首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-transgenic (wild-type) coho salmon (Oncorhynchus kisutch), growth hormone (GH) transgenic salmon (with highly elevated growth rates), and GH transgenic salmon pair fed a non-transgenic ration level (and thus growing at the non-transgenic rate) were examined for plasma hormone concentrations, and liver, muscle, hypothalamus, telencephalon, and pituitary mRNA levels. GH transgenic salmon exhibited increased plasma GH levels, and enhanced liver, muscle and hypothalamic GH mRNA levels. Insulin-like growth factor-I (IGF-I) in plasma, and growth hormone receptor (GHR) and IGF-I mRNA levels in liver and muscle, were higher in fully fed transgenic than non-transgenic fish. GHR mRNA levels in transgenic fish were unaffected by ration-restriction, whereas plasma GH was increased and plasma IGF-I and liver IGF-I mRNA were decreased to wild-type levels. These data reveal that strong nutritional modulation of IGF-I production remains even in the presence of constitutive ectopic GH expression in these transgenic fish. Liver GHR membrane protein levels were not different from controls, whereas, in muscle, GHR levels were elevated approximately 5-fold in transgenic fish. Paracrine stimulation of IGF-I by ectopic GH production in non-pituitary tissues is suggested by increased basal cartilage sulphation observed in the transgenic salmon. Levels of mRNA for growth hormone-releasing hormone (GHRH) and cholecystokinin (CCK) did not differ between groups. Despite its role in appetite stimulation, neuropeptide Y (NPY) mRNA was not found to be elevated in transgenic groups.  相似文献   

2.
3.
To examine the relative growth, endocrine, and gene expression effects of growth hormone (GH) transgenesis vs. GH protein treatment, wild-type non-transgenic and GH transgenic coho salmon were treated with a sustained-release formulation of recombinant bovine GH (bGH; Posilac). Fish size, specific growth rate (SGR), and condition factor (CF) were monitored for 14 weeks, after which endocrine parameters were measured. Transgenic fish had much higher growth, SGR and CF than non-transgenic fish, and bGH injection significantly increased weight and SGR in non-transgenic but not transgenic fish. Plasma salmon GH concentrations decreased with bGH treatment in non-transgenic but not in transgenic fish where levels were similar to controls. Higher GH mRNA levels were detected in transgenic muscle and liver but no differences were observed in GH receptor (GHR) mRNA levels. In non-transgenic pituitary, GH and GHR mRNA levels per mg pituitary decreased with bGH dose to levels seen in transgenic salmon. Plasma IGF-I was elevated with bGH dose only in non-transgenic fish, while transgenic fish maintained an elevated level of IGF-I with or without bGH treatment. A similar trend was seen for liver IGF-I mRNA levels. Thus, bGH treatment increased fish growth and influenced feedback on endocrine parameters in non-transgenic but not in transgenic fish. A lack of further growth stimulation of GH transgenic fish suggests that these fish are experiencing maximal growth stimulation via GH pathways.  相似文献   

4.
To better understand the role of growth hormone in regulating fish growth, the cDNA of growth hormone receptor (GHR) was cloned from the liver of masu salmon (Oncorhynchus masou) and characterized. The masu salmon GHR (msGHR) sequence revealed common features of a GHR, including a (Y/F)GEFS motif in the extracellular domain, a single transmembrane region, and Box 1 and Box 2 in the intracellular domain. However, the amino acid sequence identity was low (49%) compared to GHRs of other vertebrates including seven teleosts, and the putative msGHR protein lacked one pair of cysteine residues in the extracellular domain. To verify the identity of the msGHR, the recombinant protein of the extracellular domain was expressed with a histidine tag protein (His-msGHR-ECD), refolded and purified for analysis of its ligand specificity. In competition experiments, the specific binding between His-msGHR-ECD and radioiodine-labeled salmon GH was displaced completely by only salmon GH, and not by salmon prolactin or somatolactin. A real-time RT-PCR assay was used to measure salmon GHR mRNA in the liver of fed and fasted coho salmon (Oncorhynchus kisutch). The levels of hepatic GHR mRNA were lower in fasted fish compared to fed fish after 3 weeks, suggesting that GHR gene expression is reduced following a long-term fast. These results confirm the identity of the salmon GHR based on ligand specificity and response to fasting.  相似文献   

