首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.Since Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (240) and potentially derived features of human psychology (4161), we know much less about the major forces shaping cognitive evolution (6271). With the notable exception of Bitterman’s landmark studies conducted several decades ago (63, 7274), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (7692). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48, 70, 89, 9398).To address these challenges we measured cognitive skills for self-control in 36 species of mammals and birds (Fig. 1 and Tables S1–S4) tested using the same experimental procedures, and evaluated the leading hypotheses for the neuroanatomical underpinnings and ecological drivers of variance in animal cognition. At the proximate level, both absolute (77, 99107) and relative brain size (108112) have been proposed as mechanisms supporting cognitive evolution. Evolutionary increases in brain size (both absolute and relative) and cortical reorganization are hallmarks of the human lineage and are believed to index commensurate changes in cognitive abilities (52, 105, 113115). Further, given the high metabolic costs of brain tissue (116121) and remarkable variance in brain size across species (108, 122), it is expected that the energetic costs of large brains are offset by the advantages of improved cognition. The cortical reorganization hypothesis suggests that selection for absolutely larger brains—and concomitant cortical reorganization—was the predominant mechanism supporting cognitive evolution (77, 91, 100106, 120). In contrast, the encephalization hypothesis argues that an increase in brain volume relative to body size was of primary importance (108, 110, 111, 123). Both of these hypotheses have received support through analyses aggregating data from published studies of primate cognition and reports of “intelligent” behavior in nature—both of which correlate with measures of brain size (76, 77, 84, 92, 110, 124).Open in a separate windowFig. 1.A phylogeny of the species included in this study. Branch lengths are proportional to time except where long branches have been truncated by parallel diagonal lines (split between mammals and birds ∼292 Mya).With respect to selective pressures, both social and dietary complexities have been proposed as ultimate causes of cognitive evolution. The social intelligence hypothesis proposes that increased social complexity (frequently indexed by social group size) was the major selective pressure in primate cognitive evolution (6, 44, 48, 50, 87, 115, 120, 125141). This hypothesis is supported by studies showing a positive correlation between a species’ typical group size and the neocortex ratio (80, 81, 8587, 129, 142145), cognitive differences between closely related species with different group sizes (130, 137, 146, 147), and evidence for cognitive convergence between highly social species (26, 31, 148150). The foraging hypothesis posits that dietary complexity, indexed by field reports of dietary breadth and reliance on fruit (a spatiotemporally distributed resource), was the primary driver of primate cognitive evolution (151154). This hypothesis is supported by studies linking diet quality and brain size in primates (79, 81, 86, 142, 155), and experimental studies documenting species differences in cognition that relate to feeding ecology (94, 156166).Although each of these hypotheses has received empirical support, a comparison of the relative contributions of the different proximate and ultimate explanations requires (i) a cognitive dataset covering a large number of species tested using comparable experimental procedures; (ii) cognitive tasks that allow valid measurement across a range of species with differing morphology, perception, and temperament; (iii) a representative sample within each species to obtain accurate estimates of species-typical cognition; (iv) phylogenetic comparative methods appropriate for testing evolutionary hypotheses; and (v) unprecedented collaboration to collect these data from populations of animals around the world (70).Here, we present, to our knowledge, the first large-scale collaborative dataset and comparative analysis of this kind, focusing on the evolution of self-control. We chose to measure self-control—the ability to inhibit a prepotent but ultimately counterproductive behavior—because it is a crucial and well-studied component of executive function and is involved in diverse decision-making processes (167169). For example, animals require self-control when avoiding feeding or mating in view of a higher-ranking individual, sharing food with kin, or searching for food in a new area rather than a previously rewarding foraging site. In humans, self-control has been linked to health, economic, social, and academic achievement, and is known to be heritable (170172). In song sparrows, a study using one of the tasks reported here found a correlation between self-control and song repertoire size, a predictor of fitness in this species (173). In primates, performance on a series of nonsocial self-control control tasks was related to variability in social systems (174), illustrating the potential link between these skills and socioecology. Thus, tasks that quantify self-control are ideal for comparison across taxa given its robust behavioral correlates, heritable basis, and potential impact on reproductive success.In this study we tested subjects on two previously implemented self-control tasks. In the A-not-B task (27 species, n = 344), subjects were first familiarized with finding food in one location (container A) for three consecutive trials. In the test trial, subjects initially saw the food hidden in the same location (container A), but then moved to a new location (container B) before they were allowed to search (Movie S1). In the cylinder task (32 species, n = 439), subjects were first familiarized with finding a piece of food hidden inside an opaque cylinder. In the following 10 test trials, a transparent cylinder was substituted for the opaque cylinder. To successfully retrieve the food, subjects needed to inhibit the impulse to reach for the food directly (bumping into the cylinder) in favor of the detour response they had used during the familiarization phase (Movie S2).Thus, the test trials in both tasks required subjects to inhibit a prepotent motor response (searching in the previously rewarded location or reaching directly for the visible food), but the nature of the correct response varied between tasks. Specifically, in the A-not-B task subjects were required to inhibit the response that was previously successful (searching in location A) whereas in the cylinder task subjects were required to perform the same response as in familiarization trials (detour response), but in the context of novel task demands (visible food directly in front of the subject).  相似文献   

2.
3.
4.
5.
If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species’ native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species’ native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.Rapid climate change has already caused species range shifts and local extinctions (1) and is predicted to have greater future impacts (2). As the suitable climate space for a species shifts poleward (3), populations previously well adapted to the historical climate in a particular region may experience strong selection to adapt to rapidly warming local temperatures (410). Rapid evolutionary response to climate change has already been observed (11, 12), but it remains unclear whether evolutionary response can keep pace with rapidly changing local adaptive optima (6, 8, 1315). If local adaptation is slower than the rate of climate change, the average fitness of local populations may decline over time (7, 14, 16, 17), possibly resulting in local extinctions and range collapse at the warmer margin. Where such lag exists, we expect that local seeds banked for conservation may no longer be well adapted to their sites of origin (18). However, such adaptational lag may be mitigated by migration or gene flow from populations in historically warmer sites if those populations are better adapted to current conditions in a site than local populations (8, 13, 19, 20). Although adaptational lag has been predicted (46, 8, 14, 15, 19, 21, 22), the distinctive signature of mismatch between local population performance and current climate optima has not yet been explicitly demonstrated in nature.Despite evidence for local adaptation in many organisms (23), there have been few explicit tests for the role of specific climate factors in shaping local fitness optima (4, 9, 13). Such tests require growing many genotypes from populations spanning a range of climates in common gardens across a species’ range to decouple climate of origin from geographic variation in other selective factors (4, 6, 14). If adaptation to local climate has occurred, then genotypes from climates similar to each planting site are expected to have high fitness in that site relative to genotypes from dissimilar climates (6). However, if local adaptive optima have shifted with rapid warming trends over the last 50 y, we expect that banked genotypes from historically warmer climates will have higher fitness within a site than banked genotypes of local origin (6, 21, 22).We tested for lagging adaptation to climate using Arabidopsis thaliana, a naturally inbreeding annual species that inhabits a broad climate space across its native Eurasian range (24). A. thaliana exhibits strong circumstantial evidence of climate adaptation, including geographic clines in ecologically important life-history traits (2528) and in candidate genes associated with these traits (29, 30), as well as genome-wide associations of single nucleotide polymorphisms with climatic factors (3134). To test explicitly for local adaptation to climate we measured the lifetime fitness of more than 230 accessions from banked seeds originating from a broad range of climates in replicated field experiments in four sites across the species’ native climate range (Fig. 1). We observed that genotypes originating in historically warmer climates outperformed local genotypes, particularly at the northern range limit.Open in a separate windowFig. 1.Map of common garden sites and sites of origin of the 241 native A. thaliana accessions represented in our experiments.  相似文献   

6.
