首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Acinar‐to‐ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre‐malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase‐3beta (GSK‐3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK‐3β promotes TGF‐α‐induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK‐3β attenuates caerulein‐induced ADM formation and PanIN progression in KrasG12D transgenic mice. Furthermore, we demonstrate that GSK‐3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas‐driven cell proliferation. Mechanistically, we show that GSK‐3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK‐3β participates in early pancreatitis‐induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

2.
Chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are associated with major changes in cell differentiation. These changes may be at the basis of the increased risk for PDAC among patients with chronic pancreatitis. Polycomb proteins are epigenetic silencers expressed in adult stem cells; up‐regulation of Polycomb proteins has been reported to occur in a variety of solid tumours such as colon and breast cancer. We hypothesized that Polycomb might play a role in preneoplastic states in the pancreas and in tumour development/progression. To test these ideas, we determined the expression of PRC1 complex proteins (Bmi1 and Ring1b) during pancreatic development and in pancreatic tissue from mouse models of disease: acute and chronic pancreatic injury, duct ligation, and in K‐RasG12V conditional knock‐in and caerulein‐treated K‐RasG12V mice. The study was extended to human pancreatic tissue samples. To obtain mechanistic insights, Bmi1 expression in cells undergoing in vitro exocrine cell metaplasia and the effects of Bmi1 depletion in an acinar cancer cell line were studied. We found that Bmi1 and Ring1B are expressed in pancreatic exocrine precursor cells during early development and in ductal and islet cells—but not acinar cells—in the adult pancreas. Bmi1 expression was induced in acinar cells during acute injury, in acinar–ductal metaplastic lesions, as well as in pancreatic intraepithelial neoplasia (PanIN) and PDAC. In contrast, Ring1B expression was only significantly and persistently up‐regulated in high‐grade PanINs and in PDAC. Bmi1 knockdown in cultured acinar tumour cells led to changes in the expression of various digestive enzymes. Our results suggest that Bmi1 and Ring1B are modulated in pancreatic diseases and could contribute differently to tumour development. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
6.
7.
The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone‐stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation‐mediated tissue injury. Specifically, lack of serotonin resulted in delayed up‐regulation of progenitor genes and delayed the formation of acinar‐to‐ductal metaplasia and defective acinar cell proliferation. We identified serotonin‐dependent acinar secretion as a key step in progenitor‐based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1–Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
We previously reported that Lgr4 has a critical role in the morphogenesis of kidney, but the detailed functions of Lgr4 in kidney development have not been elucidated. In contrast to Lgr4 null mice with 129Ola × C57BL/6J mixed background, C57BL/6J‐backcrossed Lgr4 null mice (Lgr4?/?) showed the severe phenotype of embryonic lethality and also had dilated tubules in kidneys at E16.5. Based on quantitative RT‐PCR and in situ hybridization, branching morphogenesis at E15.5 in the Lgr4?/? was arrested earlier, and both DBA‐lectin staining and immunohistochemical analysis using Aqp3 antibodies showed that the ureteric bud (UB) of Lgr4?/? kidneys underwent premature differentiation. Furthermore, quantitative RT‐PCR and histological analysis suggested that the impaired UB differentiation was caused by down‐regulation of the Wnt pathway and Gata3 in the Lgr4?/? kidneys. We demonstrate here that Lgr4 has a novel function for maintaining the UB in an undifferentiated state. Developmental Dynamics 240:1626–1634, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
CD4+ T‐cell subtypes govern the synthesis of different Ab isotypes and other immune functions. The influence of CD4+ T‐cell differentiation programs on isotype switching and other aspects of host immunological networks during malaria infection are currently poorly understood. Here, we used Tbx21?/? mice deficient for T‐bet, a regulator of Th1 CD4+ T‐cell differentiation, to examine the effect of Th1 CD4+ T cells on the immune protection to nonlethal murine malaria Plasmodium yoelii 17XNL. We found that Tbx21?/? mice exhibited significantly lower parasite burden that correlated with elevated levels of IgG1, indicating that T‐bet‐dependent Ab isotype switching may be responsible for lower parasite burden. Absence of T‐bet was also associated with a transient but significant loss of T cells during the infection, suggesting that T‐bet may suppress malaria‐induced apoptosis or induce proliferation of T cells. However, Tbx21?/? mice produced greater numbers of Foxp3+CD25+ regulatory CD4+ T cells, which may contribute to the early contraction of T cells. Lastly, Tbx21?/? mice exhibited unimpaired production of IFN‐γ by a diverse repertoire of immune cell subsets and a selective expansion of IFN‐γ‐producing T cells. These observations may have implications in malaria vaccine design.  相似文献   