5.
The cDNA clones encoding for growth hormone (GH) of an Indian major carp rohu Labeo rohita were isolated from a cDNA library constructed from the poly(A)(+) RNA extracted from the pituitary glands of rohu. Partial GH cDNA of the rohu (3'-end) was amplified by RT-PCR and used as probe to screen the cDNA library. Full-length GH-specific cDNA clones (1180 bp) were isolated and sequenced. The sequence contains 48-bp 5'-noncoding region followed by an ORF of 621 bp and a 3'-noncoding region of 521 bp. The peptide shares about 90% identity with the GH of Cyprinus carpio (Linn.) and >84% identity with GH sequences of other cyprinids. The GH-encoding cDNA of rohu has been cloned into expression vectors and GH protein has been over expressed in Escherichia coli and purified as a soluble protein. The GH cDNA was cloned into a bicistronic vector with EGFP; injection of in vitro transcribed GH-EGFP mRNA into zebrafish embryo has resulted in EGFP expression confirming the cloned GH cDNA is functional in fish and the IRES element could be effectively used in fish for bicistronic expression of foreign genes.  相似文献   

6.
The hormone insulin-like growth factor-I (IGF-I) regulates vertebrate growth. The liver produces most circulating IGF-I, under the control of pituitary growth hormone (GH) and nutritional status. To study the regulation of liver IGF-I production in salmon, we established a primary hepatocyte culture system and developed a TaqMan quantitative real-time RT-PCR assay for salmon IGF-I gene expression. A portion of the coho salmon acidic ribosomal phosphoprotein P0 (ARP) cDNA was sequenced for use as a reference gene. A systematic bias across the 96 well PCR plate was discovered in an initial IGF-I assay, which was corrected when the assay was redesigned. IGF-I mRNA levels measured with the validated assay correlated well with levels measured with an RNase protection assay, and were highest in liver compared with other tissues. We examined the time course of hepatocyte IGF-I gene expression over 48 h in culture, the response to a range of GH concentrations in hepatocytes from fed and fasted fish, and potential effects of variation in IGF-I in the medium. IGF-I gene expression decreased over time in culture in hepatocytes in plain medium, and in cells treated with 5 nM GH with or without a combination of metabolic hormones (1 microM insulin, 100 nM triiodothyronine, and 0.1 nM dexamethasone). GH stimulated IGF-I gene expression at all time points. In cells treated with GH plus metabolic hormones, IGF-I gene expression was intermediate between the controls and GH alone. Increasing concentrations of GH resulted in biphasic IGF-I gene expression response curves in cells from fed and fasted fish, with the threshold for stimulation from 0.5 to 2.5 nM GH, maximal response from 5 to 50 nM, and a reduced response at 500 nM. Medium IGF-I (5 nM) did not affect basal or GH stimulated IGF-I gene expression. This study shows that primary hepatocyte culture and the TaqMan IGF-I assay can be used to study the regulation of hepatic IGF-I gene expression in salmon, and provides the first evidence of a biphasic response to GH concentration in fish hepatocyte culture.  相似文献   

7.
The pituitary levels of mRNAs encoding gonadotropin (GTH) subunits (GTH alpha2 and IIbeta), prolactin (PRL), and somatolactin (SL) increased in chum salmon during the last stages of spawning migration. In the present study, changes in pituitary levels of mRNAs encoding GTH alpha2, Ibeta, and IIbeta; growth hormone (GH); PRL; and SL were examined in homing chum salmon of Sanriku stock to clarify whether the changes are associated with final maturation or freshwater (FW) adaptation. In 1993, fish were caught at four areas: off the coast of Sanriku (off-coast), the mouth of Otsuchi Bay (ocean), inside of Otsuchi Bay (bay), and the Otsuchi River (river). In addition, effects of hypoosmotic stimulation by transition from seawater (SW) to FW were examined in 1994 and 1995. The amounts of mRNAs were determined by dot-blot analyses or real-time polymerase chain reactions. The levels of GTH alpha2 and IIbeta mRNAs in the ocean, bay, and river fish were two to five times those in the off-coast fish, and the levels of SL mRNAs in the bay fish were two to four times those in the off-coast fish. The levels of GH and PRL mRNAs in the ocean and bay fish were significantly lower than those in the off-coast fish, and those in the river fish were three to five times those in the ocean and bay fish. In the SW-to-FW transition experiment in 1994, the levels of GTH alpha2, Ibeta, and IIbeta mRNAs transiently increased, whereas changes were insignificant in 1995. The levels of GH, PRL, and SL mRNAs increased in both SW and FW environments, and no apparent effects of SW-to-FW transition were observed. The present study suggests that in prespawning chum salmon, expression of genes encoding GTH alpha2, IIbeta, and SL elevates with final maturation regardless of osmotic environment. Hypoosmotic stimulation by transition from the SW-to-FW environment is not critical to modulate expression of genes for PRL. PRL gene expression can be elevated in SW fish that were sexually almost matured.  相似文献   

