in schizophrenia patients. Additionally, we examined dopaminergic and glutaminergic receptor binding in the striatum and hippocampus, which have been suggested to play a role in the etiology of schizophrenia. Rat dams were fed normal (25%) or low (6%) protein diets beginning 5 weeks prior to, and throughout pregnancy. The pups were tested at postnatal days (PND) 35 and 56 for PPI. Striatal and hippocampal NMDA receptor, and striatal dopamine receptor binding were quantified post-mortem in a subset of these rats. Female rats exposed to PPD had reduced levels of PPI at PND 56, but not PND 35, suggesting the emergence of a sensorimotor gating deficit in early adulthood. Striatal NMDA receptor binding was increased in PPD females. A decrease in initial startle response (SR) was also observed in all PPD rats relative to control rats. These results suggest that PPD causes age- and sex-dependent decreases in PPI and increases in NMDA receptor binding. This animal model may be useful for the investigation of neurodevelopmental changes that are associated with schizophrenia in humans.  相似文献   

10.
Prepulse inhibition (PPI) of the startle reflex is an operational measure of sensorimotor gating. The dopamine receptor agonist-mediated disruption of PPI in rats is widely used as a model of the sensorimotor gating deficiencies demonstrated in schizophrenia patients. As a possible tool for validation of a pig model of psychosis, we wished to verify the existence of PPI in landrace pigs and investigate the potential disruption of PPI by d-amphetamine (AMPH) in these animals. PPI of the acoustic startle reflex and its potential disruption by AMPH were investigated using three doses 0.5-1.5mg/kg with a paradigm including two levels of prepulses (82 and 88dB) and a prepulse (PP) interval of 60 and 120ms. We found an average PPI of the startle reflex of 25.6% and both of the investigated PP intensities and PP intervals were equally effective in this PP-inhibitive paradigm. AMPH significantly disrupted PPI and, in spite of only the 0.5mg/kg dose proved statistically significant, the results indicate this to be dose-related. We have demonstrated the phenomenon of PPI of the startle reflex in landrace pigs and its disruption by d-amphetamine. Studies of sensorimotor gating defects could be a valuable additional tool in assessing pig models of neuropsychiatric disorders.  相似文献   

11.
The present study tested the effects of the typical neuroleptic haloperidol and an atypical neuroleptic clozapine on ventral hippocampus stimulation-induced disruption of prepulse inhibition (PPI). Bilateral infusions of 0.7 microg NMDA into the ventral hippocampus disrupted PPI. The impairment of PPI following the infusion was completely normalized 24 h after the infusion. This disruption of PPI was antagonized by clozapine (5.0 mg/kg), but not by haloperidol (0.2 mg/kg). Since disruption of PPI is considered to constitute an animal model of schizophrenia that is related to the deficit of sensorimotor gating observed in schizophrenic patients, these results suggest that PPI disruption induced by intra-ventral hippocampal infusions of NMDA may serve as an animal model for the selective detection of atypical antipsychotics.  相似文献   

12.
BACKGROUND: Deficits in sensorimotor gating as assessed by prepulse inhibition (PPI) and habituation of the human startle response have been noted in schizophrenia and other patients with known dysfunction in the brain substrates that regulate PPI. During acute mania, bipolar disorder (BD) and schizophrenia patients present with symptoms that are similar. To determine if these clinical similarities extend to neurophysiologic domains, PPI and startle habituation were assessed in BD patients with acute psychotic mania and compared with a sample of acutely psychotic schizophrenia patients and a normal comparison group. METHODS: Fifteen BD patients, 16 schizophrenia patients, and 17 control subjects were assessed on PPI and startle habituation. RESULTS: The BD patients had significantly lower PPI than did the control subjects in two of the three PPI conditions (60- and 120-msec interstimulus intervals) as well as less startle habituation. The BD patients did not statistically differ from the schizophrenia patients in PPI or habituation. CONCLUSIONS: These findings of sensorimotor gating deficits among bipolar disorder patients are consistent with other findings using different measures of information processing and suggest that the neurobiological substrates underlying sensorimotor gating may be dysregulated during acute manic and psychotic states.  相似文献   