12.
Significant morbidity and mortality can be attributed to inflammatory diseases; therefore, a greater understanding of the mechanisms involved in the progression of inflammation is crucial. Here, we demonstrate that p21(WAF1/CIP1), an established suppressor of cell cycle progression, is a inhibitor of IL‐1β synthesis in macrophages. Mice deficient in p21 (p21?/?) display increased susceptibility to endotoxic shock, which is associated with increased serum levels of IL‐1β. Administration of IL‐1 receptor antagonist reduces LPS‐induced lethality in p21?/? mice. Analysis of isolated macrophages, which are one of the central producers of IL‐1β, reveals that deficiency for p21 led to more IL‐1β mRNA and pro‐protein synthesis following TLR ligation. The increase in IL‐1β pro‐protein is associated with elevated secretion of active IL‐1β by p21?/? macrophages. siRNA‐mediated knockdown of p21 in human macrophages results in increased IL‐1β secretion as well. A peptide mapping strategy shows that the cyclin‐dependent‐kinase (CDK)‐binding domain of p21 is sufficient to reduce the secretion of IL‐1β by p21?/? macrophages. These data suggest a novel role for p21 and specifically for the CDK‐binding domain of p21(WAF1/CIP1) in inhibiting inflammation.  相似文献   

13.
Vav1 and the Tec family kinase Itk act in similar T‐cell activation pathways. Both molecules interact with members of the Cbl family of E3 ubiquitin ligases, and signaling defects in Vav1?/? T cells are rescued upon deletion of Cbl‐b. In this study we investigate the relation between Itk and Cbl‐b or Vav1 by generating Itk/Cbl‐b and Itk/Vav1 double‐deficient mice. Deletion of Cbl‐b in Itk?/? CD4+ T cells restored proliferation and partially IL‐2 production, and also led to a variable rescue of IL‐4 production. Thus, Itk and Vav1 act mechanistically similarly in peripheral T cells, since the defects in Itk?/? T cells, as in Vav1?/? T cells, are rescued if cells are released from the negative regulation mediated by Cbl‐b. In addition, only few peripheral CD4+ and CD8+ T cells were present in Vav1?/?Itk?/? mice due to severely impaired thymocyte differentiation. Vav1?/?Itk?/? thymocyte numbers were strongly reduced compared with WT, Itk?/? or Vav1?/? mice, and double‐positive thymocytes displayed increased cell death and impaired positive selection. Therefore, our data also reveal that the combined activity of Vav1 and Itk is required for proper T‐cell development and the generation of the peripheral T‐cell pool.  相似文献   

14.
15.
Pancreatitis is a significant clinical problem and the lack of effective therapeutic options means that treatment is often palliative rather than curative. A deeper understanding of the pathogenesis of both acute and chronic pancreatitis is necessary to develop new therapies. Pathological changes in pancreatitis are dependent on innate immune cell recruitment to the site of initial tissue damage, and on the coordination of downstream inflammatory pathways. The chemokine receptor CXCR2 drives neutrophil recruitment during inflammation, and to investigate its role in pancreatic inflammation, we induced acute and chronic pancreatitis in wild‐type and Cxcr2?/? mice. Strikingly, Cxcr2?/? mice were strongly protected from tissue damage in models of acute pancreatitis, and this could be recapitulated by neutrophil depletion or by the specific deletion of Cxcr2 from myeloid cells. The pancreata of Cxcr2?/? mice were also substantially protected from damage during chronic pancreatitis. Neutrophil depletion was less effective in this model, suggesting that CXCR2 on non‐neutrophils contributes to the development of chronic pancreatitis. Importantly, pharmacological inhibition of CXCR2 in wild‐type mice replicated the protection seen in Cxcr2?/? mice in acute and chronic models of pancreatitis. Moreover, acute pancreatic inflammation was reversible by inhibition of CXCR2. Thus, CXCR2 is critically involved in the development of acute and chronic pancreatitis in mice, and its inhibition or loss protects against pancreatic damage. CXCR2 may therefore be a viable therapeutic target in the treatment of pancreatitis. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.  相似文献   

16.
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric‐antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including ‘reserve’ stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar‐ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.  相似文献   

