首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Dapper (Dpr) proteins are context‐dependent regulators of Wnt and Tgfβ signaling. However, although inroads into their molecular properties have been made, their expression and biological function are not understood. Searching for avian Dpr genes, we found that the chicken harbors a Dpr1 and a Dpr2 paralogue only. The genes are expressed in distinct patterns at gastrulation, neurulation, and organogenesis stages of development with key expression domains being the posterior primitive streak, anterior node and notochord, presomitic mesoderm (segmental plate), lateral and cardiac mesoderm, limb mesenchyme, and neurogenic placodes for Dpr1, and anterior primitive streak, node, epithelial somites, embryonic muscle stem cells, oral ectoderm and endoderm, neural crest cells, limb ectoderm, and lung buds for Dpr2. Expression overlaps in a few tissues; however, in several tissues, expression is complementary. Developmental Dynamics 238:1166–1178, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
 The spatio-temporal pattern of expression for the Eph receptor tyrosine kinase, Cek8, was observed in normal chick embryos from H–H stage 6 to 23 by immunohistochemical techniques. Expression of Cek8 was already present in embryos at H–H stage 6, where it was located in the neural plate of the brain region, paraxial mesoderm, and the primitive streak. Regions expressing Cek8 subsequently increased during development to include the neural folds of the brain, rhombomeres 3 and 5, the caudal part of the neural plate, neural creast cells related to the formation of glossopharyngeal nerve ganglia, invaginated cells throughout the primitive groove and the epithelium of the rudiment of the gall bladder. Cek8 was also expressed in the mesenchymal cells of the pharyngeal arches, allantoic stalk and limb buds as well as in the areas surrounding the eye vesicles and nasal pits. Furthermore, cells in the tail bud progressing to the secondary neurulation expressed Cek8. Thus, the spatio-temporal patterns of Cek8 expression appears to have intimate relationships with tissue rebuilding, the maturation of differentiated cells, and the spatial organization of tissues. Consequently, it appears that Cek8 plays an integral role in the developmental events leading to the formation of a wide – though not inclusive – variety of tissues and organ systems. Accepted: 12 September 1997  相似文献   

4.
5.
6.
7.
Despite the increasing quality and quantity of genomic sequence that is available to researchers, predicting gene function from sequence information remains a challenge. One method for obtaining rapid insight into potential functional roles of novel genes is through gene expression mapping. We have performed a high throughput whole-mount in situ hybridization (ISH) screen with chick embryos to identify novel, differentially expressed genes. Approximately 1,200 5' expressed sequence tags (ESTs) were generated from cDNA clones of a Hamburger and Hamilton (HH) stage 4-7 (late gastrula) chick embryo endoderm-mesoderm library. After screening to remove ubiquitously expressed cDNAs and internal clustering and after comparison to GenBank sequences, remaining cDNAs (representing both characterized and uncharacterized genes) were screened for expression in HH stage 3-14 embryos by automated high throughput ISH. Of 786 cDNAs for which ISH was successfully performed, approximately 30% showed ubiquitous expression, 40% were negative, and approximately 30% showed a restricted expression pattern. cDNAs were identified that showed restricted expression in every embryonic region, including the primitive streak, somites, developing cardiovascular system and neural tube/neural crest. A relational database was developed to hold all EST sequences, ISH images, and corresponding BLAST report information, and to enable browsing and querying of data. A user interface is freely accessible at http://geisha.biosci.arizona.edu. Results show that high throughput whole-mount ISH provides an effective approach for identifying novel genes that are differentially expressed in the developing chicken embryo.  相似文献   

8.
9.
In amniote embryos, cells from a rostral portion of the primitive streak migrate anterolaterally and establish the heart field mesoderm, from which two cardiac cell lineages, cardiomyocytes and endocardial endothelial cells, differentiate. The endoderm underlying the heart field has been postulated as the source of several paracrine factors that may serve to induce each of these cell types. However, it has been unclear how these signal molecules, which are expressed broadly in the endoderm, instruct individual cells of the heart field mesoderm to enter either the cardiomyocyte lineage or the endocardial cell lineage. To clarify lineage relationships of these two cardiac cell types, the fate of chicken primitive streak cells was traced for the first time in ovo. By using replication-defective retroviral-mediated gene transfer, we demonstrate that cells in the rostral half of Hamburger and Hamilton (HH) stage 3 primitive streak generate a daughter population that proliferates and migrates into the heart field, differentiating into either endocardial or myocardial cells, but not both cell types. The results suggest that the rostral portion of the primitive streak at HH stage 3 consists of at least two distinct subpopulations, entering either the cardiomyocyte lineage or the endocardial cell lineage. Thus, in ovo these two cell lineages of the heart are already segregated within the primitive streak, significantly before their migration to the heart field. When the precardiomyocytes and pre-endocardial cells arrive at the heart field, each mesodermal cell subpopulation may be permissive to paracrine signal(s) from underlying endoderm to initiate their terminal differentiation into either muscle or endothelial cells.  相似文献   

