首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The effect of glutamatergic agonists on the intracellular free Ca2+ concentration ([Ca2+]i) of neuropile glial cells and Retzius neurones in intact segmental ganglia of the medicinal leech Hirudo medicinalis was investigated by using iontophoretically injected fura-2. In physiological Ringer solution the [Ca2+]i levels of both cell types were almost the ssame (glial cells: 58 ± 30 nM, n = 51; Retzius neurones: 61 ± 27 nM, n = 64). In both cell types glutamate, kainate, and quisqualate induced an increase in [Ca2+]i which was inhibited by 6,7-dinitroquinoxaline-2,3-dione (DNQX). This increase was caused by a Ca2+ influx from the extracellular space because the response was greatly diminished upon removal of extracellular Ca2+. The glutamate receptors of neuropile glial cells and Retzius neurones differed with respect to the relative effectiveness of the agonists used, as well as with regard to the inhibitory strenght of DNQX. In Retzius neurones the agonist-induced [Ca2+]i increase was abolished after replacing extracellular Na+ by organic cations or by mM amounts of Ni2+, whereas in glial cells the [Ca2+]i increase was largely preserved under both conditions. It is concluded that in Retzius neurones the Ca2+ influx is predominantly mediated by voltage-dependent Ca2+ channels, whereas in neuropile glial cells the major influx occurs via the ion channels that are associated with the glutamate receptors.  相似文献   

2.
Oestradiol (E2) exerts potent feedback actions upon gonadotrophin‐releasing hormone (GnRH) neurones and part of this feedback action may occur through the rapid action of E2. Using a transgenic GnRH‐Pericam mouse line that allows real‐time intracellular calcium concentrations ([Ca2+]i) to be monitored in adult GnRH neurones in a brain slice preparation, we examined the acute effects of 100 pm –100 nm E2 on [Ca2+]i transients in spontaneously active GnRH neurones. Approximately 30% of GnRH neurones exhibit spontaneous [Ca2+]i transients at a frequency greater than two transients/15 min in adult female mice. In these cells, treatment with an incremental 1, 10, 100 nm E2 protocol or 100 pm E2 alone resulted in the suppression or complete cessation of [Ca2+]i transients in 15 of 18 (83%) GnRH neurones. This effect was mimicked by E2 bound to albumin, suggesting a membrane site of action, and was maintained in oestrogen receptor β knockout mice, indicating that this receptor is not essential for the rapid suppression of [Ca2+]i transients. These findings contrast with those GnRH neurones exhibiting very few or no [Ca2+]i transients (< 2 transients/15 min) that exhibit the opposite response of being activated by acute E2. A series of dual calcium‐cell‐attached electrical recordings showed that [Ca2+]i transients were associated with GnRH neurone burst firing and that E2 suppression or activation of [Ca2+]i transients was mirrored by a depression or initiation of burst firing. Taken together, these studies demonstrate that the acute actions of E2 on GnRH neurones are critically dependent upon their pattern of burst firing.  相似文献   

3.
Excess administration of glutamate is known to induce Ca2+ overload in neurons, which is the first step in excitotoxicity. Although some reports have suggested a role for Mg2+ in the excitotoxicity, little is known about its actual contribution. To investigate the role of Mg2+ in the excitotoxicity, we simultaneously measured intracellular Ca2+ and Mg2+, using fluorescent dyes, Fura red, a fluorescent Ca2+ probe, and KMG‐104, a highly selective fluorescent Mg2+ probe developed by our group, respectively. Administration of 100 μM glutamate supplemented with 10 μM glycine to rat hippocampal neurons induced an increase in intracellular Mg2+ concentration ([Mg2+]i). Extracellular Mg2+ was not required for this glutamate‐induced increase in [Mg2+]i, and no increase in intracellular Ca2+ concentration ([Ca2+]i) or [Mg2+]i was observed in neurons in nominally Ca2+‐free medium. Application of 5 μM carbonyl cyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of mitochondrial inner membrane potential, also elicited increases in [Ca2+]i and [Mg2+]i. Subsequent administration of glutamate and glycine following FCCP treatment did not induce a further increase in [Mg2+]i but did induce an additive increase in [Ca2+]i. Moreover, the glutamate‐induced increase in [Mg2+]i was observed only in mitochondria localized areas. These results support the idea that glutamate is able to induced Mg2+ efflux from mitochondria to the cytosol. Furthermore, pretreatment with Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, prevented this [Mg2+]i increase. These results indicate that glutamate‐induced increases in [Mg2+]i result from the Mg2+ release from mitochondria and that Ca2+ accumulation in the mitochondria is required for this Mg2+ release. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