7.
DNA polymorphisms are important markers in genetic analyses and are increasingly detected by using genome resequencing. However, the presence of repetitive sequences and structural variants can lead to false positives in the identification of polymorphic alleles. Here, we describe an analysis strategy that minimizes false positives in allelic detection and present analyses of recently published resequencing data from Arabidopsis meiotic products and individual humans. Our analysis enables the accurate detection of sequencing errors, small insertions and deletions (indels), and structural variants, including large reciprocal indels and copy number variants, from comparisons between the resequenced and reference genomes. We offer an alternative interpretation of the sequencing data of meiotic products, including the number and type of recombination events, to illustrate the potential for mistakes in single-nucleotide polymorphism calling. Using these examples, we propose that the detection of DNA polymorphisms using resequencing data needs to account for nonallelic homologous sequences.DNA polymorphisms are ubiquitous genetic variations among individuals and include single nucleotide polymorphisms (SNPs), insertions and deletions (indels), and other larger rearrangements (13) (Fig. 1 A and B). They can have phenotypic consequences and also serve as molecular markers for genetic analyses, facilitating linkage and association studies of genetic diseases, and other traits in humans (46), animals, plants, (710) and other organisms. Using DNA polymorphisms for modern genetic applications requires low-error, high-throughput analytical strategies. Here, we illustrate the use of short-read next-generation sequencing (NGS) data to detect DNA polymorphisms in the context of whole-genome analysis of meiotic products.Open in a separate windowFig. 1.(A) SNPs and small indels between two ecotype genomes. (B) Possible types of SVs. Col genotypes are marked in blue and Ler in red. Arrows indicate DNA segments involved in SVs between the two ecotypes. (C) Meiotic recombination events including a CO and a GC (NCO). Centromeres are denoted by yellow dots.There are many methods for detecting SNPs (1114) and structural variants (SVs) (1525), including NGS, which can capture nearly all DNA polymorphisms (2628). This approach has been widely used to analyze markers in crop species such as rice (29), genes associated with diseases (6, 26), and meiotic recombination in yeast and plants (30, 31). However, accurate identification of DNA polymorphisms can be challenging, in part because short-read sequencing data have limited information for inferring chromosomal context.Genomes usually contain repetitive sequences that can differ in copy number between individuals (2628, 31); therefore, resequencing analyses must account for chromosomal context to avoid mistaking highly similar paralogous sequences for polymorphisms. Here, we use recently published datasets to describe several DNA sequence features that can be mistaken as allelic (32, 33) and describe a strategy for differentiating between repetitive sequences and polymorphic alleles. We illustrate the effectiveness of these analyses by examining the reported polymorphisms from the published datasets.Meiotic recombination is initiated by DNA double-strand breaks (DSBs) catalyzed by the topoisomerase-like SPORULATION 11 (SPO11). DSBs are repaired as either crossovers (COs) between chromosomes (Fig. 1C), or noncrossovers (NCOs). Both COs and NCOs can be accompanied by gene conversion (GC) events, which are the nonreciprocal transfer of sequence information due to the repair of heteroduplex DNA during meiotic recombination. Understanding the control of frequency and distribution of CO and NCO (including GC) events has important implications for human health (including cancer and aneuploidy), crop breeding, and the potential for use in genome engineering. COs can be detected relatively easily by using polymorphic markers in the flanking sequences, but NCO products can only be detected if they are accompanied by a GC event. Because GCs associated with NCO result in allelic changes at polymorphic sites without exchange of flanking sequences, they are more difficult to detect. Recent advances in DNA sequencing have made the analysis of meiotic NCOs more feasible (3032, 34); however, SVs present a challenge in these analyses. We recommend a set of guidelines for detection of DNA polymorphisms by using genomic resequencing short-read datasets. These measures improve the accuracy of a wide range of analyses by using genomic resequencing, including estimation of COs, NCOs, and GCs.  相似文献   

8.
Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu2+ binding site and defined cross-dimer copper–copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies.ALS is a lethal degenerative disease of the human motor system (1). Opportunities for improved understanding and clinical intervention arose from the discovery that up to 23.5% of familial ALS cases and 7% of spontaneous cases are caused by mutations in the superoxide dismutase 1 (SOD1) gene encoding human Cu, Zn SOD (24). SOD is a highly conserved (5), dimeric, antioxidant metalloenzyme that detoxifies superoxide radicals (6, 7), but overexpression of SOD1 ALS mutants is sufficient to cause disease in mice (8). Misfolded and/or aggregated SOD species are deposited within mouse neuronal and glial inclusions (9, 10), even before symptoms appear (11, 12). Although human familial ALS has a symptomatic phenotype indistinguishable from sporadic cases (13), individual SOD1 mutations can result in highly variable disease progression and penetrance (14, 15).Many nongeneral mechanisms, including loss of activity or gain of function, were postulated to explain the roles of SOD mutants in ALS (3, 1619). Recently, however, an initial hypothesis proposing that SOD manifests disease symptoms by framework destabilization (protein instability caused by structural defects) and consequent protein misassembly and aggregation has gained renewed support (2, 10, 14, 2023). Ironically, WT SOD is an unusually stable protein (7, 2426), and precisely how SOD mutations cause disease remains unclear. For instance, human SOD free cysteine residues C6 and C111 have been implicated in protein aggregation by promoting cross-linking (27, 28) and/or stability changes associated with oxidative modifications (2933). Mutation of the chemically reactive thiols significantly decreases the irreversible denaturation rate for human and bovine SOD (24, 34). However, ALS mutants in a C6A/C111S SOD (AS-SOD) background (35, 36) maintain the native C57–C146 disulfide bond but can still undergo aggregation, and mutations of the free cysteines can cause ALS (37, 38). These results imply that free cysteines are not strictly required but rather, may alter aggregation kinetics (20). SOD also contains two metal ion cofactors in each subunit: a catalytic copper ion (6) and a structurally stabilizing zinc ion (34, 39, 40) (Fig. 1A). In higher eukaryotes, a copper chaperone for SOD (CCS) plays an important role in catalyzing both the copper incorporation and native disulfide bond formation (41). Structural analyses of apo WT SOD point to greater flexibility or increased solvent accessibility of C6 otherwise buried in the stable dimer interface (42, 43), and molecular dynamics simulations also suggest a critical role for metal ions in protein structure, because SOD’s β-sheet propensity decreases in the absence of metals (44). As a result, apo SOD readily forms protein aggregates (45, 46), but the molecular structures of SOD aggregates are likely polymorphic and represent a controversial topic (23, 4751). The intertwined effects of the aggregation-enhancing free cysteines, dimer-stabilizing metal ions, and CCS maturation of SOD complicate the study of the ALS-causing SOD mutations themselves, and therefore, a clear cause-and-effect relationship remains obscure and requires deconvolution.Open in a separate windowFig. 1.Comparison of crystallographic and solution structures of WT and G93A SOD. (A) Overall architecture of the WT SOD dimer is displayed in 90° rotated views. G93 (small red spheres) resides on a surface-exposed interstrand loop between the fifth and sixth sequential β-strands of SOD and is expected to be innocuous in facilitating protein stability; however, this site harbors the most substitutions observed to result in ALS. G93 is also distant from both (Upper) the dimer interface and (Lower Left) the SOD active site (gold and silver spheres), which are generally implicated as the major determinants for SOD stability. Small blue spheres denote free cysteines. (Lower Right) The close-up view of the mutation site (boxed region in Lower Left tilted forward) shows high similarity between WT (purple) and G93A (red) SOD crystal structures [Protein Data Bank ID codes 1PU0 (WT) and 2ZKY (G93A)]. Hydrogen bonds characteristic of a β-bulge motif are indicated, whereby G93 (or A93) represents position 1. The main chain carbonyl group of β-barrel cork residue L38 is adjacent to the G93 site. (B) SAXS-derived electron pair P(r) distributions from WT (purple) and G93A (red) SOD samples in solution are compared with the theoretical curve for 1PU0. P(r) plots are normalized to peak height. Ab initio models of WT SOD derived from P(r) data are depicted in purple, with crystal structure docked into mesh envelope. Contributions to major and minor peaks from subunit and dimer dimensions are indicated.To better understand the structural effects of ALS mutations on SOD architecture, we coupled the wealth of crystallographic knowledge on SOD structure (7, 52, 53) with small-angle X-ray scattering (SAXS) experiments to characterize misassembly aggregates of ALS mutant SODs in solution. Over 20 y ago, we solved the first atomic structure of the human WT SOD protein (Fig. 1A) (20, 34) and proposed the framework destabilization hypothesis to explain how diverse mutations located throughout the 153-residue β-barrel enzyme might produce a similar disease phenotype (2), albeit with distinctions in the progression trajectory. Since that time, a staggering number of ALS mutations has been documented in patients [178 (mostly missense) (54)], with a similar phenotype in dogs (55, 56). Solution-based techniques are increasingly being applied to connect structure to biological outcome, for instance, through examination of intermolecular interactions within stress-activated pathways, for instance (57, 58). SAXS, which can probe structures for a wide size range of species, also provides higher resolution insights (59), for instance, over visible light-scattering techniques, readily distinguishing unfolded from folded proteins (60).Here, we monitor the initial events of protein aggregation in a subset of ALS mutants localized to a mutational hotspot site at glycine 93. Specifically, we wished to test a possible structural basis for how G93 mutations (to A, C, D, R, S, or V) modulate age of onset and clinical severity in ALS patients (14, 15). The G93 substitution occurs in a β-bulge region (61) between sequential β-strands of the protein (Fig. 1A) on a protruding loop roughly ∼20 Å from T54, the nearest residue of the opposing subunit, and the metal-containing active site (Fig. S1). A priori, mutation of this outer loop position would not be expected to interfere with active site chemistry or buried molecular interfaces. However, we discovered correlations of aggregation nucleation kinetics of SOD proteins with ALS mutations at this site, the stabilizing effects of metal ion retention, and available data for clinical phenotypes in patients with the same mutation. Furthermore, by measuring and exploiting the dimer geometry to observe intrinsic SOD conformers, we show that G93 mutant proteins natively reveal increased intradimer conformational flexibility in the absence of aggregation, which may reflect an increased tendency for ALS mutants to become metal-deficient and misfolding-prone and further explain the correlation to disease severity. Collective results on G93 mutants, thus, support and extend the framework destabilization hypothesis.  相似文献   

9.
