首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder, characterized by the substitution of heart muscle with fibro-fatty tissue and severe ventricular arrhythmias, often leading to heart failure and sudden cardiac death. ACM is considered a monogenic disorder, but the low penetrance of mutations identified in patients suggests the involvement of additional genetic or environmental factors.

Methods

We used whole exome sequencing to investigate digenic inheritance in two ACM families where previous diagnostic tests have revealed a PKP2 mutation in all affected and some healthy individuals. In family members with PKP2 mutations we determined all genes that harbor variants in affected but not in healthy carriers or vice versa. We computationally prioritized the most likely candidates, focusing on known ACM genes and genes related to PKP2 through protein interactions, functional relationships, or shared biological processes.

Results

We identified four candidate genes in family 1, namely DAG1, DAB2IP, CTBP2 and TCF25, and eleven candidate genes in family 2. The most promising gene in the second family is TTN, a gene previously associated with ACM, in which the affected individual harbors two rare deleterious-predicted missense variants, one of which is located in the protein’s only serine kinase domain.

Conclusions

In this study we report genes that might act as digenic players in ACM pathogenesis, on the basis of co-segregation with PKP2 mutations. Validation in larger cohorts is still required to prove the utility of this model.
  相似文献   

2.

Background

Mutations in the genes encoding leptin (LEP), the leptin receptor (LEPR), and the melanocortin 4 receptor (MC4R) are known to cause severe early-onset childhood obesity. The aim of the current study was to examine the prevalence of damaging LEP, LEPR, and MC4R mutations in Pakistani families having a recessive heritance of early-onset obesity.

Methods

Using targeted resequencing, the presence of rare mutations in LEP, LEPR, and MC4R, was investigated in individuals from 25 families suspected of having autosomal recessive early-onset obesity. Segregation patterns of variants were assessed based on chip-based genotyping.

Results

Homozygous LEPR variants were identified in two probands. One carried a deletion (c.3260AG) resulting in the frameshift mutation p.Ser1090Trpfs*6, and the second carried a substitution (c.2675C?>?G) resulting in the missense mutation p.Pro892Arg. Both mutations were located within regions of homozygosity shared only among affected individuals. Both probands displayed early-onset obesity, hyperphagia and diabetes. No mutations were found in LEP and MC4R.

Conclusions

The current study highlights the implication of LEPR mutations in cases of severe early-onset obesity in consanguineous Pakistani families. Through targeted resequencing, we identified novel damaging mutations, and our approach may therefore be utilized in clinical testing or diagnosis of known forms of monogenic obesity with the aim of optimizing obesity treatment.
  相似文献   

3.

Purpose

Pediatric inflammatory bowel disease (IBD) is a heterogeneous disorder caused by multiple factors. Although genetic and immunological analyses are required for a definitive diagnosis, no reports of a comprehensive genetic study of a Japanese population are available.

Methods

In total, 35 Japanese patients <16 years of age suffering from IBD, including 27 patients aged <6 years with very early-onset IBD, were enrolled in this multicenter study. Exome and targeted gene panel sequencing was performed for all patients. Mutations in genes responsible for primary immunodeficiency diseases (PID) and clinical and immunological parameters were evaluated according to disease type.

Results

We identified monogenic mutations in 5 of the 35 patients (14.3 %). We identified compound heterozygous and homozygous splice-site mutations in interleukin-10 receptor A (IL-10RA) in two patients, nonsense mutations in X-linked inhibitor of apoptosis protein (XIAP) in two patients, and a missense mutation in cytochrome b beta chain in one patient. Using assays for protein expression levels, IL-10 signaling, and cytokine production, we confirmed that the mutations resulted in loss of function. For each patient, genotype was significantly associated with clinical findings. We successfully treated a patient with a XIAP mutation by allogeneic cord blood hematopoietic stem cell transplantation, and his symptoms were ameliorated completely.

Conclusions

Targeted sequencing and immunological analysis are useful for screening monogenic disorders and selecting curative therapies in pediatric patients with IBD. The genes responsible for PID are frequently involved in pediatric IBD and play critical roles in normal immune homeostasis in the gastrointestinal tract.
  相似文献   

4.

