首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
2.
Human studies are reviewed concerning whether "aging"-related mechanisms contribute to Alzheimer's disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human "accelerated aging" diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical "dementia" and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an "aging-linked" disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging.  相似文献   

3.
Reductions of baseline cerebral blood flow (CBF) of ∼10–20% are a common symptom of Alzheimer’s disease (AD) that appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the performance of AD mice on short term memory tasks. Despite the potential role these data suggest for CBF reductions in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g. cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future research aimed at improving our understanding of the importance of and interplay between different mechanisms for CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of future therapies that target CBF reductions in AD.  相似文献   

4.
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and there is currently no cure. Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD. Therefore, it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression, by which new tools for intervention can be developed. Here, we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity. We also discuss the advantages and limitations of these approaches. Finally, we review the applications of these techniques in the discovery of circuit mechanisms underlying β-amyloid and tau pathologies during AD progression, and as well as the strategies for targeted AD treatments.  相似文献   

5.
Typically, cyclooxygenases (COXs) and 5-lipoxygenase (5-LOX), enzymes that generate biologically active lipid molecules termed eicosanoids, are considered inflammatory. Hence, their putative role in Alzheimer's disease (AD) has been explored in the framework of possible inflammatory mechanisms of AD pathobiology. More recent data indicate that these enzymes and the biologically active lipid molecules they generate could influence the functioning of the central nervous system and the pathobiology of neurodegenerative disorders such as AD via mechanisms different from classical inflammation. These mechanisms include the cell-specific localization of COXs and 5-LOX in the brain, the type of lipid molecules generated by the activity of these enzymes, the type and the localization of receptors selective for a type of lipid molecule, and the putative interactions of the COXs and 5-LOX pathways with intracellular components relevant for AD such as the gamma-secretase complex. Considering the importance of these multiple and not necessarily inflammatory mechanisms may help us delineate the exact nature of the involvement of the brain COXs and 5-LOX in AD and would reinvigorate the search for novel targets for AD therapy.  相似文献   

6.
Biological markers and the treatment of Alzheimer’s Disease   总被引:4,自引:0,他引:4  
Disease-modifying approaches are being developed to treat Alzheimer’s Disease (AD). These are expected to slow the clinical progression of AD or delay the onset of AD. Biological markers, measured in cerebrospinal fluid (CSF) or in the periphery, may be useful adjuncts to clinical assessment methods for AD, especially when applied to these types of treatment approaches. Markers related to beta-amyloid and tau, components of AD lesions, can be quantified in CSF and show a stable and predictable pattern over time in AD. Biomarkers related to oxidation, such as isoprostanes, and to inflammation may provide information regarding mechanisms leading to neuronal damage. Biomarkers could be used during early clinical testing of drugs that affect key pathogenic steps in AD, such as amyloid production or clearance, to assess drug action and dose-response relationships. In large-scale clinical trials or in clinical practice, biomarkers that are easy to access, such as blood or urine tests, could help in evaluating effects of treatment.  相似文献   

7.
‘Brain and cognitive reserve’ (BCR) refers here to the accumulated neuroprotective reserve and capacity for functional compensation induced by the chronic enhancement of mental and physical activity. BCR is thought to protect against, and compensate for, a range of different neurodegenerative diseases, as well as other neurological and psychiatric disorders. In this review we will discuss BCR, and its potential mechanisms, in neurodegenerative disorders, with a focus on Huntington's disease (HD) and Alzheimer's disease (AD). Epidemiological studies of AD, and other forms of dementia, provided early evidence for BCR. The first evidence for the beneficial effects of enhanced mental and physical activity, and associated mechanistic insights, in an animal model of neurodegenerative disease was provided by experiments using HD transgenic mice. More recently, experiments on animal models of HD, AD and various other brain disorders have suggested potential molecular and cellular mechanisms underpinning BCR. We propose that sophisticated insight into the processes underlying BCR, and identification of key molecules mediating these beneficial effects, will pave the way for therapeutic advances targeting these currently incurable neurodegenerative diseases.  相似文献   

