首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition.  相似文献   

2.
A structural model is proposed to account fully for observed x-ray scattering by certain nematic mesophases above their transition to smectic-C phases. In an external magnetic field, the constituent molecules tend to align into nearly periodic parallel chains that give rise to disc-like intensity distributions along the meridian in reciprocal space. Close to the transition temperature, the chains aggregate into parallel sheets which cause a ring-shaped intensity rise in these dises. The planar array in the cybotactic nematic bears a close similarity to that in cholesteric mesophases.  相似文献   

3.
Polymerization shrinkage and associated stresses are the main reasons for dental restorative failure. We developed a series of liquid crystal diacrylates and dimethacrylates which have markedly low polymerization shrinkage. In order to fully understand the effects of temperature-induced changes of molecular order on the photopolymerization process and performance properties of the generated polymers, the photopolymerization of a difunctional acrylate, 2-t-butyl-1,4-phenylene bis (4-(6-(acryloyloxy)hexyloxy)benzoate), which exists in the nematic liquid crystalline phase at room temperature, was investigated as a function of photopolymerization temperature over the nematic to isotropic range. Morphological studies suggested that a mesogenic phase was immediately formed in the polymer even if polymerization in thin films occurred above the nematic-to-isotropic (N→I) transition temperature of the monomer (Tn-i = 45.8 °C). Dynamic mechanical analysis of 2 × 2 mm cross-section bar samples polymerized at 60 °C showed reduced elastic moduli, increased glass transition temperature and formation of a more crosslinked network, in comparison to polymers formed at lower polymerization temperatures. Fractography analysis showed that polymers generated from the nematic liquid crystalline phase underwent a different fracture pattern in comparison to those generated from the isotropic phase. Volumetric shrinkage (2.2%) found in polymer polymerized from the nematic liquid crystalline phase at room temperature was substantially less than the 6.0% observed in polymer polymerized from an initial isotropic phase at 60 °C, indicating that an organized monomer can greatly contribute to reducing cure shrinkage.  相似文献   

4.
Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic-nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima.  相似文献   

5.
Human plasma low density lipoprotein (LDL) exhibits a thermal transition over the temperature range 20-40 degrees. This transition is associated with a structural change within the lipoprotein particle and is reflected in the small-angle x-ray scattering profiles from LDL. The scattering profile of the quasispherical LDL particle at 10 degrees shows a relatively intense maximum at 1/36 A-1 which is absent from the scattering of LDL at 45 degrees. Theoretical calculations, using model electron density distributions, have been carried out to describe the packing of arrangement of the cholesterol esters, based on perturbations of the molecular packing of crystalline cholesteryl myristate, adequately reproduces the high relative intensity of the x-ray scattering maximum at 1/36 A-1. The perturbations of the packing in the crystal structure of cholesteryl myristate involve "melting" of the hydrocarbon chains of the esters together with translations of pairs of molecules parallel to the molecular long axis. The interaction of opposing steroid moieties, with C18 and C19 angular methyl groups interlocked, exhibited in the crystal structure is retained in the perturbed arrangement. At 45 degrees, thermally induced disorder of this arrangement averages the electron density of the central core. The x-ray scattering profiles of particles with a homogeneous electron density in the core region do not show a high relative intensity of the subsidiary maxima in the 1/36 A-1 region, in agreement with experimental observation. The results of these calculations support the concept that the thermal transition observed for LDL is due to a smectic leads to disordered transition of the cholesterol esters in the core of the LDL particle.  相似文献   

6.
Soft matter that undergoes programmed macroscopic responses to molecular analytes has potential utility in a range of health and safety-related contexts. In this study, we report the design of a nematic liquid crystal (LC) composition that forms through dimerization of carboxylic acids and responds to the presence of vapors of organoamines by undergoing a visually distinct phase transition to an isotropic phase. Specifically, we screened mixtures of two carboxylic acids, 4-butylbenzoic acid and trans-4-pentylcyclohexanecarboxylic acid, and found select compositions that exhibited a nematic phase from 30.6 to 111.7 °C during heating and 110.6 to 3.1 °C during cooling. The metastable nematic phase formed at ambient temperatures was found to be long-lived (>5 days), thus enabling the use of the LC as a chemoresponsive optical material. By comparing experimental infrared (IR) spectra of the LC phase with vibrational frequencies calculated using density functional theory (DFT), we show that it is possible to distinguish between the presence of monomers, homodimers and heterodimers in the mixture, leading us to conclude that a one-to-one heterodimer is the dominant species within this LC composition. Further support for this conclusion is obtained by using differential scanning calorimetry. Exposure of the LC to 12 ppm triethylamine (TEA) triggers a phase transition to an isotropic phase, which we show by IR spectroscopy to be driven by an acid-base reaction, leading to the formation of ammonium carboxylate salts. We characterized the dynamics of the phase transition and found that it proceeds via a characteristic spatiotemporal pathway involving the nucleation, growth, and coalescence of isotropic domains, thus amplifying the atomic-scale acid-base reaction into an information-rich optical output. In contrast to TEA, we determined via both experiment and computation that neither hydrogen bonding donor or acceptor molecules, such as water, dimethyl methylphosphonate, ethylene oxide or formaldehyde, disrupt the heterodimers formed in the LC, hinting that the phase transition (including spatial-temporal characteristics of the pathway) induced in this class of hydrogen bonded LC may offer the basis of a facile and chemically selective way of reporting the presence of volatile amines. This proposal is supported by exploratory experiments in which we show that it is possible to trigger a phase transition in the LC by exposure to volatile amines emitted from rotting fish. Overall, these results provide new principles for the design of chemoresponsive soft matter based on hydrogen bonded LCs that may find use as the basis of low-cost visual indicators of chemical environments.  相似文献   