Background

Widespread use of azoles has resulted in rapid development of azole resistance in Candida albicans strains. Mutations in ERG11, a target enzyme of azoles, alter the binding ability of azoles to this enzyme and result in the development of resistant strains. In this study, we evaluated ERG11 mutations in fluconazole resistant isolates of C. albicans.

Materials and methods

In this study, 60 clinical samples were isolated from Guilan hospitals. Then differential tests were used to identify C. albicans strains. Disc diffusion and MIC tests were used to the analyze fluconazole susceptibility. Then, the resistant isolates were evaluated by PCR and sequencing methods for ERG11 mutations.

Results

Of 60 clinical samples, 40 C. albicans strains were identified through specific symptoms. Susceptibility tests showed that four C. albicans strains were resistant to high dose fluconazole (≥512 μg/mL). In all resistant isolates was found missense mutations such as K291N, C470G and Q474R and three isolates had premature nonsense mutation (Y477stop).

Discussion

Our study indicates that the level of fluconazole resistance in C. albicans strains is high in Guilan province and other drugs should be used in resistant infections. It seems that missense mutations in four isolates play role in azole resistance. However in three isolates premature stop codon may be involved in high dose resistance. And it is suggested that in fourth isolates another mechanisms introduce increase of resistance dose in combination with missense mutation in ERG11. Results of this study suggest that in patients by high dose of resistance do not use azole because of mutations that decrease azole effects.
  相似文献   

5.

Background

Cohen syndrome is a rare autosomal recessive developmental disorder that comprises variable clinical features counting developmental delay, pigmentary retinopathy, myopia, acquired microcephaly, truncal obesity, joint hypermobility, friendly disposition and intermittent neutropenia. VPS13B (vacuolar protein sorting 13, yeast, homologue of B) gene is the only gene responsible for Cohen Syndrome, causative mutations include nonsense, missense, indel and splice-site variants. The integrity of the Golgi apparatus requires the presence of the peripheral membrane protein VPS13B that have an essential function in intracellular protein transport and vesicle-mediated sorting.

Case presentation

In this study, we performed whole exome sequencing (WES) in a Tunisian family with two young cases having developmental delay, hypotonia, autism spectrum disorder, ptosis and thick hair and eyebrows. The proposita presented also pigmentory retinopathy. Compound heterozygous mutation in VPS13B gene was detected by WES. This mutation inherited from healthy heterozygous parents, supports an unpredictable clinical diagnosis of Cohen Syndrome. The proband’s phenotype is explained by the presence of compound heterozygous mutations in the VPS13B gene. This finding refined the understanding of genotype-phenotype correlation.

Conclusions

This is the first report of a Tunisian family with Cohen syndrome mutated in the VPS13B gene.
  相似文献   

6.

Background

Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PIK3CA, is one of the most frequently mutated genes in breast cancer, and the mutation status of PIK3CA has clinical relevance related to response to therapy.The aim of our study was to investigate the mutation status of PIK3CA gene and to evaluate the concordance between NGS and SGS for the most important hotspot regions in exon 9 and 20, to investigate additional hotspots outside of these exons using NGS, and to correlate the PIK3CA mutation status with the clinicopathological characteristics of the cohort.

Methods

In the current study, next-generation sequencing (NGS) and Sanger Sequencing (SGS) was used for the mutational analysis of PIK3CA in 186 breast carcinomas.

Results

Altogether, 64 tumors had PIK3CA mutations, 55 of these mutations occurred in exons 9 and 20. Out of these 55 mutations, 52 could also be detected by Sanger sequencing resulting in a concordance of 98.4 % between the two sequencing methods. The three mutations missed by SGS had low variant frequencies below 10 %. Additionally, 4.8 % of the tumors had mutations in exons 1, 4, 7, and 13 of PIK3CA that were not detected by SGS. PIK3CA mutation status was significantly associated with hormone receptor-positivity, HER2-negativity, tumor grade, and lymph node involvement. However, there was no statistically significant association between the PIK3CA mutation status and overall survival.

Conclusions

Based on our study, NGS is recommended as follows: 1) for correctly assessing the mutation status of PIK3CA in breast cancer, especially for cases with low tumor content, 2) for the detection of subclonal mutations, and 3) for simultaneous mutation detection in multiple exons.
  相似文献   

7.

