首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The enolase protein of the human malarial parasite Plasmodium falciparum has recently been characterized. Apart from its glycolytic function, enolase has also been shown to possess antigenic properties and to be present on the cell wall of certain invasive organisms, such as Candida albicans. In order to assess whether enolase of P. falciparum is also antigenic, sera from residents of a region of Eastern India where malaria is endemic were tested against the recombinant P. falciparum enolase (r-Pfen) protein. About 96% of immune adult sera samples reacted with r-Pfen over and above the seronegative controls. Rabbit anti-r-Pfen antibodies inhibited the growth of in vitro cultures of P. falciparum. Mice immunized with r-Pfen showed protection against a challenge with the 17XL lethal strain of the mouse malarial parasite Plasmodium yoelii. The antibodies raised against r-Pfen were specific for Plasmodium and did not react to the host tissues. Immunofluorescence as well as electron microscopic examinations revealed localization of the enolase protein on the merozoite cell surface. These observations establish malaria enolase to be a potential protective antigen.  相似文献   

3.
The energy metabolism of the blood stage form of the human malaria parasite Plasmodium falciparum is adapted to the host cell. Like erythrocytes, P. falciparum merozoites lack a functional citric acid cycle. Generation of ATP depends therefore fully on the glycolytic pathway. Aldolase is a key enzyme of this pathway and a high degree of sequence diversity between parasite and host makes it a potential drug target. We have expressed the enzyme in its tetrameric form in Escherichia coli and the catalytic constants Vmax and Km of the recombinant enzyme correspond to the constants of parasite-derived aldolase. Rabbit antibodies against the recombinant P. falciparum aldolase inhibit the natural enzyme and no cross-reaction with human aldolase is detectable. Both the recombinant and the natural protein bind to the cytosolic domain of the band 3 membrane protein in vitro. A 19-residue synthetic peptide corresponding to the sequence of the binding domain of band 3 is an inhibitor when included in the binding assay. In addition, this peptide inhibits the catalytic activity of recombinant P. falciparum aldolase when assayed in a buffer system devoid of anions such as chloride or phosphate. The band 3-derived peptides compete with the aldolase substrate fructose-1,6-diphosphate for binding, suggesting that both reagents have a high affinity for the substrate pocket. A similar sequence motif exists in P. falciparum actin II. A 19-residue peptide corresponding to this sequence is also an inhibitor which could suggest that the P. falciparum aldolase can associate with the cytoskeleton of the parasite or of the host.  相似文献   

4.
A major obstacle in the global effort to control malaria is the paucity of anti-malarial drugs. This is compounded by the continuing emergence and spread of resistance to old and new anti-malarial drugs in the malarial parasites. Here we describe the anti-malarial effect of phosphorothioate antisense (AS) oligodeoxynucleotides (ODNs) targeting the aldolase enzyme of Plasmodium falciparum, using the asexual blood stages of the parasite grown in vitro. The blood stages of P. falciparum depend almost entirely on the energy produced by their own glycolysis. Aldolase, the fourth enzyme of the glycolytic pathway, is highly upregulated during the malarial 48-h life cycle. We found that the mRNA of this enzyme can be inhibited, in a sequence specific manner, using AS-ODN to the splice sites on the pre-mRNA of malarial aldolase. At the enzyme level, both specific AS-ODNs for the splice sites, as well as for the translation initiation site on mature mRNA, can inhibit aldolase enzyme activity within the trophozoites of P. falciparum. Furthermore, this downregulation of the malarial aldolase results in a reduction in the production of ATP within the parasite. Finally, the treatment reduces parasitemia. In summary, AS-ODNs targeting the aldolase gene of P. falciparum can interfere with the blood-stage life cycle of this parasite in vitro by inhibiting the expression of the enzyme aldolase which results in decreased malarial glycolysis and energy production. Thus, we conclude that blockade of the expression of malarial glycolytic enzymes using specific AS-ODNs has the potential of a new anti-malarial strategy.  相似文献   

5.
Sequence and structure of a Plasmodium falciparum telomere   总被引:13,自引:0,他引:13  
We have isolated a 3 kb cloned DNA fragment which originated from a telomere of the human malaria parasite Plasmodium falciparum. The complete nucleotide sequence of the clone is presented. The clone is composed of several distinct structural regions which vary in their sequence complexity. Using oligonucleotide probes for the different structural regions, we analyzed the genetic conservation of sequence organization near telomeres in various strains of P. falciparum. Our results suggest that rapid sequence variability is generated in the vicinity of chromosome ends.  相似文献   