8.
Alzheimer’s disease (AD) is the most common form of dementia, with progressive cognitive deficits being the primary symptom. AD is neuropathologically characterized by amyloid and neurofibrillary tangle depositions, basal forebrain cholinergic deficit, and extensive neuronal loss and synaptic changes in the cortex and hippocampus. Mutations of amyloid precursor protein or presenilin genes or apolipoprotein E gene polymorphism appear to affect amyloid formation, which in turn causes neuronal death via a number of possible mechanisms, including Ca2+ homeostasis disruption, oxidative stress, excitotoxicity, energy depletion, neuro-inflammation and apoptosis. Nitric oxide (NO) is an enzymatic product of nitric oxide synthase, which exists in three isoforms. In addition to its vasoactive and immunological properties, NO has significant neurophysiological functions. However, NO can also be neurotoxic primarily due to its free radical properties, and it has been implicated in neurodegenerative diseases. Interestingly, there is increasing evidence that NO may have a role in the aforementioned AD pathogenetic mechanisms, and putative links between NO and AD are beginning to be recognized. This review focuses on these issues highlighting the possible relevance of NO in AD, either as a neuroprotective or neurotoxic agent.  相似文献   

9.
《Neurodegeneration》1996,5(3):259-264
Neurofibrillary lesions such as neurofibrillary tangles, neurites and neuropil threads are used as neuropathological markers of Alzheimer's disease (AD). However these lesions are also seen in non-demented elderly cases as well as in several other disorders such as Down's syndrome (DS), dementia pugilistica (DP) and Parkinson's disease. Quantitative studies may therefore help in understanding the pathophysiological role of these lesions. Using a novel image analysis technique we have quantified the extent of neurofibrillary damage in AD, DS and DP. We have found that the extent of neurofibrillary change did not significantly differ beween AD and DS, though there were also strong parallels between AD and DP. We conclude that both genetic (as in DS) and environmental (as in DP) risk factors for AD-type pathology provide a similar pattern of neurofibrillary degeneration to that in AD itself suggesting that similar degenerative mechanisms might be triggered in all three conditions.  相似文献   

10.
Neurodegenerative diseases, including Alzheimer’s disease (AD), target specific and functionally connected neuronal networks, raising the possibility that neurodegeneration may spread through abnormal patterns of neural network activity. AD is associated with high levels of amyloid-β (Aβ) peptides in the brain, synaptic depression, aberrant excitatory neuronal activity, and cognitive decline. However, the relationships among these alterations and their underlying mechanisms are poorly understood. In experimental models of AD, high concentrations of pathogenic Aβ assemblies reduce glutamatergic transmission and enhance long-term depression at the synaptic level. At the network level, they cause dysrhythmias, including neuronal synchronization, epileptiform activity, seizures, and postictal suppression. Both synaptic depression and aberrant network synchronization likely interfere with activity-dependent synaptic regulation, which is critical for learning and memory. Abnormal patterns of neuronal activity across functionally connected brain regions may also trigger and perpetuate trans-synaptic mechanisms of neurodegeneration. It remains to be determined if synaptic depression and network dysrhythmias are mechanistically related, which of them is primary or secondary, and whether normalization of one will prevent the other as well as cognitive dysfunction in AD.  相似文献   

11.
Amyloid β-peptide (Aβ) accumulation is a key characteristic of Alzheimer’s disease (AD); therefore, mouse models of AD exhibiting Aβ pathology are valuable tools for unraveling disease mechanisms. However, the overexpression of Aβ precursor protein (APP) used in previous mouse models may cause Aβ-independent artifacts that influence data interpretation. To circumvent these problems, we used an APP knock-in (KI) strategy to introduce mutations to the mouse APP gene to develop a new generation of AD mouse models. These new models, termed APPNL-F and APPNL-G-F, have endogenous APP levels and develop robust Aβ amyloidosis, which induce synaptic degeneration and memory impairments. Thus, we suggest that these novel APP KI mice will serve as important tools to elucidate molecular mechanisms of AD.  相似文献   

12.
Alzheimer''s disease (AD) is the most prevalent neurodegenerative disease featuring progressive cognitive impairment. Although the etiology of late-onset AD remains unclear, the close association of AD with apolipoprotein E (APOE), a gene that mainly regulates lipid metabolism, has been firmly established and may shed light on the exploration of AD pathogenesis and therapy. However, various confounding factors interfere with the APOE-related AD risk, raising questions about our comprehension of the clinical findings concerning APOE. In this review, we summarize the most debated factors interacting with the APOE genotype and AD pathogenesis, depict the extent to which these factors relate to APOE-dependent AD risk, and discuss the possible underlying mechanisms.  相似文献   