13.
Genetic and post mortem evidence has implicated the α7 neuronal nicotinic receptor (NNR) in the etiology of schizophrenia and related disorders. In schizophrenia, enhanced subcortical dopamine (DA) correlates with positive and cognitive of the disease, including impairments in sensorimotor gating. We measured the levels of extracellular DA and DA metabolites during an acoustic test session of prepulse inhibition (PPI) of the startle response, a measure of sensorimotor gating, by microdialysis and HPLC-EC in a transgenic mouse model of schizophrenia. In th-fgfr1(tk-) mice, blockade of fibroblast growth factor receptor 1 (FGFR1) signaling during development in catecholaminergic neurons results in reduced size and density of midbrain DA neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). These mice displayed reduced PPI and enhanced startle response relative to control mice as well as a potentiation of DA release in the dorsal striatum during a 30 minute PPI test session. Acute administration of a partial α7 NNR agonist TC-7020 (1.0 mg/kg) normalized PPI and startle deficits and attenuated increases of DA release during acoustic PPI testing. These results provide direct evidence of elevated striatal dopaminergic transmission with impaired sensorimotor gating that may underlie cognitive and positive symptoms and motor deficits in schizophrenia and related disorders. Also, systemic targeting of alpha7 NNRs may ameliorate these deficits by functionally suppressing striatal DA activity.  相似文献   

14.
In order to develop a model of persistent sensorimotor gating that did not require acute NMDA (N-methyl-D-aspartate) receptor blockade, adult female Sprague-Dawley rats were pre-treated with N-methyl-scopolamine (1 mg/kg s.c.), then administered MK-801 (dizocilpine, 5 mg/kg i.p.) along with two separate doses (5 mg/kg) of pilocarpine. The drug regimen was repeated four and eight days later. Controls received saline in lieu of any drug. Ten days after the last neurotoxic treatment, rats had a significant impairment (reduction) in pre-pulse inhibition (PPI). Each treatment group (neurotoxic treated and control) was then divided into two groups for treatment with saline or 0.5 mg/kg nicotine, administered s.c. twice daily from days 10 to 23. The rats were tested for sensorimotor gating on days 17 and 22 shortly after the morning nicotine administration. Nicotine did not affect the PPI in control animals. On day 17, PPI impairment was sustained in neurotoxically treated rats, regardless of saline or nicotine treatment. On day 22, however, the effect of neurotoxic treatment on PPI was totally absent in saline treated rats, whereas in nicotine treated rats, PPI impairment was still evident. Combination of nicotine and neurotoxic treatment also caused an up-regulation of high affinity nicotinic receptors in the cortex and the thalamus and apparent normalization of low affinity nicotinic receptors in the hippocampus. The findings indicate that muscarinic activation, in conjunction with neurotoxic NMDA receptor antagonism, produces relatively long-term impairment in auditory gating, a result relevant to modeling clinical observations of schizophrenia-associated symptoms. Contrary to expectation, nicotine administration in this model resulted in further impairment rather than amelioration of PPI. The results suggest a sustainable model of PPI impairment and possible role of nicotinic receptors in selective brain regions in this behavior.  相似文献   