6.
7.
The high molecular mass protein complex (RhopH) in the rhoptries of the malaria parasite consists of three distinct polypeptides with estimated sizes in Plasmodium falciparum of 155kDa (PfRhopH1), 140kDa (PfRhopH2) and 110kDa (PfRhopH3). Using a number of reagents, including a new mAb 4E10 that is specific for the PfRhopH complex, it was shown that the RhopH complex is synthesised during schizogony and transferred intact to the ring stage in newly invaded erythrocytes. The genes encoding RhopH1 and RhopH3 have already been identified and characterised in both P. falciparum and Plasmodium yoelii. In this report, we describe the identification of the gene for RhopH2 in both these parasite species. Peptide sequences were obtained from purified RhopH2 proteins and used to generate oligonucleotide primers and search malaria sequence databases. In a parallel approach, mAb 4E10 was used to identify a clone coding for RhopH2 from a P. falciparum cDNA library. The sequences of both P. falciparum and P. yoelii genes for RhopH2 were completed and compared. They both contain nine introns and there is a high degree of similarity between the deduced amino acid sequences of the two proteins. The P. falciparum gene is a single copy gene located on chromosome 9, and is transcribed in schizonts.  相似文献   

8.
9.
The extent to which duplications and deletions occur in the Plasmodium falciparum genome, outside of the subtelomeres, and their contribution to the virulence of the malaria parasite is not known. Here we show the presence of multiple genome wide copy number polymorphisms (CNPs) covering 82 genes, the most extensive spanning a cumulative size of 110kilobases. CNPs were identified in both laboratory strains and fresh clinical isolates using a 70-mer oligonucleotide microarray in conjunction with fluorescent in situ hybridizations and real-time quantitative PCR. The CNPs were found on all chromosomes except on chromosomes 6 and 8 and involved a total of 50 genes with increased copy numbers and 32 genes with decreased copy numbers relative to the 3D7 parasite. The genes, amplified in up to six copies, encode molecules involved in cell cycle regulation, cell division, drug resistance, erythrocyte invasion, sexual differentiation and unknown functions. These together with previous findings, suggest that the malaria parasite employs gene duplications and deletions as general strategies to enhance its survival and spread. Further analysis of the impact of discovered genetic differences and the underlying mechanisms is likely to generate a better understanding of the biology and the virulence of the malaria parasite.  相似文献   

10.
Structure and expression of the Plasmodium falciparum SERA gene   总被引:8,自引:0,他引:8  
Plasmodium falciparum, strain FCR3, genomic DNA that encodes the SERA gene of P. falciparum was isolated and sequenced. The SERA gene coding region was interrupted by 3 introns, the largest number observed, so far, in any Plasmodium gene. Two SERA gene alleles, allele I and allele II, were identified in the FCR3 strain, while only allele I was found in the Honduras-1 strain. Allele I mRNA was abundant in vivo during the late trophozoite and schizont stages. Allele II mRNA was either not expressed, or it was labile.  相似文献   

11.
12.
For malaria transmission, Plasmodium parasites must successfully complete gametocytogenesis in the vertebrate host. Differentiation into mature male or female Plasmodium falciparum gametocytes takes 9-12 days as the parasites pass through five distinct morphologic stages (I-V). To evaluate the signals controlling the initiation of stage- and/or sex-specific expression, reporter constructs containing the 5'-flanking regions (FR) of seven genes with distinct expression patterns through gametogenesis were developed. The regulatory information present in the 5'-FR of each selected gene was found to be sufficient to drive appropriate sex- and stage-specific reporter gene expression. The transformed parasite lines also provide in vivo markers to identify gametocytes at specific stages, including a subpopulation of schizonts that express early gametocyte markers.  相似文献   

13.
We describe and assess the performance of the gene finding program pretty handy annotation tool (Phat) on sequence from the malaria parasite Plasmodium falciparum. Phat is based on a generalized hidden Markov model (GHMM) similar to the models used in GENSCAN, Genie and HMMgene. In a test set of 44 confirmed gene structures Phat achieves nucleotide-level sensitivity and specificity of greater than 95%, performing as well as the other P. falciparum gene finding programs Hexamer and GlimmerM. Phat is particularly useful for P. falciparum and other eukaryotes for which there are few gene finding programs available as it is distributed with code for retraining it on new organisms. Moreover, the full source code is freely available under the GNU General Public License, allowing for users to further develop and customize it.  相似文献   

14.
Primary structure of a Plasmodium falciparum rhoptry antigen.   总被引:8,自引:0,他引:8  
The high-molecular-weight rhoptry complex of Plasmodium falciparum consists of 3 non-covalently associated polypeptides of 150, 135 and 105 kDa. We present the complete nucleotide sequence of the 105-kDa (RhopH3) component of this complex derived from analysis of genomic and cDNA clones. The genomic structure is unusually complex for P. falciparum, consisting of 7 exons including 2 mini-exons of 19 and 21 amino acids. The sequence lacks tandem repeats and is conserved among several parasite isolates. B cell epitopes that induce antibody responses during natural infection were mapped to five different regions of the polypeptide.  相似文献   