Background

Chronic granulomatous disease (CGD) is characterized by mutation in any one of the five genes coding NADPH oxidase components that leads to functional abnormality preventing the killing of phagocytosed microbes by affecting the progression of a respiratory burst. CGD patients have an increased susceptibility to infections by opportunistic and pathogenic organisms. Though initial diagnosis of CGD using a nitroblue tetrazolium (NBT) test or dihydrorhodamine (DHR) test is relatively easy, molecular diagnosis is challenging due to involvement of multiple genes, presence of pseudogenes, large deletions, and GC-rich regions, among other factors. The strategies for molecular diagnosis vary depending on the affected gene and the mutation pattern prevalent in the target population. There is a paucity of molecular data related to CGD for Indian population.

Method

This report includes data for a large cohort of CGD patients (n?=?90) from India, describing the diagnostic approach, mutation spectrum, and novel mutations identified. We have used mosaicism in mothers and the expression pattern of different NADPH components by flow cytometry as a screening tool to identify the underlying affected gene. The techniques like Sanger sequencing, next-generation sequencing (NGS), and Genescan analysis were used for further molecular analysis.

Result

Of the total molecularly characterized patients (n?=?90), 56% of the patients had a mutation in the NCF1 gene, 30% had mutation in the CYBB gene, and 7% each had mutation in the CYBA and NCF2 genes. Among the patients with NCF1 gene mutation, 82% of the patients had 2-bp deletion (DelGT) mutations in the NCF1 gene. In our cohort, 41 different mutations including 9 novel mutations in the CYBB gene and 2 novel mutations each in the NCF2, CYBA, and NCF1 genes were identified.

Conclusion

Substantial number of the patients lack NCF1 gene on both the alleles. This is often missed by advanced molecular techniques like Sanger sequencing and NGS due to the presence of pseudogenes and requires a simple Genescan method for confirmation. Thus, the diagnostic approach may depend on the prevalence of affected genes in respective population. This study identifies potential gene targets with the help of flow cytometric analysis of NADPH oxidase components to design an algorithm for diagnosis of CGD in India. In Indian population, the Genescan method should be preferred as the primary molecular test to rule out NCF1 gene mutations prior to Sanger sequencing and NGS.
  相似文献   

8.

Background

Low-frequency nonsyndromic hearing loss (LF-NSHL) is a rare, inherited disorder. Here, we report a family with LF-NSHL in whom a missense mutation was found in the Wolfram syndrome 1 (WFS1) gene.

Case presentation

Family members underwent audiological and imaging evaluations, including pure tone audiometry and temporal bone computed tomography. Blood samples were collected from two affected and two unaffected subjects. To determine the genetic background of hearing loss in this family, genetic analysis was performed using whole-exome sequencing. Among 553 missense variants, c.2419A?→?C (p.Ser807Arg) in WFS1 remained after filtering and inspection of whole-exome sequencing data. This missense mutation segregated with affected status and demonstrated an alteration to an evolutionarily conserved amino acid residue. Audiological evaluation of the affected subjects revealed nonprogressive LF-NSHL, with early onset at 10 years of age, but not to a profound level.

Conclusion

This is the second report to describe a pathological mutation in WFS1 among Korean patients and the second to describe the mutation in a different ethnic background. Given that the mutation was found in independent families, p.S807R possibly appears to be a “hot spot” in WFS1, which is associated with LF-NSHL.
  相似文献   

9.

Background

Spinocerebellar ataxias comprise a large and heterogeneous group of disorders that may present with isolated ataxia, or ataxia in combination with other neurologic or non-neurologic symptoms. Monoallelic or biallelic GRID2 mutations were recently reported in rare cases with cerebellar syndrome and variable degree of ataxia, ocular symptoms, hypotonia and developmental delay.

Case presentation

We report on a consanguineous family with autosomal recessive childhood onset of slowly progressive cerebellar ataxia and delayed psychomotor development in three siblings. MRI of an adult and affected family member revealed slightly widened cerebral and cerebellar sulci, suggesting generalized brain atrophy, and mild cerebellar atrophy. Using whole exome sequencing we identified a novel homozygous missense variant [c.2128C?>?T, p.(Arg710Trp)] in GRID2 that segregates with the disease. The missense variant is located in a conserved region encoding the extracellular serine-binding domain of the GluD2 protein and predicts a change in conformation of the protein.