15.
The substantia nigra pars reticulata (SNR) is one of the major output nuclei of the basal ganglia. It connects the dorsal and ventral striatum with the thalamus, superior colliculus and pontomedullary brainstem. The SNR is therefore in a strategic position to regulate sensorimotor behavior. We here assessed the effects of SNR lesions on prepulse inhibition (PPI) of the acoustic startle response (ASR), stereotypy and locomotion in drug-free rats, as well as after systemic administration of the dopamine agonist DL-amphetamine (2 mg/kg), and the NMDA receptor antagonists dizocilpine (0.16 mg/kg) and CGP 40116 (2 mg/kg). SNR lesions reduced PPI, enhanced spontaneous sniffing and potentiated the locomotor stimulation by dizocilpine and CGP 40116. PPI was impaired by dizocilpine and CGP 40116 in controls. The ASR was enhanced in controls by dizocilpine and amphetamine. SNR lesions prevented the enhancement of the ASR by amphetamine. A second experiment tested the hypothesis that the SNR mediates PPI via a GABAergic inhibition of the startle pathway. Infusion of the GABA(B) antagonist phaclofen but not the GABA(A) antagonist picrotoxin into the caudal pontine reticular nucleus reduced PPI. Hence, lesion of the SNR reduces sensorimotor gating possibly by elimination of a nigroreticular GABAergic projection interacting with GABA(B) receptors. Moreover, destruction of the SNR enhances the motor stimulatory effects of amphetamine and of the NMDA antagonists dizocilpine and CGP 40116. We conclude that the SNR exerts a tonic GABAergic inhibition on sensorimotor behavior that is regulated by the dorsal and the ventral striatum.  相似文献   

16.
Disturbed cortical development is implicated in some psychiatric diseases, e.g. in schizophrenia. Additionally, N-methyl-d-aspartate (NMDA) receptor antagonists like ketamine or phencyclidine have been reported to exacerbate schizophrenic symptoms. We here investigated the effects of neonatal entorhinal cortex (EC) lesions on adult rat behavior before and after repeated high-dose treatment with the NMDA antagonist dizocilpine, in order to combine these etiopathogenetical factors in an animal model. Bilateral neonatal (postnatal day 7) lesions were induced by microinjection of ibotenic acid (1.3 microg/0.2 microl PBS) into the EC. Naive and sham-lesioned rats served as controls. Adult rats were tested for behavioral flexibility on a cross maze, for locomotor activity in the open field and for sensorimotor gating using prepulse inhibition (PPI) of startle. Rats were then treated with dizocilpine (0.5 mg/kg b.i.d. for 7 days) and retested 1 week after withdrawal using the same behavioral tests as before. PPI was additionally measured after acute low-dose challenge with dizocilpine (0.15 mg/kg). EC lesions reduced behavioral flexibility as shown by impaired switching between spatial (allocentric) and non-spatial (egocentric) maze strategies. High-dose dizocilpine treatment disturbed switching to the egocentric strategy in all groups, which added to the effect of EC lesions. Neonatal EC lesions did not alter locomotor activity or PPI, but high-dose dizocilpine treatment reduced motor activity of all groups without changing PPI. The combination of neonatal EC lesions and adult dizocilpine treatment does not lead to super-additive effects on behavior. However, both treatments may serve to model certain aspects of psychiatric symptoms.  相似文献   

17.
The aim of these studies was to examine whether amphetamine-induced sensitization in rats could be used as an animal model to study the basis of certain abnormalities seen in schizophrenia. Specifically, these experiments examined whether rats subjected to a sensitizing regimen of amphetamine would show the sensorimotor gating and greater amphetamine-induced displacement of radio-raclopride binding deficit that is observed in schizophrenia. In the first experiment, animals were divided into two groups with each rat receiving an intraperitoneal injection of amphetamine (AMPH) or saline (SAL) (1 ml/kg) three times per week for 3 weeks for a total of nine injections. AMPH dose was increased weekly from 1 mg/kg in the first week to 3 mg/kg in the third. Twenty-two days after the last injection, prepulse inhibition (PPI) of the acoustic startle response was tested. In addition, rats were tested for the effects of a challenge dose of 0.5 mg/kg AMPH on locomotor activity and [3H]raclopride (RAC) binding potential (BP) in the striatum. The tests for PPI confirmed that sensorimotor gating was disrupted in the AMPH-induced sensitized-state rats at baseline. The AMPH-sensitized rats also exhibited higher locomotor response to AMPH and a lower binding of striatal [3H]raclopride when challenged with the drug. The results were replicated and even more pronounced in rats that were treated with AMPH for 5 weeks, with doses ranging from 1mg/kg in the first week to 5 mg/kg in the fifth. These sensorimotor gating deficits and neurochemical (greater AMPH-induced displacement of radio-raclopride binding) abnormalities show similarities with the pathophysiology of schizophrenia and suggest that the AMPH-sensitized-state rats could be used to model certain aspects of schizophrenia.  相似文献   

