首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
2.
目的 研究肠道病毒71型(EV71)感染神经细胞的miRNA表达谱,探讨miRNA在病毒感染神经细胞中的可能作用.方法 建立EV71感染人神经母细胞瘤细胞(SH-SY5Y)模型,收集感染后48 h细胞.以Taqman低密度芯片检测miRNA表达谱,使用实时RT-PCR对芯片结果进行验证并在TargetScan和miRanda网站预测靶基因,采用GO和KEGG分析靶基因功能.结果 成功建立EV71感染SH-SY5Y细胞模型,通过低密度芯片筛选出215种显著升高的miRNA和25种显著下调的miRNA.经过RT-PCR验证,3种miRNA(MiR-10a*、miR-15b*和miR-195)显著下调,7种miRNA(miR-10a、miR-342-5p、miR-483-5p、Let-7b、miR-99a、miR-140-5p和miR-21)显著上调,与芯片结果相符.GO分析显示发展进程和信号调节条目最富集靶基因.KEGG路径分析显示靶基因在肿瘤路径、蛋白水解、Wnt信号传导、黑素形成、粘附连接、MAPK信号通道最富集.结论 EV71感染神经细胞48 h后miRNA表达谱发生改变,10种变化的miRNA靶基因预测在发展进程、信号传导及凋亡中起着重要的作用,可为后期机制研究提供参考.  相似文献   

3.
目的 探讨唾液腺腺样囊性癌(SACC)潜在的微小RNAs(miRNAs)分子标志物,构建miRNA-mRNA调控网络,并阐明其潜在的分子机制.方法 从Gene Expression Omnibus(GEO)数据库下载2个SACC的微阵列芯片数据,通过R语言进行分析差异的miRNAs与mRNA.应用FunRich 3.1...  相似文献   

4.
5.
目的探讨微重力环境对MC3T3-E1成骨细胞分化的影响。方法采用转录组测序技术(RNA-seq)观察微重力培养前后MC3T3-E1成骨细胞miRNA/mRNA表达谱变化,测序结果采用q-PCR验证。采用生物信息学方法进一步研究差异性表达的miRNA/mRNA。结果与对照组(CON)相比,模拟微重力组(SMG)共有160条miRNA和1 912个mRNAs发生显著改变;根据生物信息学结果,筛选出10个关键性基因(3条miRNA、7个mRNA),其中miR-9_6666-5p为微重力敏感miRNA,可能在微重力环境下成骨细胞分化过程中起到重要的作用。结论在微重力环境下,成骨细胞分化受到抑制可能与miRNA/mRNA表达谱的改变有关。研究结果将有助于深入理解miRNA与mRNA在微重力环境下调控成骨分化与骨生成的分子机制。  相似文献   

6.
《Inmunología》2014,33(4):137-146
Psoriasis is a chronic inflammatory disease of the skin, of autoimmune origin, with different cells implicated in the aetiopathology, such as T helper lymphocytes (Th1 and Th17), keratinocytes, and cytokines produced by these cells. The epigenetic regulatory mechanisms are the junction between environmental exposure and genetic factors. It is known that microRNAs (miRNAs), single chain RNAs, are actively involved in epigenetic regulation. Alterations in the miR-125b, miR-424, miR- 21 and miR-203 expression, and others, have been involved in different aspects of the disease. Global studies of miRNA expression performed using microarrays and by direct RNA sequencing revealed important differences in miRNA expression in normal skin and psoriatic individuals. These miRNAs can be considered as potential therapeutic targets or biomarkers of disease.  相似文献   