8.
Body growth in vertebrates is chiefly regulated by the GH/IGF axis. Pituitary growth hormone (GH) stimulates liver insulin-like growth factor-I (IGF-I) production. During fasting, plasma IGF-I levels decline due to the development of liver GH resistance, while GH levels generally increase. In mammals, decreased insulin during fasting is thought to cause liver GH resistance. However, the sequence of events in the GH/IGF axis response to fasting is not well characterized, especially in non-mammalian vertebrates. We assessed the time course of the GH/IGF axis response to fasting and increased ration in chinook salmon. Fish were placed on Fasting, Increased, or Control rations, and sampled daily for 4 days and at more widely spaced intervals through 29 days. Plasma IGF-I, GH, insulin, and 41 kDa IGF binding protein (putative salmon IGFBP-3), and liver IGF-I gene expression were measured. Control and Increased ration fish did not differ strongly. Plasma IGF-I and 41 kDa IGFBP were significantly lower in Fasted versus Control fish from day 4 onward, and liver IGF-I gene expression was significantly lower from day 6 onward. Liver IGF-I gene expression and plasma IGF-I levels were correlated. Plasma insulin was lower in Fasted fish from day 6 onward. There was a trend toward increased GH in Fasted fish on days 1-2, and GH was significantly increased Fasted fish from day 3 onward. Fasted GH first increased (days 1-3) to a plateau of 10-20 ng/ml (days 4-12) and then increased dramatically (days 15-29), suggesting that the GH response to fasting had three phases. The early increase in GH, followed by the decrease in plasma IGF-I after 4 days, suggests that GH resistance developed within 4 days.  相似文献   

9.
Gonadotropin-releasing hormone (GnRH) is considered to stimulate secretion of growth hormone (GH), prolactin (PRL), and somatolactin (SL) at particular stages of growth and sexual maturation in teleost fishes. We therefore examined seasonal variation in the pituitary levels of GH/PRL/SL mRNAs, and tried to clarify seasonal changes of responses to GnRH in expression of GH/PRL/SL genes, in the pituitaries of growing and maturing masu salmon (Oncorhynchus masou). Pituitary samples were monthly collected one week after implantation with GnRH analog (GnRHa). The levels of mRNAs encoding GH, PRL, and SL precursors in single pituitaries were determined by a real-time polymerase chain reaction method. The fork lengths and body weights of control and GnRHa-implanted fish of both sexes gradually increased and peaked out in September of 2-year-old (2+) when fish spawned. GnRHa implantation did not stimulate somatic growth, nor elevate gonadosomatic index (GSI) of 1+ and 2+ males, whereas it significantly increased GSI of 2+ females in late August to early September. The GnRHa-implanted 1+ males had higher levels of GH and PRL mRNAs in July, and SL mRNA from June to August than the control males. The levels of GH, PRL, and SL mRNAs in the control and GnRHa-implanted 1+ females, however, did not show any significant changes. Afterward, the PRL mRNA levels elevated in the control 2+ fish of both sexes in spring. GnRHa elevated the GH mRNA levels in both males and females in 2+ winter, and the PRL mRNA levels in females in early spring. Regardless of sex and GnRHa-implantation, the SL mRNA levels increased during sexual maturation. In growing and maturing masu salmon, expression of genes encoding GH, PRL, and SL in the pituitary is thus sensitive to GnRH in particular seasons probably in relation to physiological roles of the hormones.  相似文献   