5.
We studied the effects of varying extracellular Ca2+ ([Ca2+]o) and Ca2+ channel density and intracellular loading of Ca2+ chelators on stimulation‐induced rises in intracellular Ca2+ ([Ca2+]i) in frog motor nerve terminals with Ca2+ imaging. The slowly waxing and waning components of rises in [Ca2+]i induced by repetitive tetani were suppressed by blockers of Ca2+ pumps of the endoplasmic reticulum (thapsigargin and cyclopiazonic acid) and a blocker of ryanodine receptors [8‐(N,N‐diethylamino)octyl 3,4,5‐trimethoxybenzoate hydrochloride] without affecting the initial quickly‐rising component, thus reflecting the priming (and then subsequent rapid activation) and inactivation phases of Ca2+‐induced Ca2+ release (CICR) from the endoplasmic reticulum. A short tetanus‐induced rise in [Ca2+]i was proportional to [Ca2+]o, whereas the component of CICR was non‐linearly related to [Ca2+]o with saturation at 0.9 mm . The progressive blockade of Ca2+ channels by ω‐conotoxin GVIA caused proportional decreases in CICR and short tetanus‐induced [Ca2+]i rises. Intracellular loading of BAPTA and EGTA reduced the magnitude of CICR as well as short tetanus‐induced rises in [Ca2+]i with a greater effect of BAPTA than EGTA on CICR. The time to peak and the half decay time of CICR were prolonged by a low [Ca2+]o or Ca2+ channel blocker or [Ca2+]i chelators. These results suggest that ryanodine receptors sense the high [Ca2+]i transient following single action potentials for triggering CICR, whereas the priming and inactivation processes of CICR sense a slower, persisting rise in [Ca2+]i during and after action potential trains. A model is presented that includes CICR activation in elementary units.  相似文献   

6.
7.
We determined the relationships between the intracellular free Ca2+ concentration ([Ca2+]i) and the membrane potential (Em) of six different neurones in the leech central nervous system: Retzius, 50 (Leydig), AP, AE, P, and N neurones. The [Ca2+]i was monitored by using iontophoretically injected fura-2. The membrane depolarization evoked by raising the extracellular K+ concentration ([K+]o) up to 89 mM caused a persistent increase in [Ca2+]i, which was abolished in Ca2+-free solution indicating that it was due to Ca2+ influx. The threshold membrane potential that must be reached in the different types of neurones to induce a [Ca2+]i increase ranged between −40 and −25 mV. The different threshold potentials as well as differences in the relationships between [Ca2+]i and Em were partly due to the cell-specific generation of action potentials. In Na+-free solution, the action potentials were suppressed and the [Ca2+]i/Em relationships were similar. The K+-induced [Ca2+]i increase was inhibited by the polyvalent cations Co2+, Ni2+, Mn2+, Cd2+, and La3+, as well as by the cyclic alcohol menthol. Neither the polyvalent cations nor menthol had a significant effect on the K+-induced membrane depolarization. Our results suggest that different leech neurones possess voltage-dependent Ca2+ channels with similar properties.  相似文献   

