首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In mice, the genetic background determines susceptibility to hippocampal neurodegeneration induced by the excitotoxin kainic acid (KA). If genetic background plays as significant a role in the striatum, the area most affected in Huntington's disease (HD), it is important to characterize intrinsic differences in neuronal susceptibility in mouse strains used in HD models. This study was performed to investigate whether strain differences of different HD mouse models are determinants of striatal resistance to excitotoxicity. We conducted a survey of the susceptibility of striatal neurons to neurodegeneration induced by quinolinic acid and KA in six inbred, two outbred and two F1 hybrid (resistant*vulnerable) strains. These are the same strains in which we have assessed vulnerability to KA-induced hippocampal neurodegeneration. We found significant strain differences in response to both excitotoxins and, for the most part, the strain-dependent patterns of susceptibility to quinolinic acid and KA were similar and comparable to those previously found with KA-induced hippocampal neurodegeneration. There were some incongruities, suggesting that the genetic determinants may be different for the two forms of excitotoxicity or that there are important interacting factors. For example, the F1 hybrid strains exhibited neurodegeneration similar to their vulnerable parent, indicating that the vulnerable phenotype is dominant. This is in contrast to KA-induced hippocampal neurodegeneration, where F1 hybrids exhibit the resistant phenotype. These results are also of significance with regard to the issue of region-specific vulnerability in the context of different diseases in which genetic modifiers affect age of onset and/or disease progression.  相似文献   

2.
We assessed inbred, outbred and hybrid mouse strains for susceptibility to seizures and neurodegeneration induced by systemic administration of kainic acid (KA). Each strain showed a unique pattern of susceptibility to seizures as assessed by the dose necessary to induce continuous tonic clonic seizures, progression through six seizure levels, the number of mice that failed to satisfy seizure criteria, and seizure-induced mortality. In general, the C57BL/6, ICR, FVB/N, and BALB/c strains were resistant to seizures while the C57BL/10, DBA/2 J, and F1 C57BL/6*CBA/J strains were vulnerable. Neuronal cell death was quantified in four subfields of the hippocampus: CA3, the hilus of the dentate gyrus, CA1, and the dentate granule cell layer. Neurodegeneration was also semiquantitatively assessed in other brain regions including the neocortex, striatum, thalamus, hypothalamus and amygdala. Although there was variability in the extent of cell death within strains, there were significant differences in the amount of hippocampal cell death between strains and also different patterns of neurodegeneration in affected brain areas. In general, the C57BL/6, C57BL/10, and F1 C57BL/6*CBA/J strains were resistant to neurodegeneration while the FVB/N, ICR and DBA/2 J strains were vulnerable. The BALB/c strain was unique in that neurodegeneration was confined to the hippocampus. Consistent with previous findings, the resistant neurodegeneration phenotype was dominant in an F1 cross of resistant and vulnerable inbred strains. Our results, using a large number of mouse strains, definitively demonstrate that a mouse strain's seizure phenotype is not related to its neurodegeneration phenotype.  相似文献   

3.
Host genetic factors are likely to contribute to differences in individual susceptibility to seizure-induced excitotoxic neuronal damage. Similarly, inbred strains of mice differ in their susceptibility to the kainic acid (KA) model of seizure-induced cell death, but the genes responsible for the differences are not known. Here, we define the inheritance patterns of susceptibility to KA-induced neurodegeneration in the hippocampus by assessing 331 back-cross (N2) progeny of two inbred mouse strains, C57BL/6 and FVB/N, previously shown to display resistance and sensitivity to KA-induced cell death, respectively. Results of phenotypic analysis suggest that the difference in susceptibility between these two strains is conferred by a single dominant gene. Therefore, we used an N2 back-cross between the inbred C57BL/6 and FVB/N strains for a genome-wide search for quantitative trait loci (QTLs), which are chromosomal sites containing genes influencing the magnitude of susceptibility. Genome-wide interval mapping in N2 progeny identified a locus on distal chromosome (Chr) 18 with a peak LOD score of 4.9 localized between D18Mit186 and D18Mit4 as having the strongest and most significant effect in this model. QTLs of minor effect were detected on Chr 15 (D15Mit174-D15Mit156) and Chr 4 (D4Mit264-D4Mit91), with peak LOD scores of 3.02 and 2.46, respectively. The three significant QTLs (Chrs 4, 15, 18) together account for nearly 25% of the trait variance for both genders combined. Reduced KA-induced cell death susceptibility was observed in a congenic strain in which the highly susceptible FVB/N strain carried putative resistance alleles from the C57BL/6 strain on Chr 18.  相似文献   