13.
Many lines of independent research have provided convergent evidence regarding oxidative stress, cerebrovascular disease, dementia, and Alzheimer's disease (AD). Clinical studies spurred by these findings engage basic and clinical communities with tangible results regarding molecular targets and patient outcomes. Focusing on recent progress in characterizing age-related diseases specifically highlights oxidative stress and mechanisms for therapeutic action in AD. Oxidative stress has been investigated independently for its relationship with aging and cardiovascular and neurodegenerative diseases and provides evidence of shared pathophysiology across these conditions. The mechanisms by which oxidative stress impacts the cerebrovasculature and blood-brain barrier are of critical importance for evaluating antioxidant therapies. Clinical research has identified homocysteine as a relevant risk factor for AD and dementia; basic research into molecular mechanisms associated with homocysteine metabolism has revealed important findings. Oxidative stress has direct implications in the pathogenesis of age-related neurodegenerative diseases and careful scrutiny of oxidative stress in the CNS has therapeutic implications for future clinical trials. These mechanisms of dysfunction, acting independently or in concert, through oxidative stress may provide the research community with concise working concepts and promising new directions to yield new methods for evaluation and treatment of dementia and AD.  相似文献   

14.
Insights into mechanisms of familial Alzheimer's disease (AD) caused by genetic mutations have emerged rapidly compared to sporadic AD. Indeed, despite identification of several sporadic AD risk factors, it remains enigmatic how or why they predispose to neurodegenerative disease. For example, traumatic brain injury (TBI) predisposes to AD, and recurrent TBI in career boxers may cause a progressive memory disorder associated with AD-like brain pathology known as dementia pugilistica (DP). Although the reasons for this are unknown, repeated TBI may cause DP by mechanisms similar to those involved in AD. To investigate this possibility, we compared the molecular profile of tau pathologies in DP with those in AD and showed that the same tau epitopes map to filamentous tau inclusions in AD and DP brains, while the abnormal tau proteins isolated from DP brains are indistinguishable from the six abnormally phosphorylated brain tau isoforms in AD brains. Thus, these data suggest that recurrent TBI may cause DP by activating pathological mechanisms similar to those that cause brain degeneration due to accumulations of filamentous tau lesions in AD, and similar, albeit attenuated, activation of these processes by a single TBI may increase susceptibility to sporadic AD decades after the event.  相似文献   

15.
Neurodegeneration is the progressive loss of neuronal structure and function, which ultimately leads to neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis, and Huntington's disease. Even after the recent significant advances in neurobiology, the above‐mentioned disorders continue to haunt the global population. Several studies have suggested the role of specific environmental and genetic risk factors associated with these disorders. However, the exact mechanism associated with the progression of these disorders still needs to be elucidated. In the recent years, sophisticated research has revealed interesting association of prominent neurodegenerative disorders such as AD and PD with chronic diseases such as cancer, diabetes, and cardiovascular diseases. Several common molecular mechanisms such as generation of free radicals, oxidative DNA damage, aberrations in mitochondrial DNA, and dysregulation of apoptosis have been highlighted as possible points of connection. The present review summarizes the possible mechanism of coexistence of AD and PD with other chronic diseases.  相似文献   

16.
Epidemiologic evidence suggests that higher occupational attainment and education, as well as increased participation in intellectual, social, and physical aspects of daily life, are associated with slower cognitive decline in healthy elderly and may reduce the risk of incident Alzheimer’s disease (AD). There is also evidence from structural and functional imaging studies that patients with such life experiences can tolerate more AD pathology before showing signs of clinical dementia. It has been hypothesized that such aspects of life experience may result in functionally more efficient cognitive networks and, therefore, provide a cognitive reserve that delays the onset of clinical manifestations of dementia. In this article, we review some of the relevant literature of the noted associations between markers of cognitive reserve and AD and discuss the possible mechanisms that may explain these associations.  相似文献   