7.
Wide angle x-ray diffraction has been used to examine the phase behavior of microsomal membranes from regressing corpora lutea of prepubertal pseudopregnant rats. During periods of optimal progesterone secretion, all of the membrane lipid was in the liquid-crystalline phase at physiological temperature and, therefore, was fluid. However, mixtures of liquid-crystalline and gel phase lipid were observed under identical conditions in microsomal membrane preparations from animals undergoing spontaneous or prostaglandin F2 alpha-induced regression. This was accompanied by a parallel rise in the lipid phase transition temperature. In addition, the proportion of lipid in the gel phase increased with time after prostaglandin F2 alpha treatment. These results indicate that the mechanism of corpus luteum regression may involve phase changes in the phospholipid bilayer of cellular membranes. The resulting presence of gel phase lipid in the membrane matrices could contribute to the loss of tissue function.  相似文献   

8.
The structure of complexes made from DNA and suitable lipids (lipoplex, Lx) was examined by cryo-electron microscopy (cryoEM). We observed a distinct concentric ring-like pattern with striated shells when using plasmid DNA. These spherical multilamellar particles have a mean diameter of 254 nm with repetitive spacing of 7.5 nm with striation of 5.3 nm width. Small angle x-ray scattering revealed repetitive ordering of 6.9 nm, suggesting a lamellar structure containing at least 12 layers. This concentric and lamellar structure with different packing regimes also was observed by cryoEM when using linear double-stranded DNA, single-stranded DNA, and oligodeoxynucleotides. DNA chains could be visualized in DNA/lipid complexes. Such specific supramolecular organization is the result of thermodynamic forces, which cause compaction to occur through concentric winding of DNA in a liquid crystalline phase. CryoEM examination of T4 phage DNA packed either in T4 capsides or in lipidic particles showed similar patterns. Small angle x-ray scattering suggested an hexagonal phase in Lx-T4 DNA. Our results indicate that both lamellar and hexagonal phases may coexist in the same Lx preparation or particle and that transition between both phases may depend on equilibrium influenced by type and length of the DNA used.  相似文献   

9.
The significant structure theory of liquids is extended to the mesophase system with p-azoxyanisole as an example. This compound has two different structures, a nematic phase and an isotropic phase, in its liquid state. In this study the nematic phase is treated as subject to a second volume and temperature-dependent degeneracy formally like that due to melting. The isotropic phase is treated as a normal liquid. The specific heat, thermal expansion coefficient, compressibility, volume, entropy of transitions, and heat of transitions are calculated and compared to the observed values. This analysis differs from previous ones in including the volume dependence as well as the temperature dependence in one explicit expression for the Helmholtz free energy.  相似文献   

10.
11.
STUDY OBJECTIVES: Unopposed activity of the serine protease, human leukocyte elastase (HLE), is detectable in the airways of patients with purulent tracheobronchitis. The aim of this study was to assess the compartmentalization of HLE activity in the liquid sol phase and the solid gel phase of airway secretions. DESIGN: Seventy samples of tracheobrochial aspirates were obtained from patients who had hypersecretion and were receiving mechanical ventilation. METHODS: Samples were separated into sol and gel ("mucous pellet") phases, and HLE activity was measured using chromogenic substrate degradation. HLE was eluted from the mucous pellet using hypertonic saline solution, 1 mol/L, or bovine pancreatic deoxyribonuclease (DNase), 16 micromol/L. RESULTS: HLE activity partitioned between the sol and gel phases of the secretions, with most of the activity present in the gel phase (32:1 ratio of gel to sol HLE activity). The activity of HLE was 95% inhibited when bound to the gel phase, but activity appeared to be largely restored after elution from the gel phase. The gel phase was capable of binding additional exogenous HLE, and its binding capacity for exogenous HLE was not saturated by concentrations that exceeded the highest clinically relevant HLE levels (1.1 mg/mL). Hypertonic saline solution and DNase I efficiently liberated endogenous and exogenous gel phase-bound HLE activity, suggesting that electrostatic bonds and DNA, respectively, play important roles in binding HLE to the gel phase. CONCLUSIONS: The solid phase of airway secretions is a more important modulator of elastase-antielastase balance than has been previously recognized.  相似文献   