10.
A recombinant vector containing antisense DNA complementary to Atlantic salmon (Salmo salar) sGnRH cDNA driven by specific promoter Pab derived from a corresponding sGnRH gene was introduced into rainbow trout (Oncorhynchus mykiss) eggs. This resulted in transgenic animals that had integrated one copy of the transgene into their genome and transmitted it through the germline. Antisense-sGnRH mRNA (AS) was expressed mainly in the brain of transgenic AS(+) fish. Levels of sGnRH endogenous mRNA in the brain were lower in 11-month-old AS(+) fish compared with nontransgenic AS(-) individuals from the same F2 progeny. sGnRH levels significantly decreased in the pituitary of transgenic males and females around the maturation period and in the brain of AS(+) immature females compared with controls. No reliable statistical difference was found in the levels of FSH and LH between AS(+) and AS(-) groups either in immature or mature fish. The majority of transgenic fish reached maturity at the same time as did nontransgenic individuals, although the maturation of AS(+) animals seemed to be more asynchronous. For the first time, the influence of antisense messengers on endogenous mRNA in transgenic fish and the corresponding protein is described.  相似文献   

11.
12.
The kinetics of growth hormone (GH) and prolactin (PRL) in coho salmon (Oncorhynchus kisutch) transferred from fresh water (FW) to seawater (SW) and vice versa were examined to help clarify the osmoregulatory roles of the two hormones during periods of migration to different salinities. Chum salmon GH or PRL was administered by a single injection intraarterially, and metabolic clearance rate (MCR) and secretion rate (SR) of injected hormones were calculated from the disappearance of the hormones from the plasma. When coho salmon smolts were acclimated to SW, MCR, SR, and plasma level of GH in SW-adapted (2-3 weeks) fish were twice as great as those in fish in FW. On the other hand, there was no difference in the kinetics of GH between the adult coho salmon in SW and those adapted to FW (2-3 weeks). The transfer of the adult coho salmon from SW to FW was followed after 2 days by a rise in plasma level and SR of PRL, which tended to stay at high levels after 2-3 weeks. The MCR of PRL increased significantly after 2-3 weeks in FW. These results support the likelihood of an important role of GH in SW adaptation and of PRL in FW adaptation in coho salmon.  相似文献   

13.
Total and free insulin-like growth factor-I (IGF-I) levels were quantified in plasma from growth hormone (GH)-treated and fasted coho salmon. Total IGF-I was measured by radioimmunoassay after acid-ethanol extraction and free IGF-I was separated from protein-bound IGF-I using ultrafiltration by centrifugation. Total and free IGF-I increased in plasma after GH treatment and decreased after fasting. The level of free IGF-I, however, was maintained at approximately 0.3% in both experiments. Unsaturated binding activity in plasma for IGF-I was assessed by incubation with (125)I-recombinant salmon IGF-I ((125)I-sIGF-I). Although there was no difference in binding activity between GH-treated and control fish, fasted fish showed higher binding activity than did fed fish, suggesting induction of unsaturated binding protein by fasting. IGF-binding protein (IGFBP) bands were observed in plasma of coho salmon by Western ligand blotting using (125)I-sIGF-I. A low-molecular-weight (22 kDa) band was clear in fasted fish but not detectable in fed fish. The IGFBP band, which has molecular weight similar to that of human IGFBP-3 (41 kDa), was more intense in GH-treated fish than in controls. The molecular distribution of IGF-I in plasma was examined by gel filtration under neutral conditions. Most IGF-I was eluted around 40 kDa. This result suggests that the major form of bound IGF-I in the circulation of coho salmon may be in a 40-kDa binary complex rather than in a 150-kDa ternary complex, as in mammals.  相似文献   

14.
Gene expression profile in liver of hB1F transgenic mice   总被引:1,自引:0,他引:1  
AIM: To analyze the tissue morphologic phenotype and liver gene expression profile of hB1F transgenic mice. METHODS: Transgene expression was analyzed with RT-PCR and Western blotting. For one of the transgenic mouse lines, tissue expression pattern of the transgene was also examined with immunochemical methods. Pathological analysis was used to examine the tissue morphologic phenotype of established transgenic mice. The liver gene expression profile of transgenic mice was analyzed with microchip, and some of the differentially expressed genes were verified with RT-PCR. RESULTS: The expressions of hB1F were shown in livers from 6 of 7 transgenic mouse lines. The overexpression of hB1F transgene did not cause pathological changes. Expressions of three genes were up-regulated, while down-regulation was observed for 25 genes. CONCLUSION: The overexpression of hB1F transgene may cause changes of gene expression profiles in the liver of transgenic mice.  相似文献   