7.
MicroRNAs (miRNAs) are small non-coding RNAs functioning as regulators of hematopoiesis. Their differential expression patterns have been linked with various pathological processes originating from hematopoietic stem cells (HSCs). However, limited information is available regarding the role of miRNAs in myelodysplastic syndrome (MDS). Using miRNA arrays, we measured expression of 1,145 miRNAs in CD34+ bone marrow cells obtained from 39 MDS and acute myeloid leukemia (AML) evolved from MDS patients, and compared them with those of six healthy donors. Differential miRNA expression was analyzed and a panel of upregulated (n=13) and downregulated (n=9) miRNAs were found (P<0.001) in MDS/AML patients. An increased expression of a large miRNA cluster mapped within the 14q32 locus was detected. Differences in miRNA expression of MDS subtypes showed a distinction between early and advanced MDS; an apparent dissimilarity was observed between RAEB-1 and RAEB-2 subtypes. In early MDS, we monitored upregulation of proapoptotic miR-34a, which may contribute to the increased apoptosis of HSCs. Patients with 5q deletion were characterized by decreased levels of miR-143(*) and miR-378 mapped within the commonly deleted region at 5q32. This is an early report describing differential expression in MDS CD34+ cells, likely reflecting their disease-specific regulation.  相似文献   

8.
Ductal carcinoma in situ (DCIS) is the most common type of non-invasive breast cancer. The currently accepted step-wise model suggests that breast cancer progressed in the following manner: normal breast cell → usually ductal hyperplasia (UDH) → atypical ductal hyperplasia (ADH) → DCIS → invasive ductal carcinoma (IDC). Therefore, DCIS can serve as a good model to analyze the mechanism underlying invasive breast cancer occurrence. MicroRNAs (miRNAs) are a novel class of small non-coding RNAs (∼22 nt) involved in the regulation of various biological processes. Altered miRNA expression could also contribute to the origination of cancer, including breast cancer. Here, by using miRNA microarray and real time PCR, we analyzed the miRNA expression profile in 21 DCIS and the corresponding normal tissues. miR-10b, miR-125b, miR-132, miR-145, miR-154-3p, miR-382-5p and miR-409-3p were found to be significantly deregulated in DCIS. Results from CCK-8 assay showed that the overexpression of miR-132 could inhibit the proliferation of breast cancer cell line. High expression of miR-132 could also inhibit the colony formation. Our findings will lead to further understanding of the development of breast cancer.  相似文献   

9.
10.
11.
Studies of human embryonic stem cells (hESCs) commonly describe the nonfunctional p53-p21 axis of the G1/S checkpoint pathway with subsequent relevance for cell cycle regulation and the DNA damage response (DDR). Importantly, p21 mRNA is clearly present and upregulated after the DDR in hESCs, but p21 protein is not detectable. In this article, we provide evidence that expression of p21 protein is directly regulated by the microRNA (miRNA) pathway under standard culture conditions and after DNA damage. The DDR in hESCs leads to upregulation of tens of miRNAs, including hESC-specific miRNAs such as those of the miR-302 family, miR-371-372 family, or C19MC miRNA cluster. Most importantly, we show that the hESC-enriched miRNA family miR-302 (miR-302a, miR-302b, miR-302c, and miR-302d) directly contributes to regulation of p21 expression in hESCs and, thus, demonstrate a novel function for miR-302s in hESCS. The described mechanism elucidates the role of miRNAs in regulation of important molecular pathway governing the G1/S transition checkpoint before as well as after DNA damage.  相似文献   

12.
13.
14.
15.
Objective: The pancreatic endocrinal system dominates the regulation of blood glucose levels in vivo, and the dysfunction of pancreatic endocrine β-cells is a major cause of the occurrence and development of Type 2 diabetes (T2D). Although microRNA (miRNA) have been found to be key regulators of pancreatic β-cells proliferation, differentiation and apoptosis, the underlying mechanism remains enigmatic. The aim of this study was to identify several novel miRNAs which might be involved in the etiopathogenesis of diabetic β-cells dysfunction.Methods: The miRNA expression profiles in the pancreas of high-fat diet (HFD) fed Zucker diabetic fatty (ZDF) rats and Zucker lean (ZL) rats feed with normal-fat diet (NFD) were detected by using miRNA microarray chip, and individually verified the most significant factors by quantitative real-time polymerase chain reaction (qRT-PCR) assay. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to predict the target genes related to each of the identified miRNAs and the functions of these target genes in different metabolic signaling pathways.Results: Compared with the ZL rats, a total of 24 differentially expressed miRNAs were detected in ZDF rats. Among which miR-34a-5p and miR-452-5p were the most significantly up-regulated and down-regulated respectively. These miRNAs have not been reported in rats'' pancreas before. By GO and KEGG enrichment analyses, we found that miR-34a-5p could negatively regulate pancreatic β-cell proliferation through the involvement of Wnt signaling pathway. In addition, it was also found to regulate insulin secretion through the insulin signaling pathway to modulate blood glucose levels. At the same time, miR-452-5p was found to positively regulate the activity of the key rate-limiting enzyme branched-chain α-keto acid dehydrogenase-β (BCKDHB) in the catabolism of branched chain amino acids (BCAA), leading to mitochondrial dysfunction in pancreatic β-cells.Conclusions: miR-34a-5p and miR-452-5p were identified as the novel regulators of pancreatic endocrine dysfunction. These miRNAs might have the potential to be utilized as the new predictive biomarkers for the diagnosis of the occurrence and development of T2D, as well as the therapeutic targets for T2D treatment.  相似文献   