A constitutional isomeric library synthesized by a modular approach has been used to discover six amphiphilic Janus dendrimer primary structures, which self-assemble into uniform onion-like vesicles with predictable dimensions and number of internal bilayers. These vesicles, denoted onion-like dendrimersomes, are assembled by simple injection of a solution of Janus dendrimer in a water-miscible solvent into water or buffer. These dendrimersomes provide mimics of double-bilayer and multibilayer biological membranes with dimensions and number of bilayers predicted by the Janus compound concentration in water. The simple injection method of preparation is accessible without any special equipment, generating uniform vesicles, and thus provides a promising tool for fundamental studies as well as technological applications in nanomedicine and other fields.Most living organisms contain single-bilayer membranes composed of lipids, glycolipids, cholesterol, transmembrane proteins, and glycoproteins (1). Gram-negative bacteria (2, 3) and the cell nucleus (4), however, exhibit a strikingly special envelope that consists of a concentric double-bilayer membrane. More complex membranes are also encountered in cells and their various organelles, such as multivesicular structures of eukaryotic cells (5) and endosomes (6), and multibilayer structures of endoplasmic reticulum (7, 8), myelin (9, 10), and multilamellar bodies (11, 12). This diversity of biological membranes inspired corresponding biological mimics. Liposomes (Fig. 1) self-assembled from phospholipids are the first mimics of single-bilayer biological membranes (1316), but they are polydisperse, unstable, and permeable (14). Stealth liposomes coassembled from phospholipids, cholesterol, and phospholipids conjugated with poly(ethylene glycol) exhibit improved stability, permeability, and mechanical properties (1720). Polymersomes (2124) assembled from amphiphilic block copolymers exhibit better mechanical properties and permeability, but are not always biocompatible and are polydisperse. Dendrimersomes (2528) self-assembled from amphiphilic Janus dendrimers and minidendrimers (2628) have also been elaborated to mimic single-bilayer biological membranes. Amphiphilic Janus dendrimers take advantage of multivalency both in their hydrophobic and hydrophilic parts (23, 2932). Dendrimersomes are assembled by simple injection (33) of a solution of an amphiphilic Janus dendrimer (26) in a water-soluble solvent into water or buffer and produce uniform (34), impermeable, and stable vesicles with excellent mechanical properties. In addition, their size and properties can be predicted by their primary structure (27). Amphiphilic Janus glycodendrimers self-assemble into glycodendrimersomes that mimic the glycan ligands of biological membranes (35). They have been demonstrated to be bioactive toward biomedically relevant bacterial, plant, and human lectins, and could have numerous applications in nanomedicine (20).Open in a separate windowFig. 1.Strategies for the preparation of single-bilayer vesicles and multibilayer onion-like vesicles.More complex and functional cell mimics such as multivesicular vesicles (36, 37) and multibilayer onion-like vesicles (3840) have also been discovered. Multivesicular vesicles compartmentalize a larger vesicle (37) whereas multibilayer onion-like vesicles consist of concentric alternating bilayers (40). Currently multibilayer vesicles are obtained by very complex and time-consuming methods that do not control their size (39) and size distribution (40) in a precise way. Here we report the discovery of “single–single” (28) amphiphilic Janus dendrimer primary structures that self-assemble into uniform multibilayer onion-like dendrimersomes (Fig. 1) with predictable size and number of bilayers by simple injection of their solution into water or buffer.  相似文献   

10.
11.
In the last decade there has been an exponential increase in knowledge about the genetic basis of complex human traits, including neuropsychiatric disorders. It is not clear, however, to what extent this knowledge can be used as a starting point for drug identification, one of the central hopes of the human genome project. The aim of the present study was to identify memory-modulating compounds through the use of human genetic information. We performed a multinational collaborative study, which included assessment of aversive memory—a trait central to posttraumatic stress disorder—and a gene-set analysis in healthy individuals. We identified 20 potential drug target genes in two genomewide-corrected gene sets: the neuroactive ligand–receptor interaction and the long-term depression gene set. In a subsequent double-blind, placebo-controlled study in healthy volunteers, we aimed at providing a proof of concept for the genome-guided identification of memory modulating compounds. Pharmacological intervention at the neuroactive ligand–receptor interaction gene set led to significant reduction of aversive memory. The findings demonstrate that genome information, along with appropriate data mining methodology, can be used as a starting point for the identification of memory-modulating compounds.Recent advances in human genetics have led to an unprecedented rate of discovery of genes related to complex human disease, including neuropsychiatric disorders (13). The human genome–based gain of knowledge is certainly expected to have a large impact on drug discovery in complex human disease (46). It is, however, still not clear to what extent this knowledge can be used as a starting point for the identification of druggable molecular pathways of complex traits (7), including mental disorders (8).Genomewide association studies (GWASs) using single-marker statistics have been very successful in identifying trait-associated single-gene loci (9). It is, however, widely accepted that single marker–based analyses have limited power to identify the genetic basis of a given trait, as for example, many loci will fail to reach stringent genomewide significance threshold, despite the fact that they may be genuinely associated with the trait. Triggered by statistical approaches for the analysis of gene expression, gene set–based analytical methods have recently become available. These methods aim at identifying biologically meaningful sets of genes associated with a certain trait, rather than focusing on a single GWAS gene locus (10). By taking into account prior biological knowledge, gene set–based approaches examine whether test statistics for a group of related genes have consistent deviation from chance (10). As shown recently in studies on autism (11), bipolar disorder (12, 13), attention deficit hyperactivity disorder (ADHD) (14), and schizophrenia (15), such approaches can convincingly identify convergent molecular pathways relevant to neuropsychiatry. Importantly, the identification of groups of functionally related genes is likely to facilitate drug discovery, because the most significant single loci from a GWAS might not be the best candidates for therapeutic intervention (7, 10).In the present study, we focused on emotionally aversive memory—a trait central to anxiety disorders such as posttraumatic stress disorder (PTSD) (1623). Strong memory for emotionally arousing events can be seen as a primarily adaptive phenomenon, which helps us to remember vital information (e.g., dangerous situations). In case of an extremely aversive event, however, this mechanism can also lead to intrusive and persistent traumatic memories, thereby contributing to the development and symptoms of PTSD (1822). Symptoms related to aversive memory include intrusive daytime recollections, traumatic nightmares, and flashbacks in which components of the event are relived. Aversive memory is a genetically complex trait as shown both in healthy subjects and in traumatized individuals (17, 23). Furthermore, we recently reported evidence suggesting a genetic link between the predisposition to build strong aversive memories and the risk for PTSD (16).Based on these observations, we developed a process (Fig. 1) aimed at identifying gene sets related to human aversive memory, followed by a pharmacological intervention study as proof-of-concept for the genome-guided identification of memory-modulating drugs.Open in a separate windowFig. 1.Drug discovery process.  相似文献   

12.
Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS.Although proteins adopt structures determined by their amino acid sequences, they are not static objects and fluctuate among ensembles of conformations (1). Transitions between these states can occur on a variety of length scales (Å to nm) and time scales (ps to s) and have been linked to functionally relevant phenomena such as allosteric signaling, enzyme catalysis, and protein–protein interactions (24). Indeed, protein conformational fluctuations and dynamics, often associated with static and dynamic inhomogeneity, are thought to play a crucial role in biomolecular functions (511). It is difficult to characterize such spatially and temporally inhomogeneous dynamics in bulk solution by an ensemble-averaged measurement, especially in proteins that undergo multiple-conformation transformations. In such cases, single-molecule spectroscopy is a powerful approach to analyze protein conformational states and dynamics under physiological conditions, and can provide a molecular-level perspective on how a protein’s structural dynamics link to its functional mechanisms (1221).A case in point is the nitric oxide synthase (NOS) enzymes (2224), whose nitric oxide (NO) biosynthesis involves electron transfer reactions that are associated with relatively large-scale movement (tens of Å) of the enzyme domains (Fig. 1A). During catalysis, NADPH-derived electrons first transfer into an FAD domain and an FMN domain in NOS that together comprise the NOS reductase domain (NOSr), and then transfer from the FMN domain to a heme group that is bound in a separate attached “oxygenase” domain, which then enables NO synthesis to begin (22, 2527). The electron transfers into and out of the FMN domain are the key steps for catalysis, and they appear to rely on the FMN domain cycling between electron-accepting and electron-donating conformational states (28, 29) (Fig. 1B). In this model, the FMN domain is suggested to be highly dynamic and flexible due to a connecting hinge that allows it to alternate between its electron-accepting (FAD→FMN) or closed conformation and electron-donating (FMN→heme) or open conformation (Fig. 1 A and B) (28, 3036). In the electron-accepting closed conformation, the FMN domain interacts with the NADPH/FAD domain (FNR domain) to receive electrons, whereas in the electron donating open conformation the FMN domain has moved away to expose the bound FMN cofactor so that it may transfer electrons to a protein acceptor like the NOS oxygenase domain, or to a generic protein acceptor like cytochrome c. In this way, the reductase domain structure cycles between closed and open conformations to deliver electrons, according to a conformational equilibrium that determines the movements and thus the electron flux capacity of the FMN domain (25, 28, 32, 34, 35, 37). A similar conformational switching mechanism is thought to enable electron transfer through the FMN domain in the related flavoproteins NADPH-cytochrome P450 reductase and methionine synthase reductase (3842).Open in a separate windowFig. 1.(A) The nNOSr ribbon structure (from PDB: 1TLL) showing bound FAD (yellow) in FNR domain (green), FMN (orange) in FMN domain (yellow), connecting hinge (blue), and the Cy3–Cy5 label positions (pink) and distance (42 Å, dashed line). (B) Cartoon of an equilibrium between the FMN-closed and FMN-open states, with Cy dye label positions indicated. (C) Cytochrome c reductase activity of nNOSr proteins in their CaM-bound and CaM-free states. Color scheme of bar graphs: Black, WT nNOSr unlabeled; Red, Cys-lite (CL) nNOSr unlabeled; Blue, E827C/Q1268C CL nNOSr unlabeled; and Dark cyan, E827C/Q1268C CL nNOSr labeled.NOS enzymes also contain a calmodulin (CaM) binding domain that is located just before the N terminus of the FMN domain (Fig. 1B), and this provides an important layer of regulation (25, 27). CaM binding to NOS enzymes increases electron transfer from NADPH through the reductase domain and also triggers electron transfer from the FMN domain to the NOS heme as is required for NO synthesis (31, 32). The ability of CaM, or similar signaling proteins, to regulate electron transfer reactions in enzymes is unusual, and the mechanism is a topic of interest and intensive study. It has long been known that CaM binding alters NOSr structure such that, on average, it populates a more open conformation (43, 44). Recent equilibrium studies have detected a buildup of between two to four discreet conformational populations in NOS enzymes and in related flavoproteins, and in some cases, have also estimated the distances between the bound FAD and FMN cofactors in the different species (26, 36, 37, 39, 40), and furthermore, have confirmed that CaM shifts the NOS population distribution toward more open conformations (34, 36, 45). Although valuable, such ensemble-averaged results about conformational states cannot explain how electrons transfer through these enzymes, or how CaM increases the electron flux in NOS, because answering these questions requires a coordinate understanding of the dynamics of the conformational fluctuations. Indeed, computer modeling has indicated that a shift toward more open conformations as is induced by CaM binding to nNOS should, on its own, actually diminish electron flux through nNOS and through certain related flavoproteins (38). Despite its importance, measuring enzyme conformational fluctuation dynamics is highly challenging, and as far as we know, there have been no direct measures on the NOS enzymes or on related flavoproteins, nor studies on how CaM binding might influence the conformational fluctuation dynamics in NOS.To address this gap, we used single-molecule fluorescence energy resonance transfer (FRET) spectroscopy to characterize individual molecules of nNOSr that had been labeled at two specific positions with Cyanine 3 (Cy3) donor and Cyanine 5 (Cy5) acceptor dye molecules, regarding their conformational states distribution and the associated conformational fluctuation dynamics, which in turn enabled us to determine how CaM binding impacts both parameters. This work provides a unique perspective and a novel study of the NOS enzymes and within the broader flavoprotein family, which includes the mammalian enzymes methionine synthase reductase (MSR) and cytochrome P450 reductase (CPR), and reveals how CaM’s control of the conformational behaviors may regulate the electron transfer reactions of NOS catalysis.  相似文献   

13.
Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality.The increasing incidence of antibiotic-resistant infections coupled with a declining antibiotic pipeline has created a global public health threat (16). Therefore there is a pressing need to expand our conceptual understanding of how antibiotics act and to use insights gained from such efforts to enhance our antibiotic arsenal. It has been proposed that different classes of bactericidal antibiotics, regardless of their drug–target interactions, generate varying levels of deleterious reactive oxygen species (ROS) that contribute to cell killing (7, 8). This unanticipated notion, built upon important prior work (911), has been extended and supported by multiple laboratories investigating wide-ranging drug classes (e.g., β-lactams, aminoglycosides, and fluoroquinolones) and bacterial species (e.g., Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Mycobacterium tuberculosis, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baumannii, Burkholderia cepecia, Streptococcus pneumonia, Enterococcus faecalis) using independent lines of evidence (1239). Importantly, these ongoing efforts have served to refine aspects of the initial model and show that antibiotic-induced ROS generation is a more complex process than originally suggested, likely involving additional means of production.The redox stress component of antibiotic lethality is hypothesized to derive from alterations to multiple core aspects of cellular physiology and stress response activation. Specifically, this component includes alterations to central metabolism, cellular respiration, and iron metabolism initiated by drug-mediated disruptions of target-specific processes and resulting cellular damage (Fig. 1A). Important support for this hypothesis can be found in pathogenic clinical isolates whose drug tolerance involves mutations in oxidative stress response and defense genes and not exclusively in drug target mutagenesis (4048).Open in a separate windowFig. 