首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we characterized five Ullrich scleroatonic muscular dystrophy patients (two Italians, one Belgian, and two Turks) with a clinical phenotype showing different degrees of severity, all carrying mutations localized in COL6A1. We sequenced the three entire COL6 complementary DNA. Three of five patients have recessive mutations: two patients (P1and P3) have homozygous single-nucleotide deletions, one in exon 9 and one in exon 22; one patient (P2) has a homozygous single-nucleotide substitution leading to a premature termination codon in exon 31. The nonsense mutation of P2 also causes a partial skipping of exon 31 with the formation of a premature termination codon in exon 32 in 15% of the total COL6A1 messenger RNA. The remaining two patients carry a heterozygous glycine substitution in exons 9 and 10 inside the triple-helix region; both are dominant mutations because the missense mutations are absent in the DNA of their respective parents. As for the three homozygous recessive mutations, the apparently healthy consanguineous parents all carry a heterozygous mutated allele. Here, for the first time, we report a genotype-phenotype correlation demonstrating that heterozygous glycine substitutions in the triple-helix domain of COL6A1 are dominant and responsible for a milder Ullrich scleroatonic muscular dystrophy phenotype, and that recessive mutations in COL6A1 correlate with more severe clinical and biochemical Ullrich scleroatonic muscular dystrophy phenotypes.  相似文献   

2.
We have identified highly similar heterozygous COL6A1 genomic deletions, spanning from intron 8 to exon 13 or intron 13, in two patients with Ullrich congenital muscular dystrophy and the milder Bethlem myopathy. The 5' breakpoints of both deletions are located within a minisatellite in intron 8. The mutations cause in-frame deletions of 66 and 84 amino acids in the amino terminus of the triple-helical domain, leading to intracellular accumulation of mutant polypeptides and reduced extracellular collagen VI microfibrils. Our studies identify a deletion-prone region in COL6A1 and suggest that similar mutations can lead to congenital muscle disorders of different clinical severity.  相似文献   

3.
Mutation in the fukutin-related protein (FKRP) gene causes alpha-dystroglycanopathies, a group of autosomal recessive disorders associated with defective glycosylated alpha-dystroglycan (α-DG). The disease phenotype shows a broad spectrum, from the most severe congenital form involving brain and eye anomalies to milder limb-girdle form. FKRP-related alpha-dystroglycanopathies are common in European countries. However, a limited number of patients have been reported in Asian countries. Here, we presented the clinical, pathological, and genetic findings of nine patients with FKRP mutations identified at a single muscle repository center in Japan. Three and six patients were diagnosed with congenital muscular dystrophy type 1C and limb-girdle muscular dystrophy 2I, respectively. None of our Asian patients showed the most severe form of alpha-dystroglycanopathy. While all patients showed a reduction in glycosylated α-DG levels, to variable degrees, these levels did not correlate to clinical severity. Fifteen distinct pathogenic mutations were identified in our cohort, including five novel mutations. Unlike in the populations belonging to European countries, no common mutation was found in our cohort.  相似文献   

4.
Respiratory disease is a leading cause of morbidity in people with Duchenne muscular dystrophy and also occurs in the golden retriever muscular dystrophy (GRMD) model. We have previously shown that adult GRMD dogs have elevated expiratory flow as measured non-invasively during tidal breathing. This abnormality likely results from increased chest and diaphragmatic recoil associated with fibrosis and remodeling. Treatments must reverse pathologic effects on the diaphragm and other respiratory muscles to maximally reduce disease morbidity and mortality. Here, we extended our work in adults to younger GRMD dogs to define parameters that would be helpful in preclinical trials. Tidal breathing spirometry and respiratory inductance plethysmography were performed in GRMD dogs at approximately 3 and 6 months of age, corresponding to approximately 5–10 years in DMD, when clinical trials are often conducted. Expiratory flows were markedly elevated in GRMD versus normal dogs at 6 months. Values increased in GRMD dogs between 3 and 6 months, providing a 3-month window to assess treatment efficacy. These changes in breathing mechanics have not been previously identified at such an early age. Expiratory flow measured during tidal breathing of unsedated young GRMD dogs could be a valuable marker of respiratory mechanics during preclinical trials.  相似文献   

5.
6.
7.
Collagen VI mutations cause mild Bethlem myopathy and severe, progressive Ullrich congenital muscular dystrophy (UCMD). We identified a novel homozygous COL6A1 premature termination mutation in a UCMD patient that causes nonsense-mediated mRNA decay. Collagen VI microfibrils cannot be detected in muscle or fibroblasts. The parents are heterozygous carriers of the mutation and their fibroblasts produce reduced amounts of collagen VI. The molecular findings in the parents are analogous to those reported for a heterozygous COL6A1 premature termination mutation that causes Bethlem myopathy. However, the parents of our UCMD proband are clinically normal. The proband's brother, also a carrier, has clinical features consistent with a mild collagen VI phenotype. Following a request for prenatal diagnosis in a subsequent pregnancy we found the fetus was a heterozygous carrier indicating that it would not be affected with severe UCMD. COL6A1 premature termination mutations exhibit variable penetrance necessitating a cautious approach to genetic counselling.  相似文献   