17.
Transgenic (Tg) mouse models of Alzheimer's disease (AD) have been genetically altered with human familial AD genes driven by powerful promoters. However, a Tg model must accurately mirror the pathogenesis of the human disease, not merely the signature amyloid and/or tau pathology, as such hallmarks can arise via multiple convergent or even by pathogenic mechanisms unrelated to human sporadic AD. The 3 × Tg-AD mouse simultaneously expresses 3 rare familial mutant genes that in humans independently produce devastating amyloid-β protein precursor (AβPP), presenilin-1, and frontotemporal dementias; hence, technically speaking, these mice are not a model of sporadic AD, but are informative in assessing co-evolving amyloid and tau pathologies. While end-stage amyloid and tau pathologies in 3 × Tg-AD mice are similar to those observed in sporadic AD, the pathophysiological mechanisms leading to these lesions are quite different. Comprehensive biochemical and morphological characterizations are important to gauge the predictive value of Tg mice. Investigation of AβPP, amyloid-β (Aβ), and tau in the 3 × Tg-AD model demonstrates AD-like pathology with some key differences compared to human sporadic AD. The biochemical dissection of AβPP reveals different cleavage patterns of the C-terminus of AβPP when compared to human AD, suggesting divergent pathogenic mechanisms. Human tau is concomitantly expressed with AβPP/Aβ from an early age while abundant extracellular amyloid plaques and paired helical filaments are manifested from 18 months on. Understanding the strengths and limitations of Tg mouse AD models through rigorous biochemical, pathological, and functional analyses will facilitate the derivation of models that better approximate human sporadic AD.  相似文献   

18.
Alzheimer's disease(AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors.A sex difference in the prevalence of AD has been noted,while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in12-month-old male and female APP/PS1/tau triple-transgenic AD mice(3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A–cAMP response element-binding protein(PKA-CREB) and p38–mitogen-activated protein kinases(MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREBMAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.  相似文献   

19.
Myelin loss is frequently observed in human Alzheimer's disease (AD) and may constitute to AD‐related cognitive decline. A potential source to repair myelin defects are the oligodendrocyte progenitor cells (OPCs) present in an adult brain. However, until now, little is known about the reaction of these cells toward amyloid plaque deposition neither in human AD patients nor in the appropriate mouse models. Therefore, we analyzed cells of the oligodendrocyte lineage in a mouse model with chronic plaque deposition (APPPS1 mice) and samples from human patients. In APPPS1 mice defects in myelin integrity and myelin amount were prevalent at 6 months of age but normalized to control levels in 9‐month‐old mice. Concomitantly, we observed an increase in the proliferation and differentiation of OPCs in the APPPS1 mice at this specific time window (6–8 months) implying that improvements in myelin aberrations may result from repair mechanisms mediated by OPCs. However, while we observed a higher number of cells of the oligodendrocyte lineage (Olig2+ cells) in APPPS1 mice, OLIG2+ cells were decreased in number in postmortem human AD cortex. Our data demonstrate that oligodendrocyte progenitors specifically react to amyloid plaque deposition in an AD‐related mouse model as well as in human AD pathology, although with distinct outcomes. Strikingly, possible repair mechanisms from newly generated oligodendrocytes are evident in APPPS1 mice, whereas a similar reaction of oligodendrocyte progenitors seems to be strongly limited in final stages of human AD pathology. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
BackgroundAccording to a widely accepted hypothesis, the amyloid precursor protein (APP) is processed by two competing pathways: the amyloidogenic β-secretase–mediated pathway or the nonamyloidogenic α-secretase–mediated pathway. APP is cleaved preferentially through the nonamyloidogenic pathway in normal brain, whereas the balance shifts to the amyloidogenic pathway in Alzheimer’s disease (AD). The levels of the α-secretase–cleaved soluble APP (sAPPα) and β-secretase–cleaved soluble APP (sAPPβ) in cerebrospinal fluid (CSF) are likely to reflect these competing mechanisms.MethodsWe investigated the levels and the relationship between sAPPα and sAPPβ in the CSF of 64 patients with mild AD, 76 patients with mild cognitive impairment, and 12 cognitively healthy control subjects, as well as the effect of apolipoprotein E genotype and sex on soluble APP levels.ResultsThere was a significant positive correlation between sAPPα and sAPPβ levels in all three groups. sAPPα and sAPPβ concentrations were higher in patients with mild cognitive impairment compared with patients with AD. In the AD group, females exhibited higher sAPPα and sAPPβ levels than males. No influence of the apolipoprotein E genotype on soluble APP concentrations was detected.DiscussionThe positive correlation between sAPPα and sAPPβ challenges the hypothesis that AD is caused by an imbalance of the α- and β-secretase APP proteolysis through competing mechanisms. Moreover, the differences in CSF levels of sAPPα and sAPPβ between male and female patients with AD may reflect a “sexual dimorphism” in the activity of the two APP processing pathways in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号