1.Bactericidal antibiotics promote the generation of toxic reactive species. (A) Bactericidal antibiotics of different classes are capable of inducing cell death by interfering with their primary targets and corrupting target-specific processes, resulting in lethal cellular damage. Target-specific interactions trigger stress responses that induce redox-related physiological alterations resulting in the formation of toxic reactive species, including ROS, which further contribute to cellular damage and death. (B) Treatment of wild-type E. coli with ampicillin (Amp, 5 μg/mL), gentamicin (Gent, 5 μg/mL), or norfloxacin (Nor, 250 ng/mL) induces ROS, detectable by several chemically diverse fluorescent dyes with ranging specificity. One-way ANOVA was performed to determine statistical significance against the no-dye autofluorescence control. The dyes used were 5/6-carboxy-2'',7''-dichlorodihydrofluorescein diacetate (Carboxy-H2DCFDA); 5/6-chloromethyl-2'',7''-dichlorodihydrofluorescein diacetate (CM-H2DCFDA); 4-amino-5-methylamino-2´,7´-diflurorescein diacetate (DAF-FM); 2'',7''-dichlorodihydrofluorescein diacetate (H2DCFDA); 3′-(p-hydroxyphenyl) fluorescein (HPF); OxyBURST Green (Oxyburst); and Peroxy-Fluor 2 (PF2). (C) Treatment of a quinolone-resistant strain (gyrA17) with norfloxacin does not produce detectable ROS. Data shown reflect mean ± SEM of three or more technical replicates. Where appropriate, statistical significance is shown and computed against the no-treatment control or no-dye control (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001).Recent critiques of this evolving model have misinterpreted an essential aspect of the hypothesis. Specifically, these recent studies (4951) are predicated on the notion that ROS are the sole arbiters of antibiotic lethality, thereby implying that the model suggests that antibiotics do not kill by disrupting their well-established, target-specific processes. However, the evolving model is completely consistent with the literature indicating that bactericidal antibiotics are capable of inducing lethal cellular damage via interference with target-specific processes, ultimately resulting in cell death. Rather than refute this traditional view of antibiotic action, the hypothesis extends it by suggesting that an additional component of toxicity results from ROS, which are generated as a downstream physiological consequence of antibiotics interacting with their traditional targets. In this respect, reactive species are thought to contribute causatively to drug lethality.However, an important gap exists in our general understanding of how bacteria respond physiologically to antibiotic–target interactions on a system-wide level, how these responses contribute to antibiotic killing, and how the extracellular environment protects or exacerbates the intracellular contributions to cell death. Here, we use a multidisciplinary set of biochemical, enzymatic, biophysical, and genetic assays to address these issues and expand our understanding of antibiotic-induced physiological responses and factors contributing to antibiotic lethality. Data from the present work indicate that antibiotic lethality is accompanied by ROS generation and that such reactive species causatively contribute to antibiotic lethality.  相似文献   

14.
15.
16.
RNA functions are intrinsically tied to folding kinetics. The most elementary step in RNA folding is the closing and opening of a base pair. Understanding this elementary rate process is the basis for RNA folding kinetics studies. Previous studies mostly focused on the unfolding of base pairs. Here, based on a hybrid approach, we investigate the folding process at level of single base pairing/stacking. The study, which integrates molecular dynamics simulation, kinetic Monte Carlo simulation, and master equation methods, uncovers two alternative dominant pathways: Starting from the unfolded state, the nucleotide backbone first folds to the native conformation, followed by subsequent adjustment of the base conformation. During the base conformational rearrangement, the backbone either retains the native conformation or switches to nonnative conformations in order to lower the kinetic barrier for base rearrangement. The method enables quantification of kinetic partitioning among the different pathways. Moreover, the simulation reveals several intriguing ion binding/dissociation signatures for the conformational changes. Our approach may be useful for developing a base pair opening/closing rate model.RNAs perform critical cellular functions at the level of gene expression and regulation (14). RNA functions are determined not only by RNA structure or structure motifs [e.g., tetraloop hairpins (5, 6)] but also by conformational distributions and dynamics and kinetics of conformational changes. For example, riboswitches can adopt different conformations in response to specific conditions of the cellular environment (7, 8). Understanding the kinetics, such as the rate and pathways for the conformational changes, is critical for deciphering the mechanism of RNA function (919). Extensive experimental and theoretical studies on RNA folding kinetics have provided significant insights into the kinetic mechanism of RNA functions (1936). However, due to the complexity of the RNA folding energy landscape (3746) and the limitations of experimental tools (4755), many fundamental problems, including single base flipping and base pair formation and fraying, remain unresolved. These unsolved fundamental problems have hampered our ability to resolve other important issues, such as RNA hairpin and larger structure folding kinetics. Several key questions remain unanswered, such as whether the hairpin folding is rate-limited by the conformational search of the native base pairs, whose formation leads to fast downhill folding of the whole structure, or by the breaking of misfolded base pairs before refolding to the native structure (18, 19, 5473).Motivated by the need to understand the basic steps of nucleic acids folding, Hagan et al. (74) performed forty-three 200-ps unfolding trajectories at 400 K and identified both on- and off-pathway intermediates and two dominant unfolding pathways for a terminal C-G base pair in a DNA duplex. In one of the pathways, base pairing and stacking interactions are broken concomitantly, whereas in the other pathway, base stacking is broken after base pairing is disrupted. Furthermore, the unfolding requires that the Cyt diffuse away from the pairing Gua to a distance such that the C-G hydrogen bond cannot reform easily. More recently, Colizzi and Bussi (75) performed molecular dynamics (MD) pulling simulations for an RNA duplex and construct free energy landscape from the pulling simulation. The simulation showed that the base pair opening reaction starts with the unbinding of the 5′-base, followed by the unbinding of the 3′-base (i.e., the 5′-base is less stable than the 3′-base). These previous unfolding simulations offered significant insights into the pathways and transition states. However, as shown below, several important issues remain.One intriguing problem is the rate model for base pairing. There are currently three main types of models. In the first type of model, the barrier ΔG+ for closing a base pair is dominated by the entropic cost ΔS for positioning the nucleotides to the base-paired configuration and the barrier ΔG for opening a base pair is the enthalpic cost ΔH for disrupting the hydrogen bonds and base stacking interactions (18, 59, 60). In the second type of model, ΔG+ is the net free energy change for base pairing ΔG = ΔH ? TΔS and ΔG is zero (76, 77). In the third type of model, ΔG±=±ΔG/2 is used (78). In addition to the above three main types, other models, such as more sophisticated hybrid rate models, have been proposed (29).In this paper, we report a hybrid method (see Fig. 1) to investigate the single base pairing process. In contrast to the previous simulations for temperature- or force-induced unfolding reactions, we directly model the folding process here (i.e., the base pair closing process). Specifically, we use MD simulations to identify the conformational clusters. Based on the network of the conformational clusters as a reduced conformational ensemble, we apply kinetic Monte Carlo (KMC) and master equation (ME) methods to elucidate the detailed roles of base pairing and stacking interactions, as well as the roles of water and ions (7982). The study reveals previously unidentified kinetics pathways, misfolded states, and rate-limiting steps. A clear understanding of the microscopic details of the elementary kinetic move is a prerequisite for further rigorous study of large-scale RNA kinetic studies. The method described here may provide a feasible way to develop a rate model for the base pair/stack-based kinetic move set. Furthermore, the mechanism of RNA single base folding may provide useful insights into many biologically significant processes, such as nucleotide flipping (83) in helicases and base pair fraying (84) (as the possible first step for nucleic duplex melting in nucleic acid enzymatic processes).Open in a separate windowFig. 1.(A) Folding of a single nucleotide (G1, red) from the unfolded (Left) to the native folded (Right) state. (B) Exhaustive sampling for the (discrete) conformations of the G1 nucleotide (Right) through enumeration of the torsion angles (formed by the blue bonds). (C) Schematic plot shows the trajectories on the energy landscape (depicted with two reaction coordinates for clarity) explored by the MD simulations. The lines, open circles, and hexagons denote the trajectories; the initial states; and the (centroid structures of the) clusters, respectively. (D) Conformational network based on six clusters. (E) The rmsds to the different clusters provide information about the structural changes in a MD trajectory.  相似文献   

17.