8.
T‐type Ca2+ channels and TRPA1 are expressed in sensory neurons and both are associated with pain transmission, but their functional interaction is unclear. Here we demonstrate that pharmacological evidence of the functional relation between T‐type Ca2+ channels and TRPA1 in mouse sensory neurons. Low concentration of KCl at 15 mM (15K) evoked increases of intracellular Ca2+ concentration ([Ca2+]i), which were suppressed by selective T‐type Ca2+ channel blockers. RT‐PCR showed that mouse sensory neurons expressed all subtypes of T‐type Ca2+ channel. The magnitude of 15K‐induced [Ca2+]i increase was significantly larger in neurons sensitive to allylisothiocyanate (AITC, a TRPA1 agonist) than in those insensitive to it, and in TRPA1?/? mouse sensory neurons. TRPA1 blockers diminished the [Ca2+]i responses to 15K in neurons sensitive to AITC, but failed to inhibit 40 mM KCl‐induced [Ca2+]i increases even in AITC‐sensitive neurons. TRPV1 blockers did not inhibit the 15K‐induced [Ca2+]i increase regardless of the sensitivity to capsaicin. [Ca2+]i responses to TRPA1 agonist were enhanced by co‐application with 15K. These pharmacological data suggest the possibility of functional interaction between T‐type Ca2+ channels and TRPA1 in sensory neurons. Since TRPA1 channel is activated by intracellular Ca2+, we hypothesize that Ca2+ entered via T‐type Ca2+ channel activation may further stimulate TRPA1, resulting in an enhancement of nociceptive signaling. Thus, T‐type Ca2+ channel may be a potential target for TRPA1‐related pain.  相似文献   

9.
Intramyofiber accumulation of β‐amyloid fragments (Aβ) is a pathologic hallmark of inclusion‐body myositis (IBM), a progressive skeletal muscle disorder. We investigated the temporal pattern of alterations in the resting cytoplasmic [Ca2+] ([Ca2+]i) as well as the depolarization‐evoked Ca2+ release from the sarcoplasmic reticulum in skeletal muscle from transgenic mice expressing human βAPP (MCK‐βAPP). MCK‐βAPP mice show an age‐dependent increase in [Ca2+]i along with a reduction in depolarization‐evoked Ca2+ release, which appear well before the other reported aspects of IBM, such as inclusion formation, inflammation, centralized nuclei, atrophy, and skeletal muscle weakness. In the young MCK‐βAPP animals the increase in resting [Ca2+]i can be attributed largely to Ca2+ influx through nifedipine‐sensitive Ca2+ channels. In the adult MCK‐βAPP mice, in addition to the nifedipine‐sensitive pathway, there is also a substantial contribution by the intracellular compartments to the increase in [Ca2+]i. These results suggest that β‐amyloid‐induced disuption of Ca2+ handling may represent an early event in the pathogenesis of IBM. Muscle Nerve, 2010  相似文献   

10.
The mechanism of brain edema is complex and still remains unclear. Our aim was to investigate the regional differences of cell volume and intracellular Ca2+ concentration ([Ca2+]i) dynamics during hypotonic stress in male mouse hemi‐brain slices. Brain slices were loaded with the fluorescence Ca2+ indicator fura‐2, and cell volume and [Ca2+]i in the lateral cerebral cortex (LCC) and hippocampal CA1 (CA1) region were measured simultaneously during exposure to hypotonic stress using Ca2+ insensitive (F360) and Ca2+ sensitive fluorescence (F380), respectively. Brain cell swelling induced by hypotonic stress was followed by a regulatory volume change that coincided with an increase in [Ca2+]i. The degrees of change in cell volume and [Ca2+]i were significantly different between the LCC and CA1. The increase in cell volume and [Ca2+]i in the LCC, but not in the CA1, was decreased by the transient receptor potential channel blockers LaCl3 and GdCl3. The increase in [Ca2+]i in both the LCC and CA1, was significantly decreased by the intracellular Ca2+ modulators thapsigargin and xestospongin C. The K+ channel activator isoflurane and Cl channel blocker NPPB significantly decreased [Ca2+]i in the LCC. This study demonstrated that, between cells located in the LCC and in the CA1, the characteristics of brain edema induced by hypotonic stress are different. This can be ascribed to the different contribution of volume sensitive G‐protein coupled receptor and stretch sensitive Ca2+ channels.  相似文献   