16.
MicroRNA (miRNA)-mediate RNA interference has been identified as a novel mechanism that regulates protein expression. It is recognised that miRNAs play essential roles in the immune system and for correct function in the brain. Moreover, it is now clear that abnormal miRNA expression is a common feature of several diseases involving the immune system including multiple sclerosis (MS). Expression analysis for miR-21, miR-146a and -b, miR-150, miR-155 was carried out in peripheral mononuclear cells (PBMC) from a cohort of 29 MS patients and 19 controls. Subsequently, a case control study for miR-146 rs2910164 variant was performed in an overall population of 346 MS cases and 339 controls. A statistically significant increased expression of miR-21, miR-146a and -b was observed in relapsing remitting (RR)MS patients as compared with controls (1.44 ± 0.13 vs 0.79 ± 0.06, P = 0.036; 1.50 ± 0.12 vs 0.84 ± 0.08, P = 0.039; 1.54 ± 0.15 vs 0.72 ± 0.08, P = 0.001 respectively). On the contrary, no differences were found in the expression levels of both miR-150 and miR-155 in patients as compared with controls (P > 0.05). The genetic association study failed to find any differences in the frequencies of rs2910164 between patients and controls. miRNA dysregulation may contribute to the pathogenesis of MS and highlights the possibility to define different disease entities with specific miRNAs profile.  相似文献   

17.
18.
Exosome-shuttled bioactive miRNAs act as novel non-invasive biomarkers for cancer diagnosis have received increasing attention. In this study, we aimed to investigate the expression signatures of exosomal miRNAs and develop a serum exosome-derived miRNA panel for diagnosis of non-small cell lung cancer (NSCLC). The miR-17-92 cluster including 6 miRNAs (miR-17-5p, miR-18a-5p, miR-19a-3p, miR-19b-1-5p, miR-20a-5p and miR-92a-1-5p) was selected as potential diagnostic candidate molecule. Then, expression profiles of the candidate miRNAs were firstly analyzed in 43 pairs of serum samples from the training set by quantitative real-time PCR, and the dysregulated miRNA along with three tumor markers (carcinoembryonic antigen, CEA; cytokeratin 19 fragment, CYFRA21-1; squamous cell carcinoma antigen, SCCA) were further validated in two independent cohorts, which consisted of training set (including 100 NSCLC patients and 90 healthy controls) and validation set (including 72 NSCLC patients and 47 healthy controls). The expression of miR-17-5p was significantly up-regulated in NSCLC patients compared with the healthy controls (P < 0.001), suggesting that miR-17-5p might have considerable clinical value in the diagnosis of NSCLC. Based on the data from the training set, we next used a logistic regression model to construct a 4-molecule panel consisting of miR-17-5p and three tumor markers for NSCLC diagnosis. The performance of such 4-molecule panel was verified with an area under the ROC curve of 0.860 (95% CI = 0.802 to 0.906, sensitivity = 63.0% and specificity = 93.3%) and 0.844 (95% CI = 0.766 to 0.904, sensitivity = 76.4% and specificity = 76.6%) in the training set and validation set, respectively. In conclusion, the newly developed diagnostic panel consisting of exosomal miR-17-5p, CEA, CYFRA21-1 and SCCA may have considerable clinical value in the diagnosis of NSCLC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号