4.
Schauwecker PE 《Brain research》2005,1040(1-2):112-120
Previously, we had reported that hippocampal susceptibility to the neurotoxic effects of excitotoxin administration is strain dependent [Schauwecker and Steward, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 4103]. However, it has been unclear whether strain-related gene products may play a similar role in providing protection against drugs that produce striatal lesions. The present series of experiments sought to elucidate whether genetic background alters neuronal viability within the striatum following metabolic or excitotoxic injury. Thus, we have examined the effect of mouse strain on susceptibility to striatal injury using well-characterized animal models of Huntington's disease by examining whether C57BL/6 mice, previously identified as resistant to excitotoxin-induced hippocampal cell death, are resistant to quinolinate, malonate, and 3-nitropropionic acid (3-NP). Intrastriatal injection of either malonate or quinolinate and systemic administration of 3-NP resulted in significantly smaller striatal lesions in C57BL/6 mice as compared to FVB/N mice, previously identified as susceptible to hippocampal excitotoxic injury. The existence of an animal strain with decreased resistance to striatal lesions suggests that there are mediating factors involved in the preferential vulnerability of the striatum to neurotoxic lesioning. The identification of these factors could provide strategies for therapeutic intervention in Huntington's disease.  相似文献   

5.
Research into the molecular mechanisms of epileptic brain injury is hampered by the resistance of key mouse strains to seizure-induced neuronal death evoked by systemically administered excitotoxins such as kainic acid. Because C57BL/6 mice are extensively employed as the genetic background for transgenic/knockout modeling in cell death research but are seizure resistant, we sought to develop a seizure model in this strain characterized by injury to the hippocampal CA subfields. Adult male C57BL/6 mice underwent focally evoked seizures induced by intraamygdala microinjection of kainic acid. Kainic acid (KA) effectively elicited ipsilateral CA3 pyramidal neuronal death within a narrow dose range of 0.1-0.3 microg, with mortality < 10%. With employment of the most consistent (0.3 microg) dose, seizures were terminated 15, 30, 60, or 90 min after KA by diazepam. Damage was largely restricted to the ipsilateral CA3 subfield of the hippocampus, but injury was also consistent within CA1, suggesting that this mouse model better reflects the hippocampal neuropathology of human temporal lobe epilepsy than does the rat, in which CA1 is typically spared. Confirming this CA1 injury as seizure specific and not a consequence of ischemia, we used laser-Doppler flowmetry to determine that cerebral perfusion did not significantly change (97% to 118%) over control. Degenerating cells were > 95% neuronal as determined by neuron-specific nuclear protein (NeuN) counterstaining of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeled (TUNEL) brain sections. Furthermore, TUNEL-positive cells often exhibited the morphological features of apoptosis, and small numbers were positive for cleaved caspase-3. These data establish a mouse model of focally evoked seizures in the C57BL/6 strain associated with a restricted pattern of apoptotic neurodegeneration within the hippocampal subfields that may be applied to research into the molecular basis of neuronal death after seizures.  相似文献   

6.
Differences between isogenic mouse strains in cellular expression of the neuronal nicotinic acetylcholine (ACh) receptor subunit alpha 4 (nAChR alpha 4) by the dorsal hippocampus are well known. To investigate further the genetic basis of these variations, expression of the nAChR alpha 4 subunit was measured in congenic mouse lines derived from two strains exhibiting notable divergence in the expression of this subunit: C3H and C57BL/6. Congenic lines carrying reciprocally introgressed regions (quantitative trait loci; QTL) from chromosomes 4, 5, and 12 each retained the phenotype most closely associated with the parental strain. However, in congenic lines harboring the reciprocal transfer of a chromosome 11 QTL, a characteristic difference in the ratio of interneurons versus astrocytes expressing nAChR alpha 4 in the CA1 region is reversed relative to the parental strain. These finding suggest that this chromosomal segment harbors genes that regulate strain distinct hippocampal morphology that is revealed by nAChR alpha 4 expression.  相似文献   