11.
The presence of adrenergic and histaminergic receptors in Bergmann glial cells from cerebellar slices from mice aged 20–25 days was determined using fura-2 Ca2+ microfluorimetry. To measure the cytoplasmic concentration of Ca2+ ([Ca2+]i), either individual cells were loaded with the Ca2+-sensitive probe fura-2 using the whole-cell patch-clamp technique or slices were incubated with a membrane-permeable form of the dye (fura-2/AM) and the microfluorimetric system was focused on individual cells. The monoamines adrenalin and noradrenalin (0.1-10 μM) and histamine (10-100 μM) triggered a transient increase in [Ca2+]i. The involvement of the α1-adrenoreceptor was inferred from the observations that monoamine-triggered [Ca2+]i responses were blocked by the selective α1-adreno-antagonist prazosin and were mimicked by the α1-adreno-agonist phenylephrine. The monoamine-induced [Ca2+]i signals were not affected by β- and α2-adrenoreceptor antagonists (propranolol and yohimbine), and were not mimicked by β- and α2-adrenoreceptor agonists (isoproterenol and clonidine). Histamine-induced [Ca2+]i responses demonstrated specific sensitivity to only H1 histamine receptor modulators. [Ca2+]i responses to monoamines and histamine did not require the presence of extracellular Ca2+ and they were blocked by preincubation of slices with thapsigargin (500 nM), indicating that the [Ca2+]i increase is due to release from intracellular pools. No [Ca2+]i responses were recorded after application of aspartate, bradykinin, dopamine, GABA, glycine, oxytocin, serotonin, somatostatin, substance P, taurine or vasopressin. We conclude that cerebellar Bergmann glial cells are endowed with α1 -adrenoreceptors and H1 histamine receptors which induce the generation of intracellular [Ca2+]i signals via activation of Ca2+ release from inositol-l,4,5-trisphosphate-sensitive intracellular stores.  相似文献   

12.
Rotenone is a toxin used to generate animal models of Parkinson’s disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05–1 μm ) effects on SNc neurons in acute rat midbrain slices, using whole‐cell patch‐clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide‐sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm ) and intracellular [Na+] (3.1 ± 0.6 mm ) (all with 1 μm ). The outward current was not affected by a high ATP level (10 mm ) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N‐(p‐amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine‐123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm ) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm ) Ca2+ response when baseline [Ca2+]i was increased by a ‘priming’ protocol that activated voltage‐gated Ca2+ channels. There was also a positive correlation between ‘naturally’ occurring variations in baseline [Ca2+]i and the rotenone‐induced [Ca2+]i rise. This correlation was not seen in non‐dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP‐gated K+ channels and TRPM2‐like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone‐induced [Ca2+]i rise by a small increase in baseline [Ca2+]i.  相似文献   

13.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

14.
Summary Human lymphocytes are widely used as peripheral models for central neurones. Alterations in immune function have been reported in depressed patients, e.g. mitogen-induced proliferation is impaired during depression. One possible causative mechanism could be altered [Ca2+]i regulation. Phytohaemagglutinin (PHA)-induced rise of [Ca2+]i has been found to be diminished in lymphocyte suspensions from depressed patients (Ecker et al., this issue). We measured PHA-induced rise of [Ca2+]i in single Fura-2 AM-loaded T11+ lymphocytes of patients with major depression and controls to further analyse [Ca2+]i regulation in depression.The [Ca2+]i of resting lymphocytes was 57±2 nmol/l (mean ± SEM). There was no difference in resting [Ca2+]i of resting lymphocytes of patients and controls. PHA evoked an increase of [Ca2+]i an 7 out of 14 cells from control subjects up to 400–500 nmol/l. In contrast, only 4 out of 13 cells from depressed patients showed an increase of [Ca2+]i up to 200 nmol/l. In a small fraction of cells from both groups the [Ca2+]i signal is oscillating.Our preliminary data confirm alteration of [Ca2+]i regulation in lymphocytes of depressed patients.  相似文献   