Conclusion

The widespread supratentorial brain abnormalities, absence of oculomotor symptoms, increased peripheral muscle tone and the novel missense mutation add to the clinical and genetic variability in GRID2 associated cerebellar syndrome. The neuroradiological findings in our family indicate a generalized neurodegenerative process to be taken into account in other families segregating complex clinical features and GRID2 mutations.
  相似文献   

10.

Objective

In the present study, we analyzed the possible association of inflammasome gene variants and expression to rheumatoid arthritis (RA)’s development and severity in the Brazilian population.

Materials and methods

Thirteen single nucleotide polymorphisms within six inflammasome genes (NLRP1, NLRP3, NLRC4, AIM2, CARD8, CASP1) as well as IL1B and IL18 genes in two different Brazilian populations (from Northeast and Southeast Brazil) were analyzed. We also evaluated inflammasome gene expression profile in resting and LPS?+?ATP-treated monocytes from RA patients and healthy individuals. For genetic association study, 218 patients and 307 healthy controls were genotyped. For gene expression study, inflammasome genes mRNA levels of 12 patients and ten healthy individuals were assessed by qPCR.

Results

Our results showed that rs10754558 NLRP3 and rs2043211 CARD8 polymorphisms are associated with RA development (p value?=?0.044, OR?=?1.77, statistical power?=?0.999) and severity measured by Health Assessment Questionnaire (HAQ) (p value?=?0.03), respectively. Gene expression analyses showed that RA patients display activation of CASP1, IL1B and IL1R genes independently of LPS + ATP activation. In LPS?+?ATP-treated monocytes, NLRP3 and NLRC4 expressions were also significantly higher in patients compared with controls.

Conclusions

The first reported results in Brazilian populations support the role of inflammasome in the development of RA.
  相似文献   

11.

Background

Genetic defects in the mitochondrial aminoacyl-tRNA synthetase are important causes of mitochondrial disorders. VARS2 is one of the genes encoding aminoacyl-tRNA synthetases. Recently, an increasing number of pathogenic variants of VARS2 have been reported.

Case presentation

We report the novel compound heterozygous pathogenic VARS2 mutations c.643 C?>?T (p. His215Tyr) and c.1354 A?>?G (p. Met452Val) in a female infant who presented with poor sucking at birth, poor activity, hyporeflexia, hypertonia, persistent pulmonary hypertension of newborn (PPHN), metabolic acidosis, severe lactic acidosis, expansion and hypertrophic cardiomyopathy. These heterozygous mutations were carried individually by the proband’s parents and elder sister; the two mutations segregated in the family and were the cause of the disease in the proband.The c.643 C?>?T (p. His215Tyr) mutation was not described in the ExaC, GNomAD and 1000 Genomes Project databases, and the frequency of c.1354 A?>?G (p. Met452Val) was <?0.001 in these gene databases.The two mutated amino acids were located in a highly conserved region of the VARS2 protein that is important for its interaction with the cognate tRNA. The two missense mutations were predicted by online tools to be damaging and deleterious.

Conclusions

Our report expands the spectrum of known pathogenicVARS2 variants associated with mitochondrial disorders in humans.VARS2 deficiency may cause a severe neonatal presentation with structural cardiac abnormalities.
  相似文献   

12.

Introduction

We investigated the role of topoisomerase mutations, increased level of the multidrug efflux pump AcrAB, and the plasmid-borne genes (qnr) in the fluoroquinolone (FQ) resistant avian Escherichia coli simultaneously.

Material and method

Here, we used four FQs (ciprofloxacin, enrofloxacin, ofloxacin and pefloxacin) and eight clinical isolates of E. coli containing six fluoroquinolone-resistant and two fluoroquinolone- susceptible. PCR and direct sequencing methods were used to detect the role of regulator/ repressor gene (acrR).

Objective

The objective of this study was to determine the relationship of these resistance mechanisms for fluoroquinolone resistance.