12.
We propose a statistical approach for studying the close packing of elastic rods. This phenomenon belongs to the class of problems of confinement of low dimensional objects, such as DNA packaging in viral capsids. The method developed is based on Edwards' approach, which was successfully applied to polymer physics and to granular matter. We show that the confinement induces a configurational phase transition from a disordered (isotropic) phase to an ordered (nematic) phase. In each phase, we derive the pressure exerted by the rod (DNA) on the container (capsid) and the force necessary to inject (eject) the rod into (out of) the container. Finally, we discuss the relevance of the present results with respect to physical and biological problems. Regarding DNA packaging in viral capsids, these results establish the existence of ordered configurations, a hypothesis upon which previous calculations were built. They also show that such ordering can result from simple mechanical constraints.  相似文献   

13.
Assemblies formed by solid particles at interfaces have been widely studied because they serve as models of molecular phenomena, including molecular self-assembly. Solid particles adsorbed at interfaces also provide a means of stabilizing liquid–liquid emulsions and synthesizing materials with tunable mechanical, optical, or electronic properties. Whereas many past studies have investigated colloids at interfaces of isotropic liquids, recently, new types of intercolloidal interactions have been unmasked at interfaces of liquid crystals (LCs): The long-range ordering of the LCs, as well as defects within the LCs, mediates intercolloidal interactions with symmetries that differ from those observed with isotropic liquids. Herein, we report the decoration of interfaces formed between aqueous phases and nematic LCs with prescribed densities of solid, micrometer-sized particles. The microparticles assemble into chains with controlled interparticle spacing, consistent with the dipolar symmetry of the defects observed to form about each microparticle. Addition of a molecular surfactant to the aqueous phase results in a continuous ordering transition in the LC, which triggers reorganization of the microparticles, first by increasing the spacing between microparticles within chains and ultimately by forming two-dimensional arrays with local hexagonal symmetry. The ordering transition of the microparticles is reversible and is driven by surfactant-induced changes in the symmetry of the topological defects induced by the microparticles. These results demonstrate that the orderings of solid microparticles and molecular adsorbates are strongly coupled at the interfaces of LCs and that LCs offer the basis of methods for reversible, chemosensitive control of the interfacial organization of solid microparticles.  相似文献   

14.
A single lipid molecular bilayer of 17 or 18 carbon chain phosphocholines, floating in water near a flat wall, is prepared in the bilayer gel phase and then heated to the fluid phase. Its structure (electron density profile) and height fluctuations are determined by using x-ray reflectivity and non-specular scattering. By fitting the off-specular signal to that calculated for a two-dimensional membrane using a Helfrich Hamiltonian, we determine the three main physical quantities that govern the bilayer height fluctuations: The wall attraction potential is unexpectedly low; the surface tension, roughly independent on chain length and temperature, is moderate (approximately 5 x 10(-4) J.m(-2)) but large enough to dominate the intermediate range of the fluctuation spectrum; and the bending modulus abruptly decreases by an order-of-magnitude from 10(-18) J to 10(-19) J at the bilayer gel-to-fluid transition.  相似文献   

15.
The behavior of matter near zero temperature continuous phase transitions, or "quantum critical points" is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical "soup." Here, we report a study of the specific heat across the phase diagram of the model system Sr(3)Ru(2)O(7), which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above T(c). The associated quantum critical point, which is "concealed" by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces.  相似文献   

16.
We have measured high-resolution x-ray absorption spectra of lanthanide (Ln) and heavy transition metal complexes that display prominent narrow absorption peaks near the L2 and L3 absorption edges. The anomalous scattering factors (f' and f"), which are mathematically related to the absorption cross section, have correspondingly sharp changes in their magnitude within 5-10 eV of the absorption edge. Calculations of the magnitude of the change in f' and f" demonstrate that significant changes (on the order of 20 electrons in f') can be expected for these materials. These substantial changes in the anomalous scattering factors have applications to deriving structural information for macromolecules from x-ray diffraction studies. The magnitude of the changes indicate that the anomalous scattering technique is a powerful means of obtaining structural characteristics for macromolecules in single crystals, in solution, and in biological membranes.  相似文献   