7.
The roles of T cells and B cells in kainic acid (KA)-induced hippocampal lesions were studied in C57BL/6 mice lacking specific T cell populations (CD4, CD8, and CD4/CD8 cells) and B cells [Igh-6(-/-)]. At 48 mg/kg of KA administrated intranasally, KA-induced convulsions were seen in all groups. However, CD4/CD8(-/-) mice exhibited the mildest seizures; the responses of CD8(-/-), Igh-6(-/-) and wild-type mice were intermediate, whereas CD4(-/-) mice displayed much more severe clinical signs and 100% early mortality, indicating that a deficiency of CD4 T cells obviously increased susceptibility to KA-induced brain damage. Histopathological analysis of the mice that survived 7 days after KA administration revealed that CD4/CD8(-/-) mice had the fewest pathologic changes but Igh-6(-/-) mice showed more severe lesions in area CA3 of the hippocampus than CD8(-/-) and wild-type mice. Reactive astrogliosis were prominent in all KA-treated mice. Locomotor activity as assessed by open-field test increased after KA administration in Igh-6(-/-) and wild-type mice only. These results denote the influence of the adaptive immune response on KA-induced hippocampal neurodegeneration and suggest that B cell and T cell subsets may contribute differently to the pathogenesis.  相似文献   

8.
C57BL/6J (B6) and FVB/NJ (FVB) mice are phenotypically distinct in their susceptibility to seizure-induced cell death after kainate administration. Previous studies using quantitative trait loci (QTLs) mapping established that the distal region of mouse chromosome 18 contains a gene(s) that is probably responsible for the difference in seizure-induced cell death susceptibility between two inbred strains, B6 and FVB, that are relatively resistant and susceptible, respectively, to seizure-induced cell death. The genetic locus has been mapped to a approximately 12-centimorgan region of chromosome 18, designated as seizure-induced cell death 1 (Sicd1). In order to confirm the Sicd1 QTL, we have developed congenic mouse strains containing the relevant donor segment from the resistant B6 strain on the susceptible FVB background, also referred to as the FVB.B6-Sicd1 congenic strain. Congenic and FVB littermate controls were tested in a seizure-induced cell death paradigm. The presence of B6 chromosome 18 alleles on an FVB genetic background conferred protection against seizure-induced cell death, as compared with FVB littermate controls. To further localize the Sicd1 QTL, new congenic lines carrying overlapping intervals of the B6 segment were created [interval-specific congenic lines (ISCLs)-1-4] and assessed for seizure-induced cell death phenotype. All of the ISCLs exhibited reduced cell death associated with the B6 phenotype, as compared with the parental FVB strain. The most dramatic of these, ISCL-4, showed a nearly four-fold reduction in the extent of seizure-induced cell death. This suggests that ISCL-4 contains the putative gene(s) of the Sicd1 QTL.  相似文献   

9.
目的 应用海人藻酸(Kainic acid,KA)在C57BL/6免疫缺陷小鼠建立了神经退行性病变并观察了免疫活性B细胞和T细胞亚型在病变过程中的作用。方法 经鼻滴入海人藻酸观察其临床和病理变化,细胞流式仪检测和分析脾细胞表面标记。结果 海人藻酸引起了CD4(CD4-/-)、CD8(CD8-/-)、CD48(CD48-/-)和B细胞(Igh6-/-)基因敲除鼠的临床抽搐症状和海马损伤。其临床症状在CD4(-/-)鼠最重,CD8(-/-)、Igh6(-/-)以及野生型鼠次之,而CD4CD8双重基因缺陷鼠最轻。病理变化大约和临床症状相平行,脾细胞表面标记的表达也证实了上述发现。结论 获得性免疫反应参与了海人藻酸引起的海马损伤,CD4T细胞和B细胞在病变过程中可能起到了保护作用,而CD8T细胞则加重神经退行性病变。  相似文献   