Result

The results showed that (i) all four fluoroquinolone- resistant isolates have topoisomerase mutation and plasmid borne genes qnrS and aac(6')-Ib; (ii) three FQ (enrofloxacin, ofloxacin and pefloxacin) resistant isolates harboring qnrS genes; (iii) two FQ (ciprofloxacin and pefloxacin) resistant isolates had topoisomerase mutation and plasmid borne gene qnrS; (iv) all fluoroquinolone susceptible were not harboring qnrS gene and topoisomerase mutation (v) All isolates were negative for qnrA and qnrB.

Conclusion

We found that FQs resistance combination was correlated with synergistically contribution of these resistance mechanisms. Plasmid mediated resistance by qnrS was correlated to pefloxacin resistance but did not correlate to ofloxacin, enrofloxacin and ciprofloxacin. This mechanism might be account for the pefloxacin resistance in avian E. coli.
  相似文献   

13.
14.

Background

PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC) gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS.

Methods

Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals.

Results

All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X) in homozygous state in affected individuals from these Indian families.

Conclusions

This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.
  相似文献   

15.

Background

Thoracic aortic aneurysm (TAA) and/or thoracic aortic aneurysm and dissection (TAAD) is characterized by a considerable risk of morbidity and mortality of affected individuals. It is inherited in an autosomal dominant pattern and the 20% of patients with non-syndromic TAA have a positive family history. To date, the genetic basis of Cypriot patients with TAA has not been investigated. The purpose of this case report is to determine underlying genetic cause in this Cypriot family with TAA.

Case presentation

In this report we present a patient with hyper-acute onset chest and back pain diagnosed with Type A Aortic Dissection with severe aortic valve regurgitation, who underwent emergency aortic surgery and Bentall procedure. Further investigation of the patient’s family was undertaken where both parents and an additional child were also found to be affected. A targeted sequencing panel including genes with known association to TAA was used to identify causative mutations in the index patient. Massively Parallel Sequencing results identified a frameshift deletion c.363_367del GAGTC, p.Met121Ilefs*5 in the ACTA2 gene and a non-synonymous variant c.3234C?>?G, p.Ile1078Met in the MYH11 gene. The presence or absence of these variants in the index patient and other family members was verified by Sanger sequencing. To our knowledge, this is the first report of a Cypriot family case diagnosed with TAA presented by two novel variants one in the ACTA2 and the other in the MYH11 genes.

Conclusions

We describe two novel variants in a Cypriot family with TAA that are potentially pathogenic, highlighting the importance of molecular genetic evaluation in families with TAA. These results may prove useful for screening purposes in Cypriot patients with non-syndromic familial TAA facilitating early identification of atrisk family members and direct intervention.
  相似文献   

16.

Purpose

X-linked agammagobulinemia (XLA) is a primary immunodeficiency caused by Bruton’s tyrosine kinase (BTK) gene defect. XLA patients have absent or reduced number of peripheral B cells and a profound deficiency in all immunoglobulin isotypes. This multicenter study reports the clinical, immunological and molecular features of Bruton’s disease in 40 North African male patients.

Methods

Fifty male out of 63 (male and female) patients diagnosed with serum agammaglobulinemia and non detectable to less than 2 % peripheral B cells were enrolled. The search for BTK gene mutations was performed for all of them by genomic DNA amplification and Sanger sequencing.

Results

We identified 33 different mutations in the BTK gene in 40 patients including 12 missense mutations, 6 nonsense mutations, 6 splice-site mutations, 5 frameshift, 2 large deletions, one complex mutation and one in-frame deletion. Seventeen of these mutations are novel. This large series shows a lower frequency of XLA among male patients from North Africa with agammaglobulinemia and absent to low B cells compared with other international studies (63.5 % vs 85 %). No strong evidence for genotype-phenotype correlation was observed.

Conclusions

This study adds to other reports from highly consanguineous North African populations, showing lower frequency of X-linked forms as compared to AR forms of the same primary immunodeficiency. Furthermore, a large number of novel BTK mutations were identified and could further help identify carriers for genetic counseling.
  相似文献   

17.

Background

Implementation of whole exome sequencing has provided unique opportunity for a wide screening of causative variants in genetically heterogeneous diseases, including nonsyndromic hearing impairment. TRIOBP in the inner ear is responsible for proper structure and function of stereocilia and is necessary for sound transduction.