The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ∼3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plant-derived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host.Monoterpene indole alkaloids (MIAs) are a diverse family of complex nitrogen-containing plant-derived metabolites (1, 2). This metabolite class is found in thousands of plant species from the Apocynaceae, Loganiaceae, Rubiaceae, Icacinaceae, Nyssaceae, and Alangiaceae plant families (2, 3). Many MIAs and MIA derivatives have medicinal properties; for example, vinblastine, vincristine, and vinflunine are approved anticancer therapeutics (4, 5). These structurally complex compounds can be difficult to chemically synthesize (6, 7). Consequently, industrial production relies on extraction from the plant, but these compounds are often produced in small quantities as complex mixtures, making isolation challenging, laborious, and expensive (810). Reconstitution of plant pathways in microbial hosts is proving to be a promising approach to access plant-derived compounds as evidenced by the successful production of terpenes, flavonoids, and benzylisoquinoline alkaloids in microorganisms (1119). Microbial hosts can also be used to construct hybrid biosynthetic pathways to generate modified natural products with potentially enhanced bioactivities (8, 20, 21). Across numerous plant species, strictosidine is believed to be the core scaffold from which all 3,000 known MIAs are derived (1, 2). Strictosidine undergoes a variety of redox reactions and rearrangements to form the thousands of compounds that comprise the MIA natural product family (Fig. 1) (1, 2). Due to the importance of strictosidine, the last common biosynthetic intermediate for all known MIAs, we chose to focus on heterologous production of this complex molecule (1). Therefore, strictosidine reconstitution represents the necessary first step for heterologous production of high-value MIAs.Open in a separate windowFig. 1.Strictosidine, the central intermediate in monoterpene indole alkaloid (MIA) biosynthesis, undergoes a series of reactions to produce over 3,000 known MIAs such as vincristine, quinine, and strychnine.  相似文献   

18.
The phenotypic effect of an allele at one genetic site may depend on alleles at other sites, a phenomenon known as epistasis. Epistasis can profoundly influence the process of evolution in populations and shape the patterns of protein divergence across species. Whereas epistasis between adaptive substitutions has been studied extensively, relatively little is known about epistasis under purifying selection. Here we use computational models of thermodynamic stability in a ligand-binding protein to explore the structure of epistasis in simulations of protein sequence evolution. Even though the predicted effects on stability of random mutations are almost completely additive, the mutations that fix under purifying selection are enriched for epistasis. In particular, the mutations that fix are contingent on previous substitutions: Although nearly neutral at their time of fixation, these mutations would be deleterious in the absence of preceding substitutions. Conversely, substitutions under purifying selection are subsequently entrenched by epistasis with later substitutions: They become increasingly deleterious to revert over time. Our results imply that, even under purifying selection, protein sequence evolution is often contingent on history and so it cannot be predicted by the phenotypic effects of mutations assayed in the ancestral background.Whether a heritable mutation is advantageous or deleterious to an organism often depends on the evolutionary history of the population. A mutation that is beneficial at the time of its introduction may confer its beneficial effect only in the presence of other potentiating or permissive mutations (19). Thus, the fate of a mutation arising in a population may be contingent on previous mutations (1013). Conversely, once a mutation has fixed in a population, the mutation becomes part of the genetic background onto which subsequent modifications are introduced. Because the beneficial effects of the subsequent modifications may depend on the focal mutation, as time passes reversion of the focal mutation may become increasingly deleterious, leading to a type of evolutionary conservatism, or entrenchment (1418).In the context of protein evolution, the effects of contingency and entrenchment are most easily studied by considering a sequence of single amino acid changes (19) that extends both forward and backward in time from some focal substitution. To assess the roles of contingency and entrenchment we can study the degree to which each focal substitution was facilitated by previous substitutions, and the degree to which the focal substitution influences the subsequent course of evolution (Fig. 1A).Open in a separate windowFig. 1.(A) A schematic model indicating how a focal substitution may be contingent on prior substitutions and may constrain future substitutions along an evolutionary trajectory, owing to epistasis. (B) A model of protein evolution under weak mutation and purifying selection for thermodynamic stability. Starting from the wild-type sequence of argT we propose 10 random 1-aa point mutations. For each of the proposed mutants we compute its predicted stability (ΔG) using FoldX, and its associated fitness. The fitness function is assumed to be either Gaussian or semi-Gaussian, with a maximum at the wild-type stability. One of the proposed mutants fixes in the population, based on its relative fixation probability under the Moran model with effective population size Ne. This process is iterated for 30 consecutive substitutions to produce an evolutionary trajectory. We simulate 100 replicate trajectories, each initiated at the wild-type argT sequence.Dependencies within a sequence of substitutions are closely connected to the concept of epistasis—that is, the idea that the phenotypic effect of a mutation at a particular genetic site may depend on the genetic background in which it arises (2024). In the absence of epistasis, a mutation has the same effect regardless of its context and therefore regardless of any prior history or subsequent evolution. By contrast, in the presence of epistasis, each substitution may be contingent on the entire prior history of the protein, and it may constrain all subsequent evolution.The potential for epistasis to play an important role in evolution, including protein evolution, has not been overlooked by researchers (1, 8, 2534), nor have the concepts of contingency (3, 4, 9, 12, 3538) and, more recently, entrenchment (18, 39, 40). However, most studies have addressed the role of epistasis in the context of adaptive evolution (19, 27, 30, 31, 36, 38), whereas the consequences of epistasis under purifying selection have received less attention (18, 4144). Indeed, although some more sophisticated models have been proposed (e.g., refs. 4550), all commonly used phylogenetic models of long-term protein evolution assume that epistasis is absent so that sites evolve independently (5156).Here we explore the relationships between epistasis, contingency, and entrenchment under long-term purifying selection on protein stability. Our analysis combines computational models for protein structures with population-genetic models for evolutionary dynamics. We use a force-field-based model, FoldX (57), to characterize the effects of point mutations on a protein’s stability and fitness. This approach allows us to simulate evolutionary trajectories of protein sequences under purifying selection, by the sequential fixation of nearly neutral mutations. We can then dissect the epistatic relationships between these substitutions by systematically inserting or reverting particular substitutions at various time points along the evolutionary trajectory.Our analysis considers epistasis both at the level of protein stability and at the level of fitness. Whereas empirical studies in diverse proteins have demonstrated that the stability effects of point mutations are typically additive across sites (58, 59), in this study we are specifically interested in epistasis for stability among the mutations that fix during evolution. Even if most random mutations are virtually additive in their effects on stability, the mutations that fix under purifying selection are highly nonrandom, and so there is reason to suspect that epistasis for stability may be enriched among such mutations. Moreover, because the mapping from stability to fitness is itself nonlinear (18, 26, 60, 61) and because selection is sensitive to selection coefficients as small as the inverse of the population size (62), even slight variation in the stability effects of mutations across different genetic backgrounds may be sufficient to influence the course of evolution.Using the computational approach summarized above, we will demonstrate that the nearly neutral mutations that fix under purifying selection are, indeed, often epistatic with each other for both stability and fitness. In particular, we find that each mutation that fixes is typically permitted to fix by the presence of preceding substitutions—that is, most substitutions would be too deleterious to fix were it not for epistasis with preceding substitutions. Conversely, we also find that mutations that fix typically become entrenched over time by epistasis—so that a substitution that was nearly neutral when it fixed becomes increasingly deleterious to revert as subsequent substitutions accumulate (18, 39). These results imply an important role for epistasis in shaping the course of sequence evolution in a protein under selection to maintain thermodynamic stability.  相似文献   

19.