10.
Systemic administration of kainic acid in C57BL/6 and FVB/N mice induces a comparable level of seizure induction yet results in differential susceptibility to seizure-induced cell death. While kainate administration causes severe hippocampal damage in mice of the FVB/N strain, C57BL/6 mice display no demonstrable cell loss or damage. At present, while the cellular mechanisms underlying strain-dependent differences in susceptibility remain unclear, some of this variation is assumed to have a genetic basis. As glutamate receptors are thought to participate in seizure induction and the subsequent neuronal degeneration that ensues, previous studies have proposed that variation in the precise subunit composition of glutamate receptors may result in differential susceptibility to excitotoxic cell death. Thus, we chose to examine the relationship between the cellular distribution and expression of glutamate receptor subunit proteins and cell loss within the hippocampus in mouse strains resistant and susceptible to kainate-induced excitotoxicity. Using semi-quantitative Western blot techniques and immunohistochemistry with the use of antibodies that recognize subunits of the KA (GluR5,6,7), AMPA (GluR1, GluR2, and GluR4), and NMDA (NMDAR1 and NMDAR2A/2B) receptors, we found no significant strain-dependent differences in the expression or distribution of these glutamate receptor subunits in the intact hippocampus. Following kainate administration, expression changes in ionotropic glutamate receptor subunits paralleled the development of susceptibility to cell death in the FVB/N strain only. Strain differences in hippocampal vulnerability to kainate-induced status epilepticus are not due to glutamate receptor protein expression.  相似文献   

11.
The links among the extent of hippocampal neurodegeneration, the frequency of spontaneous recurrent motor seizures (SRMS), and the degree of aberrant mossy fiber sprouting (MFS) in temporal lobe epilepsy (TLE) are a subject of contention because of variable findings in different animal models and human studies. To understand these issues further, we quantified these parameters at 3-5 months after graded injections of low doses of kainic acid (KA) in adult F344 rats. KA was administered every 1 hr for 4 hr, for a cumulative dose of 10.5 mg/kg bw, to induce continuous stages III-V motor seizures for >3 hr. At 4 days post-KA, the majority of rats (77%) exhibited moderate bilateral neurodegeneration in different regions of the hippocampus; however, 23% of rats exhibited massive neurodegeneration in all hippocampal regions. All KA-treated rats displayed robust SRMS at 3 months post-KA, and the severity of SRMS increased over time. Analyses of surviving neurons at 5 months post-KA revealed two subgroups of rats, one with moderate hippocampal injury (HI; 55% of rats) and another with widespread HI (45%). Rats with widespread HI exhibited greater loss of CA3 pyramidal neurons and robust aberrant MFS than rats with moderate HI. However, the frequency of SRMS (approximately 3/hr) was comparable between rats with moderate and widespread HI. Thus, in comparison with TLE model using Sprague-Dawley rats (Hellier et al. [1998] Epilepsy Res. 31:73-84), a much lower cumulative dose of KA leads to robust chronic epilepsy in F344 rats. Furthermore, the occurrence of SRMS in this model is always associated with considerable bilateral hippocampal neurodegeneration and aberrant MFS. However, more extensive hippocampal CA3 cell loss and aberrant MFS do not appear to increase the frequency of SRMS. Because most of the features are consistent with mesial TLE in humans, the F344 model appears ideal for testing the efficacy of potential treatment strategies for mesial TLE.  相似文献   

12.
The role of interleukin-18 (IL-18) in excitotoxic neurodegeneration is largely unknown. To address this issue, we used kainic acid (KA)-induced hippocampal neurodegeneration in IL-18 knockout (KO) mice. One day after KA administration, clinical symptoms and histopathological changes did not differ between IL-18 KO mice and wild-type mice. However, 7 days after KA application the hippocampal neurodegeneration was markedly severe in IL-18 KO mice as demonstrated by increased locomotion and prominent histopathological changes including neuronal cell loss, microglia activation and astrogliosis. Surprisingly, when wild-type mice received recombinant mouse IL-18 (rmIL-18) in advance, after KA treatment both the clinical and pathological signs were dose-dependently aggravated compared to mice without rmIL-18 pre-treatment. To clarify the mechanism behind this, we assessed the expression of the IL-18 associated cytokines IL-12, IL-1beta, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) in the hippocampus by immunohistochemistry and flow cytometry. IL-12 and IFN-gamma expression was strongly increased in IL-18 KO mice when compared to wild-type mice 7 days after KA treatment in agreement with increased microglia activation. These results suggest that the role of IL-18 in excitotoxic injury in IL-18 deficient mice may be overcompensated by increased IL-12 secretion.  相似文献   