15.
There is substantial evidence for a role of the neuropeptide gonadotrophin‐releasing hormone (GnRH) in the regulation of GnRH neurone secretion but how this is achieved is not understood. We examined here the effects of GnRH on the electrical excitability and intracellular calcium concentration ([Ca2+]i) of GnRH neurones in intact adult male and female mice. Perforated‐patch electrophysiological recordings from GnRH‐green fluorescent protein‐tagged GnRH neurones revealed that 3 nm –3 μm GnRH evoked gradual approximately 3 mV depolarisations in membrane potential from up to 50% of GnRH neurones in male and female mice. The depolarising effect of GnRH was observed on approximately 50% of GnRH neurones throughout the oestrous cycle. However, at pro‐oestrus alone, GnRH was also found to transiently hyperpolarise approximately 30% of GnRH neurones. Both hyperpolarising and depolarising responses were maintained in the presence of tetrodotoxin. Calcium imaging studies undertaken in transgenic GnRH‐pericam mice showed that GnRH suppressed [Ca2+]i in approximately 50% of GnRH neurones in dioestrous and oestrous mice. At pro‐oestrus, 25% of GnRH neurones exhibited a suppressive [Ca2+]i response to GnRH, whereas 17% were stimulated. These results demonstrate that nm to μm concentrations of GnRH exert depolarising actions on approximately 50% of GnRH neurones in males and females throughout the oestrous cycle. This is associated with a reduction in [Ca2+]i. At pro‐oestrus, however, a further population of GnRH neurones exhibit a hyperpolarising response to GnRH. Taken together, these studies indicate that GnRH acts predominantly as a neuromodulator at the level of the GnRH cell bodies to exert a predominant excitatory influence upon GnRH neurones in intact adult male and female mice.  相似文献   

16.
Mechanical stimulation of a single cell in a primary mixed glial cell culture induced a wave of increased intracellular calcium concentration ([Ca2+]i) that was communicated to surrounding cells. Following propagation of the Ca2+ wave, many cells showed asynchronous oscillations in [Ca2+]i. Dantrolene sodium (10 μM) inhibited the increase in [Ca2+]i associated with this Ca2+ wave by 60-80%, and prevented subsequent Ca2+ oscillations. Despite the markedly decreased magnitude of the increase in [Ca2+]i, the rate of propagation and the extent of communication of the Ca2+ wave were similar to those prior to the addition of dantrolene. Thapsigargin (10 nM to 1 μM) induced an initial increase in [Ca2+]i ranging from 100 nM to 500 nM in all cells that was followed by a recovery of [Ca2+]i to near resting levels in most cells. Transient exposure to thapsigargin for 2 min irreversibly blocked communication of a Ca2+ wave from the stimulated cell to adjacent cells. Glutamate (50 μM) induced an initial increase in [Ca2+]i in most cells that was followed by sustained oscillations in [Ca2+]i in some cells. Dantrolene (10 μM) inhibited this initial [Ca2+]i increase caused by glutamate by 65-90% and abolished subsequent oscillations. Thapsigargin (10 nM to 1 μm) abolished the response to glutamate in over 99% of cells. These results suggest that while both dantrolene and thapsigargin inhibit intracellular Ca2+ release, only thapsigargin affects the mechanism that mediates intercellular communication of Ca2+ waves. These findings are consistent with the hypothesis that inositol trisphosphate (IP3) mediates the propagation of Ca2+ waves whereas Ca2+ -induced Ca2+ release amplifies Ca2+ waves and generates subsequent Ca2+ oscillations.  相似文献   

17.
The short-term effect of bFGF on intracellular Ca2+ concentration ([Ca2+]i) of hippocampal neurons was investigated using dissociated cell cultures. Changes in [Ca2+]i were measured by microfluorometrically monitoring the fluorescence intesities from indivudual neurons loaded with fura-2. Perfusion of bFGF (20 ng/ml) alone did not affect the basal level of [Ca2+]i in hippocampal neurons, but clearly enhanced the [Ca2+]i increase induced by NMDA. Quisqualate or KCl-induced [Ca2+]i increase was not influenced by bFGF. These results suggest that bFGF selectively enhances the NMDA receptor-mediated response in hippocampal neurons.  相似文献   