15.
16.
Circumsporozoite gene of a Plasmodium falciparum strain from Thailand   总被引:5,自引:0,他引:5  
The nucleotide and deduced amino acid sequences of the CS gene of a Plasmodium falciparum strain from Thailand (T4) are presented. Comparison with the nucleotide sequences of two other P. falciparum CS genes, 7G8 from Brazil and Wellcome from West Africa, shows that: the coding regions outside the repeats of T4 and 7G8 are co-extensive and lack 30 nucleotides present in the Wellcome strain 5' to the repeats; in this region, T4 also differs at 3 nucleotide positions from the 7G8 and the Wellcome strains; in the region 3' to the repeats, T4 differs at two positions from 7G8 and at two other positions from the Wellcome strain--remarkably, all of these differences result in amino acid substitutions; the structure of the tandem repeats in the CS gene of T4 is, 5' to 3', [NANP-NVDP] X 3, [NANP] X 38, which is different from that of the two other strains. Due to the use of synonymous codons, the repetition of the sequence is more precise at the amino acid level than at the nucleotide level. These features contrast with those observed in the CS genes of other plasmodial species.  相似文献   

17.
In Plasmodium falciparum small solutes like water, ammonium, glycerol and others are transported by a parasite-encoded channel into the parasite. The gene encoding this channel is termed P. falciparum aquaglyceroporin (PfAQP) and is a single-copy gene and highly homologous to other aquaporins from other protozoa. Aquaporins are considered to be attractive targets for drug treatment and more so since the human and parasite aquaporins show considerable sequence differences. To investigate whether PfAQP may be suitable as a conserved target for potential aquaporin blocking agents we determined the DNA sequences of PfAQP from 65 parasite strains, either from in vitro cultured laboratory strains or from parasites obtained in an malaria-endemic region of Gabon. Only two non-synonymous mutations were found and functionally tested by a methylamine efflux assay. The efflux activity of all variants tested was similar. The lack of functionally variability suggests an invariable protein core, which may restrict parasite populations from evading therapeutic pressure if PfAQP inhibitors will be found.  相似文献   

18.
The beta subunits (beta1, beta2, and beta5) of 20S proteasome and HslV/ClpQ are ATP-dependent threonine proteases present in eukaryotes and prokaryotes, respectively that control levels of key regulatory proteins in the cell. The orthologue of prokaryotic HslV protease in Plasmodium falciparum (PfHslV) is a novel drug target candidate that has no homolog in the human host. In the present study, the PfHslV was expressed, localized and biochemically characterized. The recombinant PfHslV harbored threonine protease specific activity as well as chymotrypsin like and peptidyl glutamyl peptide hydrolase activities. All the three activities could be inhibited by respective specific inhibitors. The protein was localized in the cytosol of the parasite as a soluble protein by Western immunoblotting of parasite fractions and by immuno-fluorescence microscopy. Activity of the protease in the parasite was ascertained by following the degradation of GFP in a transgenic parasite line expressing fusion protein of GFP and Arc-repressor gene, a known target of HslV protease in the prokaryotes. A model structure of PfHslV was constructed based on the crystal structure of Escherichia coli HslV to assess the structural homology. Availability of the structure model of PfHslV may facilitate identification or designing of novel and specific drugs against PfHslV. The in vitro protease assays with recombinant PfHslV and the transgenic parasite line generated in the present study may be exploited in the screening of novel inhibitors to evaluate their anti-malarial activity.  相似文献   

19.
Falcipain-2 and -3 are cysteine proteases of erythrocytic Plasmodium falciparum parasites that appear to function principally as hemoglobinases. To better understand their biological roles, we analyzed the biosynthesis, localization, and processing of these enzymes in cultured parasites. Immunoprecipitation of metabolically labeled proteins indicated that falcipain-2 was synthesized through the trophozoite stage, falcipain-3 appeared in late trophozoites/early schizonts, and both proteases persisted for at least 6 h after synthesis. Falcipain-2 and -3 were localized to the food vacuole, the site of hemoglobin hydrolysis, by immunofluorescence and immunoelectron microscopy. Subcellular fractionation experiments indicated that both enzymes were synthesized as membrane bound proforms that were processed to soluble mature forms, but falcipain-2 was processed to the mature protease much more quickly than was falcipain-3. Cysteine protease inhibitors and brefeldin A, but not aspartic or serine protease inhibitors, blocked the processing of both enzymes, suggesting that falcipain-2 and -3 process by autohydrolysis after exiting the endoplasmic reticulum/Golgi network. However, although all tested cysteine protease inhibitors blocked hemoglobinase activity in the food vacuole, only lipophilic inhibitors (E-64d, Mu-Leu-Hph-VSPh, and ALLN), blocked intracellular processing of falcipain-2 and -3. More hydrophilic inhibitors (E-64 and leupeptin) did not block processing, suggesting that autocatalytic processing of falcipain-2 and -3 occurs in a specific cellular compartment before delivery to the food vacuole. Our results support overlapping but not fully redundant roles for falcipain-2 and -3, which are targeted to the food vacuole and activated sequentially to degrade hemoglobin in erythrocytic parasites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号