15.
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) play major roles in the endocrine regulation of fish growth, but their interdependency and mode of action has not been well elucidated. The GH-IGF-I system is essential for normal vertebral growth in mouse, but this has not been studied in fish. To study the interplay between GH, IGF-I, and their receptors, postsmolt Atlantic salmon were studied during spring growth (January-June 2003). From January to June, fish were sampled regularly for plasma and vertebral bone. The vertebra was collected from the same anterior-posterior position. The growth hormone receptor (ghr) (There is no determined nomenclature of salmon genes but we stick to the nomenclature which is consequent for zebrafish, where all gene names are named with small letters and in italic.) expression in the vertebrae peaked in the end of February coinciding with high levels of plasma GH and IGF-I, and an increase of vertebral growth rate. From April to June, plasma IGF-I levels decreased together with ghr expression in the vertebrae, while plasma GH did not decrease. In May and June, expression of the igf-I receptor (igf-Ir) increased 4- to 5-fold, which coincided with an increase in bone density. The changes seen in gene expression of the IGF-I and GH receptors suggest that these hormones are involved in vertebral growth and bone density.  相似文献   

16.
Pacific salmon migrate from ocean through the natal river for spawning. Information on expression of genes encoding osmoregulatory hormones and migratory behavior is important for understanding of molecular events that underlie osmoregulation of homing salmon. In the present article, regulation of gene expression for osmoregulatory hormones in pre-spawning salmon was briefly reviewed with special reference to neurohypophysial hormone, vasotocin (VT), and pituitary hormones, growth hormone (GH) and prolactin (PRL). Thereafter, we introduced recent data on migratory behavior from SW to FW environment. In pre-spawning chum salmon, the hypothalamic VT mRNA levels increased in the males, while decreased in the females with loss of salinity tolerance when they were kept in SW. The amounts of GH mRNA in the pituitary decreased during ocean migration prior to entrance into FW. Hypo-osmotic stimulation by SW-to-FW transfer did not significantly affect the amount of PRL mRNA, but it was elevated in both SW and FW environments along with progress in final maturation. Behaviorally, homing chum salmon continued vertical movement between SW and FW layers in the mouth of the natal river for about 12h prior to upstream migration. Pre-spawning chum salmon in an aquarium, which allowed fish free access to SW and FW, showed that individuals with the lower plasma testosterone (T) and higher estradiol-17beta (E2) levels spent longer time in FW when compared with the SW fish. Taken together, neuroendocrine mechanisms that underlie salt and water homeostasis and migratory behavior from SW to FW may be under the control of the hypothalamus-pituitary-gonadal axis in pre-spawning salmon.  相似文献   

17.
18.
19.
20.
The zebrafish is an attractive vertebrate model for genetic studies of development, apoptosis, and cancer. Here we describe a transgenic zebrafish line in which T- and B-lymphoid cells express a fusion transgene that encodes the zebrafish bcl-2 protein fused to the enhanced green fluorescence protein (EGFP). Targeting EGFP-bcl-2 to the developing thymocytes of transgenic fish resulted in a 2.5-fold increase in thymocyte numbers and a 1.8-fold increase in GFP-labeled B cells in the kidney marrow. Fluorescent microscopic analysis of living rag2-EGFP-bcl-2 transgenic fish showed that their thymocytes were resistant to irradiation- and dexamethasone-induced apoptosis, when compared with control rag2-GFP transgenic zebrafish. To test the ability of bcl-2 to block irradiation-induced apoptosis in malignant cells, we compared the responsiveness of Myc-induced leukemias with and without EGFP-bcl-2 expression in living transgenic zebrafish. T-cell leukemias induced by the rag2-EGFP-Myc transgene were ablated by irradiation, whereas leukemias in double transgenic fish expressing both Myc and EGFP-bcl-2 were resistant to irradiation-induced apoptotic cell death. The forward genetic capacity of the zebrafish model system and the ability to monitor GFP-positive thymocytes in vivo make this an ideal transgenic line for modifier screens designed to identify genetic mutations or small molecules that modify bcl-2-mediated antiapoptotic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号