10.
11.
12.
Perlecan is a major heparan sulfate proteoglycan that binds growth factors and interacts with various extracellular matrix proteins and cell surface molecules. The expression and spatiotemporal distribution of perlecan was studied by RT-PCR, immunoprecipitation and immunofluorescence in the chick embryo from stages X (morula) to HH17 (29 somites). Combined RT-PCR and immunohistochemistry demonstrated the expression of perlecan as early as stage X and its presence may be fundamental to the first basement membrane assembly on the epiblast ventral surface at stage XIII (blastula). Perlecan fluorescence was intense in the cells ingressing through the primitive streak and was strong lining the epiblast ventral surface lateral to the streak at stage HH3-4 (gastrula). At stage HH5-6 (neurula), perlecan fluorescence was low in the neuroepithelium and stronger in the apical surface of the neural plate. At stage HH10-11 (12 somites), perlecan fluorescence was intense in the neuroepithelium and was then essentially nondetectable in the neuroepithelium, and the intensity had shifted to the basement membranes of encephalic vesicles by stage HH17. Perlecan immunofluorescence was intense in neural crest cells, strong in pharyngeal arches, intense in thymus and lung rudiments, intense in aortic arches and in dorsal aorta, strong in lens and retina and intense in intraretinal space and in optic stalk, strong in the dorsal mesocardium, myocardium and endocardium, strong in dermomyotome, low in sclerotome in somites, intense in mesonephric duct and tubule rudiments, intense in the lining of the gut luminal surface. Inhibition of the function of perlecan by blocking antibodies showed that perlecan is crucial for maintaining basement membrane integrity which mediates the epithelialization, adhesive separation and maintenance of neuroepithelium in brain, somite epithelialization, and tissue architecture during morphogenesis of the heart tube, dorsal aorta and gut. An intriguing possibility is that perlecan, as a signaling molecule that modulates the activity of growth factors and cytokines, participates in the signaling pathways that guide gastrulation movements and neural crest cell migration, proliferation and survival, cardiac cell proliferation and paraxial mesoderm (somitic) cell proliferation and segmentation.  相似文献   

13.
14.
We have systematically examined the expression patterns of thirteen genes by in situ hybridization during the formation and progression of the avian primitive streak. Based on common patterns of expression, we classify these genes into three distinct groups. Group 1 genes, subdivided into group 1A (Wnt8c, Slug, Vg1, and Nodal) and group 1B (Fgf8, Brachyury, and Cripto), were expressed first in the epiblast and then, throughout most of the length of the primitive streak. Group 2 genes, namely, cNot1, Sonic hedgehog (Shh), Hnf3 beta and Chordin, were confined to the rostral end of the primitive streak, and then, to Hensen's node. In contrast, Group 3 genes, comprising Goosecoid (GSC) and Crescent, were expressed in the hypoblast. This classification scheme provides a rational basis for categorizing genes expressed during avian gastrulation, and such systematization is likely to provide insight into the relationships among different genes and their potential roles in key events of gastrulation.  相似文献   

15.
Fgf8 and Fgf4 encode FGF family members that are coexpressed in the primitive streak of the gastrulating mouse embryo. We have analyzed the phenotype of Fgf8(-/-) embryos and discovered that they fail to express Fgf4 in the streak. In the absence of both FGF8 and FGF4, epiblast cells move into the streak and undergo an epithelial-to-mesenchymal transition, but most cells then fail to move away from the streak. As a consequence, no embryonic mesoderm- or endoderm-derived tissues develop, although extraembryonic tissues form. Patterning of the prospective neuroectoderm is greatly perturbed in the mutant embryos. Anterior neuroectoderm markers are widely expressed, at least in part because the anterior visceral endoderm, which provides signals that regulate their expression, is not displaced proximally in the absence of definitive endoderm. Posterior neuroectoderm markers are not expressed, presumably because there is neither mesendoderm underlying the prospective neuroectoderm nor a morphologically normal node to provide the inductive signals necessary for their expression. This study identifies Fgf8 as a gene essential for gastrulation and shows that signaling via FGF8 and/or FGF4 is required for cell migration away from the primitive streak.  相似文献   

16.
17.
18.
19.
Summary The formation of mesectodermal cells by the neural crest in 5- to 41-somite stage embryos was investigated experimentally in rat embryos cultured in vitro, using lectincoated colloidal gold as a probe. This method labelled all ectodermal cells, among them neural crest, surface ectodermal placodal and epiblastic (primitive streak) cells. The neural crest provides the mesodermal compartment of the entire head region with cells, including the primitive cranial ganglia and the branchial arches. In the head region migration of neural crest cells over a great distance (long-distance migration) was not observed. In the trunk region neural crest derived cells were mainly found to form the primitive spinal ganglia and the sympathetic trunk, once again without long-distance cell migration. Structures and tissues that supposedly were derived from the primitive streak were hardly labelled with colloidal gold. Surface ectodermal placodes were not only found at the expected sites (e.g. epibranchial placodes) but also in the ectoderm covering the transverse septum and lateral abdominal walls.  相似文献   

20.
Using degenerated PCR-primers to identify known and novel BMPs that are expressed in the developing chicken heart, we identified not only BMP2, -4, and -7 mRNA, but also the TGFbeta superfamily member cVg1. The expression pattern of cVg1 mRNA was determined during chicken development from HH4 to HH44. In early developmental stages, cVg1 mRNA is expressed in the primitive streak, paraxial mesoderm, developing somites, and developing neural tube. Subsequently, cVg1 mRNA is expressed in the developing central and peripheral nervous system, retina, auditory vesicle, notochord, lung alveoli, and olfactory mucosa. In the heart, cVg1 is initially expressed through the linear heart tube, but becomes restricted to the forming chamber myocardium, in an expression domain similar to that of atrial natriuretic factor (ANF) mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号