The recently discovered fungal and bacterial polysaccharide monooxygenases (PMOs) are capable of oxidatively cleaving chitin, cellulose, and hemicelluloses that contain β(1→4) linkages between glucose or substituted glucose units. They are also known collectively as lytic PMOs, or LPMOs, and individually as AA9 (formerly GH61), AA10 (formerly CBM33), and AA11 enzymes. PMOs share several conserved features, including a monocopper center coordinated by a bidentate N-terminal histidine residue and another histidine ligand. A bioinformatic analysis using these conserved features suggested several potential new PMO families in the fungus Neurospora crassa that are likely to be active on novel substrates. Herein, we report on NCU08746 that contains a C-terminal starch-binding domain and an N-terminal domain of previously unknown function. Biochemical studies showed that NCU08746 requires copper, oxygen, and a source of electrons to oxidize the C1 position of glycosidic bonds in starch substrates, but not in cellulose or chitin. Starch contains α(1→4) and α(1→6) linkages and exhibits higher order structures compared with chitin and cellulose. Cellobiose dehydrogenase, the biological redox partner of cellulose-active PMOs, can serve as the electron donor for NCU08746. NCU08746 contains one copper atom per protein molecule, which is likely coordinated by two histidine ligands as shown by X-ray absorption spectroscopy and sequence analysis. Results indicate that NCU08746 and homologs are starch-active PMOs, supporting the existence of a PMO superfamily with a much broader range of substrates. Starch-active PMOs provide an expanded perspective on studies of starch metabolism and may have potential in the food and starch-based biofuel industries.Polysaccharide monooxygenases (PMOs) are enzymes secreted by a variety of fungal and bacterial species (15). They have recently been found to oxidatively degrade chitin (68) and cellulose (814). PMOs have been shown to oxidize either the C1 or C4 atom of the β(1→4) glycosidic bond on the surface of chitin (6, 7) or cellulose (1012, 14), resulting in the cleavage of this bond and the creation of new chain ends that can be subsequently processed by hydrolytic chitinases and cellulases. Several fungal PMOs were shown to significantly enhance the degradation of cellulose by hydrolytic cellulases (9), indicating that these enzymes can be used in the conversion of plant biomass into biofuels and other renewable chemicals.There are three families of PMOs characterized thus far: fungal PMOs that oxidize cellulose (912) (also known as GH61 and AA9); bacterial PMOs that are active either on chitin (6, 8) or cellulose (8, 13) (also known as CBM33 and AA10); and fungal PMOs that oxidize chitin (AA11) (7). Sequence homology between these three families is very low. Nevertheless, the available structures of PMOs from all three families reveal a conserved fold, including an antiparallel β-sandwich core and a highly conserved monocopper active site on a flat protein surface (Fig. 1A) (2, 6, 7, 9, 10, 1517). Two histidine residues in a motif termed the histidine brace coordinate the copper center. The N-terminal histidine ligand binds in a bidentate mode, and its imidazole ring is methylated at the Nε position in fungal PMOs (Fig. 1A).Open in a separate windowFig. 1.(A) Representative overall and active site structures of fungal PMOs (PDB ID code 2YET) (10). (B) Structure of cellulose (18, 19). Chitin also contains β(1→4) linkages and has similar crystalline higher order structure to cellulose. (C) Model structure of amylopectin (2325). Hydrogen bonds are shown with green dashed lines.Considering the conserved structural features, it is not surprising that the currently known PMOs act on substrates with similar structures. Cellulose and chitin contain long linear chains of β(1→4) linked glucose units and N-acetylglucosamine units, respectively (Fig. 1B). The polymer chains form extensive hydrogen bonding networks, which result in insoluble and very stable crystalline structures (1821). PMOs are thought to bind to the substrate with their flat active site surface, which orients the copper center for selective oxidation at the C1 or C4 position (6, 16, 22). Some bacterial chitin-binding proteins are cellulose-active PMOs (8, 13, 14), further suggesting that the set of PMO substrates is restricted to β(1→4) linked polymers of glucose and glucose derivatives.Here, we report on the identification of new families of PMOs that contain several key features of previously characterized PMOs, but act on substrates different from cellulose or chitin. A member of one of these novel families of PMOs, NCU08746, was shown to oxidatively cleave amylose, amylopectin, and starch. We designate the NCU08746 family as starch-active PMOs. Both amylose and amylopectin contain linear chains of α(1→4) linked glucose, whereas the latter also contains α(1→6) glycosidic linkages at branch points in the otherwise α(1→4) linked polymer. Unlike cellulose and chitin, amylose and amylopectin do not form microcrystals; instead, they exist in disordered, single helical, and double helical forms (2327) (see Fig. 1C for example). Starch exists partially in nanocrystalline form, but lacks the flat molecular surfaces as those found in chitin and cellulose. The discovery of starch-active PMOs shows that this oxidative mechanism of glycosidic bond cleavage is more widespread than initially expected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号