13.
Although mice are amenable to gene knockout, they have not been exploited in the setting of seizure-induced neurodegeneration due to the resistance to injury of key mouse strains. We refined and developed models of seizure-induced neuronal death in the C57BL/6 and BALB/c strains by focally evoking seizures using intra-amygdala kainic acid. Seizures in adult male BALB/c mice, or C57BL/6 mice as reference, caused ipsilateral death of CA1 and CA3 neurons within the hippocampus. Termination of seizures by lorazepam was more effective than diazepam in both strains, largely restricting neuronal loss to the CA3 sector. Electroencephalography (EEG) recordings defined injurious and non-injurious seizure patterns, which could not be separated adequately by behavioral observation alone. Degenerating neurons in the hippocampus were positive for DNA fragmentation and approximately a third of these exhibited morphologic features of programmed cell death. Western blot analysis revealed the cleavage of caspase-8 after seizures in both strains. These data refine our C57BL/6 model and establish a companion model of focally evoked limbic seizures in the BALB/c mouse that provides further evidence for activation of programmed cell death after seizures.  相似文献   

14.
We have investigated the regional difference of neuronal vulnerability within the hippocampus in the C57BL/6 strain mice after forebrain ischemia. Both common carotid arteries of fifty mice were occluded for 12 min and the mouse brain was examined with cresyl violet staining. The CA4 sector was found to be the most vulnerable within the hippocampus. The CA2 and the medial CA1 sector was the 2nd and 3rd most vulnerable regions. However, The lateral part of the CA1 sector, CA3 sector and the dentate gyrus were resistant to ischemic insult.  相似文献   

15.
The effects of dorsal hippocampal and medial frontal lesions of the cortex on a spatial learning problem were studied in two inbred strains of mice (C57BL/6 and DBA/2) which present both neuroanatomical differences of such structures and various patterns of spontaneous exploration. The results showed that hippocampal lesions produced impairments of the learning performance in each strain of mouse, but the temporal distribution of the errors over the experiment was found to be strain dependent. On the other hand, medial frontal cortex lesions selectively affected the learning performances since the acquisition process of only the C57BL/6 lesioned mice differed significantly from the other groups. The effects of these lesions are discussed in terms of genetically associated differences of brain structures and functions. It is suggested that investigations of such differences can provide an experimental model for the study of functional and structural recovery.  相似文献   

16.
Neonatal hypoxia-ischemia (nHI) disrupts hippocampal GABAergic development leading to memory deficits in mice. Polysialic-acid neural-cell adhesion molecule (PSA-NCAM) developmentally declines to trigger GABAergic maturation. We hypothesized that nHI changes PSA-NCAM abundance and cellular distribution, impairing GABAergic development, and marking nascent neurodegeneration. Cell degeneration, atrophy, and PSA-NCAM immunoreactivity (IR) were measured in CA1 of nHI-injured C57BL6 mice related to: (i) cellular subtype markers; (ii) GAD65/67 and synatophysin (SYP), pre-synaptic markers; (iii) phospho-Ser396Tau, cytoskeletal marker; and (iv) GAP43, axonalregeneration marker. PSA-NCAM IR was minimal in CA1 of shams at P11. After nHI, PSA-NCAM IR was increased in injured pyramidal cells (PCs), minimal in parvalbumin (PV)+INs, and absent in glia. PSA-NCAM IR correlated with injury severity and became prominent in perikaryal cytoplasm at P18. GAD65/67 and SYP IRs only weakly related to PSA-NCAM after nHI. Injured phospho-Ser396Tau+ PCs and PV+INs variably co-expressed PSA-NCAM at P40. While PCs with cytoplasmic marginalized PSA-NCAM had increased perisomatic GAP43, those with perikaryal cytoplasmic PSA-NCAM had minimal GAP43. PSA-NCAM increased in serum of nHI-injured mice. Increased PSA-NCAM is likely a generic acute response to nHI brain injury. PSA-NCAM aberrant cellular localization may aggravate neuronal degeneration. The significance of PSA-NCAM as a biomarker of recovery from nHI and nascent neurodegeneration needs further study.  相似文献   