Methods

Whole exome sequencing followed by Sanger sequencing was conducted on patients derived from Polish hearing loss family.

Results

Based on whole exome analysis, we identified two TRIOBP pathogenic variants (c.802_805delCAGG, p.Gln268Leufs*610 and c.5014G>T, p.Gly1672*, the first of which was novel) causative of nonsyndromic, peri- to postlingual, moderate-to-severe hearing loss in three siblings from a Polish family. Typically, TRIOBP pathogenic variants lead to prelingual, severe-to-profound hearing loss, thus the onset and degree of hearing impairment in our patients represent a distinct phenotypic manifestation caused by TRIOBP variants. The pathogenic variant p.Gln268Leufs*610 disrupts the TRIOBP-4 and TRIOBP-5 isoforms (both expressed exclusively in the inner ear and retina) whereas the second pathogenic variant c.514G>T, p.Gly1672* affects only TRIOBP-5.

Conclusions

The onset and degree of hearing impairment, characteristic for our patients, represent a unique phenotypic manifestation caused by TRIOBP pathogenic variants. Although TRIOBP alterations are not a frequent cause of hearing impairment, this gene should be thoroughly analyzed especially in patients with a postlingual hearing loss. A delayed onset of hearing impairment due to TRIOBP pathogenic variants creates a potential therapeutic window for future targeted therapies.
  相似文献   

18.

Background

Hemophagocytic lymphohistiocytosis (HLH) is a rare but fatal disease caused by uncontrolled proliferation of activated lymphocytes and macrophages. Six genes including SH2D1A, PRF1, UNC13D, STX11, STXBP2 and XIAP were reported as causative genes in most cases.

Case presentation

Here we report a novel splicing mutation in UNC13D gene, which was identified in an 18-year-old female. Patient was diagnosed as HLH base on HLH-2004 guidelines, no history of inherited diseases was revealed in this family, parents were healthy and non-consanguineous. Splenomegaly and hemophagocytosis in bone marrow were observed in clinical examination. Amplicon sequencing for the whole coding region of 6 HLH-related genes was performed on Ion S5XL genetic analyzer. In all, four heterozygous mutations were detected, including 2 nonpathogenic SNPs (PRF1:c.900C > T, STX11:c.*70G > A) and 2 splicing mutations in UNC13D gene (UNC13D:c.1299 + 1G > A and UNC13D:c.2709 + 1G > A), both of which were predicted to be potentially pathogenic by human splicing finder (HSF3) tool. The result was confirmed by two-generation pedigree analysis base on sanger sequencing.

Conclusions

Two compound heterozygous splicing mutations in UNC13D gene were identified and considered to be potential pathogenesis in a female patient of HLH. The mutation UNC13D:c.1299 + 1G > A was reported in HLH for the first time. The inheritance mode and source of the mutation in the proband was examined by family analysis. Our data suggest that further studies of the spectrum of HLH-related mutations in China are warranted.
  相似文献   

19.
20.

Background

Thoracic aortic aneurysm and dissection (TAAD) is a common condition associated with high mortality. It is predominantly inherited in an autosomal dominant manner with reduced penetrance and variable expression. The genetic basis of the majority of TAAD cases remains unknown.

Case presentation

We described a 53?years old male presented with abdominal aortic dissection as well as aortic tortuosity. To investigate the genetic basis of the clinical presentation, whole-exome sequencing was performed. Exome sequencing identified a de novo heterozygous undescribed mutation in the PRKG1 gene (NM_001098512.2: c.1108?G?>?A), predicted to cause the missense change p.Gly370Ser in the ATP binding motif of the protein. This mutation was not reported in the dbSNP, 1000 Genome Project, and Exome sequencing databases. Furthermore, the Glycine370 residue of PRKG1 is highly conserved among various species and it is predicted to be damaging by multiple in silico programs, suggesting that this substitution may cause a major disruption of protein function. To our knowledge, this is the second reported mutation locus of PRKG1 accounting for the disease.

Conclusions

Our study expands the mutation spectrum of PRKG1 and clinical phenotype of mutation-carriers. Screening for PRKG1 mutations should be considered in patients with unexplained aortic disease, and identification of the causative gene will aid in individualized, gene-tailored management.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号