17.
The Mrj co‐chaperone is expressed throughout the mouse conceptus, yet its requirement for placental development has prohibited a full understanding of its embryonic function. Here, we show that Mrj?/? embryos exhibit neural tube defects independent of the placenta phenotype, including exencephaly and thin‐walled neural tubes. Molecular analyses revealed fewer proliferating cells and a down‐regulation of early neural progenitor (Pax6, Olig2, Hes5) and neuronal (Nscl2, SCG10) cell markers in Mrj?/? neuroepithelial cells. Furthermore, Mrj?/? neurospheres are significantly smaller and form fewer secondary neurospheres indicating that Mrj is necessary for self‐renewal of neural stem cells. However, the molecular function of Mrj in this context remains elusive because Mrj does not colocalize with Bmi‐1, a self‐renewal protein. Furthermore, unlike in Mrj?/? placentas, intermediate filament‐containing aggregates do not accumulate in Mrj?/? neuroepithelium, ruling out nestin as a substrate for Mrj. Regardless, Mrj plays an important role in neural stem cell self‐renewal. Developmental Dynamics 238:2564–2574, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen‐derived DC results in increased production of TGF‐β leading to de novo differentiation of Foxp3+ Treg within 12 h after co‐incubation with CD4+ T cells from DO11.10/RAG2?/? mice. Stimulation of C5aR?/? DC with OVA and TLR2 ligand Pam3CSK4 increased TGF‐β production and induced high levels of IL‐6 and IL‐23 but only minor amounts of IL‐12 leading to differentiation of Th cells producing IL‐17A and IL‐21. Th17 differentiation was also found in vivo after adoptive transfer of CD4+ Th cell into C5aR?/? mice immunized with OVA and Pam3CSK4. The altered cytokine production of C5aR?/? DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17‐cell differentiation through regulation of DC function.  相似文献   

19.
Molecular signalling mediated by the phosphatidylinositol-3-kinase (PI3K)–Akt axis is a key regulator of cellular functions. Importantly, alteration of the PI3K–Akt signalling underlies the development of different human diseases, thus prompting the investigation of the pathway as a molecular target for pharmacologic intervention. In this regard, recent studies showed that small molecule inhibitors of PI3K, the upstream regulator of the pathway, reduced the development of inflammation during acute pancreatitis, a highly debilitating and potentially lethal disease. Here we investigated whether a specific reduction of Akt activity, by using either pharmacologic Akt inhibition, or genetic inactivation of the Akt1 isoform selectively in pancreatic acinar cells, is effective in ameliorating the onset and progression of the disease. We discovered that systemic reduction of Akt activity did not protect the pancreas from initial damage and only transiently delayed leukocyte recruitment. However, reduction of Akt activity decreased acinar proliferation and exacerbated acinar-to-ductal metaplasia (ADM) formation, two critical events in the progression of pancreatitis. These phenotypes were recapitulated upon conditional inactivation of Akt1 in acinar cells, which resulted in reduced expression of 4E-BP1, a multifunctional protein of key importance in cell proliferation and metaplasia formation. Collectively, our results highlight the critical role played by Akt1 during the development of acute pancreatitis in the control of acinar cell proliferation and ADM formation. In addition, these results harbour important translational implications as they raise the concern that inhibitors of PI3K-Akt signalling pathways may negatively affect the regeneration of the pancreas. Finally, this work provides the basis for further investigating the potential of Akt1 activators to boost pancreatic regeneration following inflammatory insults. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

20.
Following liver injuries, hepatic stellate cells (HSCs) express α‐SMA. Mitogen activated protein kinase (MAPK) signaling pathways mediate α‐SMA expression in distinct cell types. However, the regulation of α‐SMA expression by MAPKs in HSCs has been rarely studied. We aimed to study the role of MAPKs in the activation of HSCs during liver fibrosis. Liver fibrosis of rats was induced by carbon tetrachloride. HSC‐T6 cells, murine embryonic fibroblasts, JNK1?/? and JNK2?/? cells were used for in vitro studies. Immunohistochemistry and immunoblot analysis were used. We have found that the expression of JNK and α‐SMA co‐localized in HSCs during liver fibrosis, but ERK and p38 expressed in macrophages. The expression of α‐SMA was up‐regulated by JNK1 and JNK2 in non‐stress condition. Under TGF‐β stimulation, however, the level α‐SMA expression was increased by only JNK1, but not significantly changed by JNK2. We suggest that JNKs are responsible for α‐SMA regulation, and especially JNK1 has a major role in up‐regulation of α‐SMA expression in HSCs under stress condition induced by TGF‐β during liver fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号