17.
Metallothioneins I and II (MTI/II) are metal‐binding proteins overexpressed in response to brain injury. Recently, we have designed a peptide, termed EmtinB, which is modeled after the β‐domain of MT‐II and mimics the biological effects of MTI/II in vitro. Here, we demonstrate the neuroprotective effect of EmtinB in the in vitro and in vivo models of kainic acid (KA)‐induced neurotoxicity. We show that EmtinB passes the blood–brain barrier and is detectable in plasma for up to 24 hr. Treatment with EmtinB significantly attenuates seizures in C57BL/6J mice exposed to moderate (20 mg/kg) and high (30 mg/kg) KA doses and tends to decrease mortality induced by the high KA dose. Histopathological evaluation of hippocampal (CA3 and CA1) and cortical areas of mice treated with 20 mg/kg KA shows that EmtinB treatment reduces KA‐induced neurodegeneration in the CA1 region. These findings establish EmtinB as a promising target for therapeutic development. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
目的探索应用海人酸在C57BL/6小鼠建立慢性进行性神经退行性病变的新的动物模型。方法小剂量(3mg/kg体重)海人酸经鼻滴入C57BL/6小鼠,每3d给药1次,连续20次。观察临床表现,并应用旷场行为实验检测小鼠的行为学变化;通过Nissl染色方法评估鼠脑病理变化以及免疫组织化学方法分析小胶质细胞活化和星形胶质细胞增生情况。结果应用小剂量海人酸反复多次经鼻给药,小鼠虽无明显临床症状,但引起其皮质和海马发生兴奋性毒性所致的神经细胞退行性病变,小胶质细胞活化和星形胶质细胞增生以及行为学变化。结论此慢性动物模型的神经病理改变与人类神经退行性疾病的变化相似,因此,本文为研究人类神经系统慢性退行性疾病的发病机制及治疗提供了一个有用的动物模型。  相似文献   

19.
Some epidemiological studies concerning gender differences in Alzheimer's disease (AD) support the higher prevalence and incidence of AD in women, while most studies using animal models of aging have included only male subjects. It is still uncommon for aged males and females to be compared in the same study. In the present study, we investigated how age and gender influence the excitotoxic neurodegeneration by treating C57BL/6 mice (aged females and males as well as adult females and males) with kainic acid (KA) intranasally. Clinical signs, behavioural changes, pathological changes and astrocyte proliferation were tested; and the levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were measured after KA treatment. The results showed that aged female mice were more sensitive to KA-induced excitotoxicity as demonstrated by severer seizure activity, increased locomotion and rearing in open-field test, prominent hippocampal neuronal damage, enhanced astrocyte proliferation compared with aged males, adult females and adult male mice. In addition, higher BDNF level in hippocampus of aged female mice was observed. These results denote the disparity of aging and gender in KA-induced hippocampal neurodegeneration and aged female mice are more sensitive to the excitotoxicity.  相似文献   

20.
The excitotoxic effects of kainic acid (KA) in the mouse hippocampus is strain dependent. Following KA administration, the large majority of hippocampal pyramidal cells die in the FVB/N (FVB) mouse, while the pyramidal cells of the C57BL/6 (B6) strain are largely spared. We generated aggregation chimeras between the sensitive FVB and the resistant B6 strains to investigate whether intrinsic or extrinsic features of a neuron confer cell vulnerability or resistance to KA. The constitutive expression of transgenic green fluorescence protein (GFP) or β-galactosidase expressed from the ROSA26 locus was used to mark cells in FVB or B6 mice, respectively. These makers enable the identification of cells from each parental genotype while TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling)-staining labeled dying cells. The analysis of the percentage of dying cells in FVB-GFP ? B6-ROSA chimeras yielded an intriguing mix of both intrinsic and extrinsic factors in the readout of cell phenotype. Thus, normally resistant B6-ROSA pyramidal neurons demonstrated an increasing sensitivity to KA, in a linear fashion, when the percentage of FVB-GFP cells was increased, either across chimeras or in different regions of the same chimera. However, the death of B6-ROSA pyramidal cells never exceeded ~70% of the total amount of B6 neurons regardless of the amount of FVB cells in the chimeric hippocampus. In a similar manner, FVB-GFP cells show lower amounts of cell death in chimeras that are colonized by B6-ROSA cells, but again, are never fully rescued. These data indicate that both intrinsic and extrinsic factors modulate the sensitivity of hippocampal pyramidal cells to kainic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号