18.
Summary. Acute elevation of the endogenous NMDA-receptor antagonist kynurenic acid (KYNA) is associated with an increased neuronal activity of rat ventral tegmental area (VTA) dopamine (DA) neurons and disruption in prepulse inhibition (PPI). In the present study, the effects of subchronic exposure to kynurenine and probenecid (20 mg/kg/day and 10 mg/kg/day, respectively for 14 days), aiming at increasing brain KYNA turnover, on rat VTA dopaminergic firing and on PPI were investigated. This treatment increased neuronal firing of VTA DA neurons, changed the response of these neurons to systemically administered nicotine (3–400  g/kg, i.v.) and tended to disrupt PPI. Present results show that the effect on firing of VTA DA neurons by acutely elevated levels of brain KYNA also persists following subchronic exposure. In addition, no adaptive changes seem to occur with regard to the electrophysiological effects of KYNA on VTA DA neurons following subchronic treatment with kynurenine and probenecid.  相似文献   

19.
OBJECTIVES: Deficits in prepulse inhibition (PPI), a measure of sensorimotor gating, have been noted in psychopathologies including schizophrenia and adult bipolar disorder (BPD). Sensorimotor gating deficits may contribute to the emotional and behavioral dysregulation characteristic of pediatric BPD. The current study investigated possible PPI deficits in children with BPD. METHODS: Sixteen children with BPD (medicated, euthymic and non-psychotic) were compared with 13 control subjects on the magnitude of startle habituation, startle-alone response, and inhibition of startle following a 60 or 120-ms prepulse. RESULTS: Both groups displayed startle inhibition by a prepulse, with no significant between-group differences on the magnitude of inhibition after the 60- or 120-ms prepulse. In addition, there were no between-group differences on habituation or baseline startle response. PPI level was not significantly correlated with mood symptoms and did not differ based on comorbid attention deficit hyperactivity disorder. CONCLUSIONS: A lack of PPI deficits in our pediatric bipolar sample contrasts with previous results in adult bipolar and schizophrenic samples. These negative results may reflect the fact that our sample was medicated and was neither acutely manic nor psychotic. Deficits in sensorimotor gating may not be implicated in the emotional and behavioral dysregulation in pediatric BPD.  相似文献   

20.
BACKGROUND: Brattleboro (BB) rats are Long Evans rats with a single base pair genetic mutation that impairs their ability to synthesize vasopressin, a neurotransmitter and neurohormone. Brattleboro rats are known to have deficits in memory, emotional reactivity, motivation, attention, and social recognition, abnormalities associated with schizophrenia. Prepulse inhibition (PPI) of the acoustic startle reflex (ASR) is a measure of sensorimotor gating. Prepulse inhibition is deficient in unmedicated schizophrenia patients, and PPI deficits in schizophrenia may be related to the cognitive and behavioral abnormalities associated with this disorder. In this study we tested the hypothesis that BB rats exhibit PPI deficits analogous to those exhibited by schizophrenia patients. METHODS: In one experiment, BB rats homozygous (BB-Ho) or heterozygous (BB-Hz) for the mutated vasopressin gene were compared with normal Long Evans (LE) rats from the same breeder source. In separate studies, BB-Ho and LE rats were treated with acute or subchronic (22 days) injections of haloperidol. RESULTS: Both BB-Ho and BB-Hz rats had significantly higher ASR and significantly lower PPI compared with LE rats, with BB-Ho rats exhibiting the lowest PPI among all three genotypes. Furthermore, a single subcutaneous (SC) injection of haloperidol (0.5 mg/kg) did not reverse the PPI deficits in BB rats. In contrast, daily SC administration of haloperidol for 22 days reversed PPI deficits in BB rats. CONCLUSIONS: These results suggest that PPI deficient BB rats may be an important genetic model of PPI deficits, which may help elucidate genetic, pharmacologic, and pathophysiologic mechanisms underlying PPI deficits and the effects of antipsychotic drugs on PPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号