17.
A rationale is presented for the mix of "bilayer" and "nonbilayer" lipids, which occurs in biomembranes. A theory for the L alpha-HII phase transition and experimental tests of the theory are reviewed. It is suggested that the phase behavior is largely the result of a competition between the tendency for certain lipid monolayers to curl and the hydrocarbon packing strains that result. The tendency to curl is quantitatively given by the intrinsic radius of curvature, Ro, which minimizes the bending energy of a lipid monolayer. When bilayer (large Ro) and nonbilayer (small Ro) lipids are properly mixed, the resulting layer has a value of Ro that is at the critical edge of bilayer stability. In this case, bilayers may be destabilized by the protein-mediated introduction of hydrophobic molecules, such as dolichol. An x-ray diffraction investigation of the effect of dolichol on such a lipid mixture is described. This leads to the hypothesis that biomembranes homeostatically adjust their intrinsic curvatures to fall into an optimum range. Experimental strategies for testing the hypothesis are outlined.  相似文献   

18.
High sensitivity differential scanning calorimetry is applied to the study of the thermotropic behavior of mixtures of synthetic phospholipids in multilamellar aqueous suspensions. The systems dimyristoylphosphatidylcholine dipalmitoylphosphatidylcholine, and dimyristoylphosphatidylethanolamine-distearoylphosphatidylcholine, although definitely nonideal, exhibit essentially complete miscibility in both gel and liquid crystalline states, while the system dilauroylphosphatidylcholine-distearoylphosphatidylcholine is monotectic with lateral phase separation in the gel state. Comparison of the observed transition curves with theoretical curves calculated from the calorimetrically determined phase diagrams supports a literal interpretation of the phase diagrams.  相似文献   

19.
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.  相似文献   

20.
Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high-temperature superconductors. Similarly, the new iron-based high-temperature superconductors exhibit a tetragonal-to-orthorhombic structural transition (i.e., a broken C4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here, we present an angle-resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant dxz and dyz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (TS) precedes the magnetic transition (TSDW), an anisotropic splitting is observed to develop above TSDW, indicating that it is specifically associated with TS. For unstressed crystals, the band splitting is observed close to TS, whereas for stressed crystals, the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.Correlated electron systems owe their emergent phenomena to a complex array of competing electronic phases. Among these, a nematic phase is one where rotational symmetry is spontaneously broken without breaking translational symmetry (1, 2). Two well-established examples are found in certain quantum Hall states (3) and in the bilayer ruthenate Sr3Ru2O7 (4), both of which exhibit a large transport anisotropy under the application of large magnetic fields, even though they seem to originate from apparently different physics. Recently, evidence of nematicity has also been reported in the pseudogap phase of cuprate high-temperature (high-TC) superconductors, in both YBa2Cu3Oy (5) and Bi2Sr2CaCu2O8+δ (6). The proximity of the pseudogap phase to superconductivity raises the question of what role nematicity plays in relation to the mechanism of high-TC superconductivity. Intriguingly, the newly discovered iron pnictide high-TC superconductors also exhibit a nematic phase in the form of a tetragonal-to-orthorhombic structural transition that either precedes or accompanies the onset of long-range antiferromagnetic order (7, 8), both of which are suppressed with doping leading to superconductivity (911). Evidences of in-plane anisotropy have been reported by neutron scattering (12), scanning tunneling microscopy (13), and transport measurements (1416). The physical origin of the structural transition has been discussed in terms of both spin fluctuations (1721) and also orbital order (2228). Here, we present results of an angle-resolved photoemission spectroscopy (ARPES) study of underdoped Ba(Fe1-xCox)2As2 that reveal an energy splitting of bands with principle dxz and dyz character that we show is associated with the structural transition. Although the splitting can be anticipated purely on symmetry grounds, the large magnitude (approximately 80 meV at 10 K for the parent compound) provides a quantitative test for theories of nematic order in this family of compounds. Moreover, we find that application of uniaxial stress causes the onset of the band splitting to occur well above the structural transition (TS), indicating the presence of a large Ising nematic susceptibility.In the orthorhombic phase, Ba(Fe1-xCox)2As2 tends to form dense structural twins (29) which can easily obscure in-plane anisotropy. If the domains are large compared to the beam size, then information about the in-plane electronic anisotropy can be obtained by ARPES (30). Here, we apply an in-plane uniaxial stress to detwin the single crystals that we study, and hence avoid the problems of domain mixing, enabling us to study the effect of uniaxial stress on the electronic structure above TS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号