8.
The three major collagen VI genes: COL6A1, COL6A2, and COL6A3 encode microfibrillar components of extracellular matrices in multiple tissues including muscles and tendons. Pathogenic variants in the collagen VI genes cause collagen VI-related dystrophies representing a continuum of conditions from Bethlem myopathy at the milder end to Ullrich congenital muscular dystrophy at the more severe end. Here we describe a pathogenic variant in the COL6A1 gene (NM_001848.3; c.1741-6G>A) found in homozygosity in three patients with Ullrich congenital muscular dystrophy. The patients suffered from severe muscle impairment characterised by proximal weakness, distal hyperlaxity, joint contractures, wheelchair-dependency, and use of nocturnal non-invasive ventilation. The pathogenicity was verified by RNA analyses showing that the variant induced aberrant splicing leading to a frameshift and loss of function. The analyses were in line with immunocytochemistry studies of patient-derived skin fibroblasts and muscle tissue demonstrating impaired secretion of collagen VI into the extracellular matrix. Thereby, we add the variant c.1741-6G>A to the list of pathogenic, recessive, splice variants in COL6A1 causing Ullrich congenital muscular dystrophy. The variant is listed in ClinVar as of “uncertain significance” and “likely benign” and may presumably have been overlooked in other patients.  相似文献   

9.
10.
Two mutational mechanisms are known to underlie Ullrich congenital muscular dystrophy (UCMD): heterozygous dominant negatively-acting mutations and recessively-acting loss-of-function mutations. We describe large genomic deletions on chromosome 21q22.3 as a novel type of mutation underlying recessively inherited UCMD in 2 families. Clinically unaffected parents carrying large genomic deletions of COL6A1and COL6A2also provide conclusive evidence that haploinsufficiency for COL6A1and COL6A2is not a disease mechanism for Bethlem myopathy. Our findings have important implications for the genetic evaluation of patients with collagen VI-related myopathies as well as for potential therapeutic interventions for this patient population.  相似文献   

11.
Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of muscle disorders, presenting at birth or early infancy with hypotonia, muscle weakness, joint contractures, and dystrophic changes in the muscles. Merosin-deficient CMD (MDCMD) is rare in Asian populations, but more common in Caucasians, comprising about 50% of CMDs. We report, for the first time in Korea, eight patients with merosin-deficient CMD, confirmed by immunohistochemical staining of muscle or skin samples. We also describe their wide spectrum of clinical features and neuroimaging findings. Among 35 patients diagnosed as CMD, almost 23% of them were proved to have MDCMD with typical phenotypic presentation. We infer that prevalence of MDCMD in Korea may not be as low as expected. One of the patients was diagnosed by skin biopsy, which is good alternative for diagnosis of MDCMD.  相似文献   

12.
13.
14.
Ullrich's congenital muscular dystrophy (UCMD) is an autosomal recessive myopathy characterised by neonatal muscle weakness, proximal joint contractures and distal hyperlaxity. Mutations in the COL6A1, COL6A2 (21 q22.3) and COL6A3 (2 q37) genes, encoding the alpha 1, alpha 2 and alpha 3 chains of collagen VI, respectively, have been recently identified as responsible for UCMD in a total of 9 families. We investigated in detail the clinical and morphological phenotype of 15 UCMD patients from 11 consanguineous families showing potential linkage either to 21 q22.3 (6 families) or to 2 q37 (5 families). Collagen VI deficiency was confirmed on muscle biopsies or skin fibroblasts in 8 families. Although all patients shared a common phenotype, a great variability in severity was observed. Collagen VI deficiency in muscle or cultured fibroblasts was complete in the severe cases and partial in the milder ones, which suggests a correlation between the degree of collagen VI deficiency and the clinical severity in UCMD. No significant phenotypical differences were found between the families linked to each of the 2 loci, which confirms UCMD as a unique entity with underlying genetic heterogeneity.  相似文献   

15.
Fukuyama-type congenital muscular dystrophy (FCMD) is an autosomal recessive disorder prevalent in Japan, characterized by cobblestone lissencephaly and dystrophic changes in skeletal muscle, resulting in mental retardation, epilepsy and motor impairment. FCMD patients in Japan carry at least one copy of an ancestral founder mutation, a 3 kb insertion in a 3'-untranslated region, that results in a reduction in fukutin mRNA levels. We analyzed 35 patients with FCMD and found 18 patients carried a homozygous founder mutation (homozygotes) and 17 a combined heterozygous between founder mutation and a nonsense or missense mutation (heterozygotes). During an average follow-up of over 10 years, 61% of homozygotes and 82% of heterozygotes developed febrile or afebrile seizures. The ages at onset of febrile and afebrile seizures on average were 5.4 and 4.6 years, respectively, in homozygotes and 3.6 and 3.7 years, respectively, in heterozygotes. Repeated seizures were treated with antiepileptic drugs. While all homozygotes showed good seizure control, four heterozygotes had intractable seizures. Mutations other than the 3 kb insertion were identified in seven of 12 heterozygotes examined. Five patients with a nonsense mutation in exon 3 and one with a missense mutation in exon 5 had a severe phenotype and some showed intractable seizures. On the other hand, one with a nonsense mutation in exon 8 had only one febrile seizure. It was concluded mutational analysis of the FCMD gene could predict seizure prognosis. Heterozygotes usually developed seizures earlier than homozygotes and some heterozygotes showed intractable seizures. Mutational analysis other than of the 3 kb insertion may also help to predict seizure prognosis.  相似文献   

16.
Fukuyama-type congenital muscular dystrophy (FCMD) is characterized by muscular dystrophy and cortical dysgenesis of the cerebrum and cerebellum. We investigated the extent and nature of tauopathy in the brains of 7 postfetal (14-34 years of age) and 2 fetal (18- and 20-week gestational age) FCMD cases. In all postfetal cases, tauopathy was found in the areas of cortical dysgenesis in the cerebrum, in addition to predictable sites such as the hippocampus. In fetal cases, the neuropil of malformed cerebral cortex was diffusely immunostained with anti-aberrantly phosphorylated tau antibodies. By immunoelectron microscopy, the epitope of the antibodies was associated with microtubule-like bundles within cellular processes protruding through disrupted glia limitans. In Western blot analysis, a unique 50-kDa band of tau was detected in a fetal and a postfetal case. In addition, 3 to 4 tau bands of 60 to 68 kD, similar to tau in Alzheimer disease, were also detected in the latter. After dephosphorylation, the insoluble tau from the fetal and the postfetal cases showed highly similar immunoblotting patterns. This anomalous phosphorylation of tau may be related to the development of the cortical dysgenesis in FCMD and may shed light on the biologic function of tau in the development of the central nervous system.  相似文献   

17.
The spectrum of nonmuscular involvement in six children with merosin-negative congenital muscular dystrophy is described. In all children, biochemical, neuroradiologic, cardiac, and neurophysiologic studies were performed. Cerebral structures that were myelinated at gestation, including internal capsule, corpus callosum, brainstem, and cerebellar white matter, demonstrated no abnormalities, whereas the periventricular and subcortical white matter, which were myelinated in the first postnatal year, demonstrated signs of leukoencephalopathy. Cerebrospinal fluid analysis revealed an elevated albumin cerebrospinal fluid to serum ratio in the younger children. Electroencephalogram results were abnormal in the two elder children. One child suffered from congestive cardiomyopathy. The increase in nerve conduction velocity in these children over the years lagged behind those of healthy patients, pointing to a demyelinating neuropathy. We conclude that in merosin-negative congenital muscular dystrophy patients, nonmuscular involvement includes the central and peripheral nervous system and the heart. The pattern of myelination of the brain and nerve conduction slowing suggests a myelination arrest. Merosin deficiency can give rise to a congestive cardiomyopathy, which is of no clinical relevance in the majority of children.  相似文献   

18.
Congenital muscular dystrophy (CMD) is a group of heterogeneous disorders characterized clinically by delayed milestones due to generalized muscle weakness and dystrophic muscle pathology. The discovery of fukutin, responsible gene for Fukuyama CMD (FCMD) and defective glycosylation in its muscle biopsy has lead significant advances in CMD researches, especially disorders with glycosylation defects to a dystroglycan (alphaDG). The highly glycosylated a DG is one of the major dystrophin-associated proteins anchored a basement membrane protein, laminin 2 to the dystrophin molecule. The disorders with the defective glycosylation are now categorized as a dystroglycanopathies which include FCMD, muscle-eye-brain (MEB) disease, Walker-Warburg syndrome (WWS) and diseases with mutations in fukutin-related protein (FKRP) and LARGE genes. Among them, MEB and WWS were proven to have mutations in the glycosyltransferase genes, POMGnT1 (protein O-mannose beta 1,2-N-acetylglucosaminyl/transferase 1) and POMT1 (protein O-mannosyltransferase 1), respectively, though others are still unknown how the glycosylation defect is induced. Although the disease with FKRP mutation has variable phenotypes from CMD to limb-girdle muscular dystrophy, others with defective to decreased a DG show CMD, central nervous system involvement with migration disorder (polymicrogyria) and ocular abnormalities.  相似文献   

19.
20.
We report a new form of congenital muscular dystrophy (CMD) in 4 patients from three unrelated families with probable autosomal-recessive inheritance. All patients had the clinical characteristics of merosin-positive congenital muscular dystrophy, but had marked mental retardation. The disease was slowly progressive and 1 patient died from dilated cardiomyopathy at the age of 13 years. In addition to dystrophic changes with necrosis and regeneration in muscle, the most striking finding was mitochondrial depletion in the center of the sarcoplasm. Mitochondria at the periphery of fibers were markedly enlarged (“megaconial” appearance) with complicated cristae, and contained a normal amount of mitochondrial DNA by in situ hybridization. Mitochondrial enlargement may represent functional compensation for mitochondrial depletion in the central sarcoplasm, where myofibrillar degeneration occurred. © 1998 John Wiley & Sons, Inc. Muscle Nerve, 21: 40–47, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号