18.
Hypothalamic astrocytes play a critical role in the regulation and support of many different neuroendocrine events, and are affected by oestradiol. Both nuclear and membrane oestrogen receptors (ERs) are expressed in astrocytes. Upon oestradiol activation, membrane‐associated ER signals through the type 1a metabotropic glutamate receptor (mGluR1a) to induce an increase of free cytoplasmic calcium concentration ([Ca2+]i). Because the expression of oxytocin receptors (OTRs) is modulated by oestradiol, we tested whether oestradiol also influences oxytocin signalling. Oxytocin at 1, 10, and 100 nm induced a [Ca2+]i flux measured as a change in relative fluorescence [ΔF Ca2+ = 330 ± 17 relative fluorescent units (RFU), ΔF Ca2+ = 331 ± 22 RFU, and ΔF Ca2+ = 347 ± 13 RFU, respectively] in primary cultures of female post‐pubertal hypothalamic astrocytes. Interestingly, OTRs interacted with mGluRs. The mGluR1a antagonist, LY 367385 (20 nm ), blocked the oxytocin (1 nm )‐induced [Ca2+]i flux (ΔF Ca2+ = 344 ± 19 versus 127 ± 11 RFU, P < 0.001). Conversely, the mGluR1a receptor agonist, (RS)‐3,5‐dihydroxyphenyl‐glycine (100 nm ), increased the oxytocin (1 nm )‐induced [Ca2+]i response (ΔF Ca2+ = 670 ± 31 RFU) compared to either compound alone (P < 0.001). Because both oxytocin and oestradiol rapidly signal through the mGluR1a, we treated hypothalamic astrocytes sequentially with oxytocin and oestradiol to determine whether stimulation with one hormone affected the subsequent [Ca2+]i response to the second hormone. Oestradiol treatment did not change the subsequent [Ca2+]i flux to oxytocin (P > 0.05) and previous oxytocin exposure did not affect the [Ca2+]i response to oestradiol (P > 0.05). Furthermore, simultaneous oestradiol and oxytocin stimulation failed to yield a synergistic [Ca2+]i response. These results suggest that the OTR signals through the mGluR1a to release Ca2+ from intracellular stores and rapid, nongenomic oestradiol stimulation does not influence OTR signalling in astrocytes.  相似文献   

19.
Monensin, a monovalent cation ionophore, induced profound release of radiolabeled materials from clonal rat pheochromocytoma cells (PC12h) preloaded with [3H]norepinephrine (NE). The release was suppressed in the absence of external Na+, but was not affected at all in the absence of external Ca2+. Cytosolic free Ca2+ concentration ([Ca2+]i), that was monitored by means of a fluorescent Ca2+ indicator, Quin 2, was temporarily increased upon a depolarizing stimulus of high-K+, which induced the Ca2+-dependent release of [3H]NE from PC12h cells. On the other hand, monensin induced only a slight increase in [Ca2+]i. The radiolabeled materials released by high-K+ treatment were mainly [3H]NE, whereas those by monensin were mainly the metabolites of [3H]NE. Pargyline, a monoamine oxidase inhibitor, suppressed both the degradation of [3H]NE,stored in PC12h cells and the monensin-induced release of radiolabeled compounds from them. Monensin decreased the content of [3H]NE in storage granules of pargyline-treated cells. Thus, it is likely that monensin expels NE from the storage vesicles to cytosol and then its metabolites by monoamine oxidase are released in a non-exocytotic manner.  相似文献   

20.
The effect of AMPA-receptor stimulation on MMP and on the concentration of intracellular calcium ([Ca2+]i) was studied in dissociated CGC from rat pups, by flow cytometry. In the presence of cyclothiazide, AMPA induced a sodium-independent decrease in MMP up to 30.7 ± 2.5%. This effect was antagonized by CNQX and NBQX. Mepacrine and dibucaine reversed the effect of AMPA on MMP, suggesting that it is mediated by a release of arachidonic acid. AMPA alone induced a slight (about 7%) increase in [Ca2+]i. In the presence of cyclothiazide, AMPA induced a concentration-dependent [Ca2+]i increase up to 29.10 ± 2.10% that was not reversed by flunarizine. This increase was similar to that observed in a Na+-free medium, and was antagonized by CNQX and NBQX, but not by MK-801. Mitochondria play a key role in the modulation of [Ca2+]i since a significant [Ca2+]i increase was found in the presence of FCCP. On the other hand, the dantrolene-sensitive calcium pools do not participate in the [Ca2+]i increase induced by stimulation of AMPA receptors. It is concluded that when AMPA-receptor desensitization is blocked, a decrease in MMP and an increase in [Ca2+]i occurs, which could be additional events to potentiate neuronal cell death induced by glutamate. J. Neurosci. Res. 52:684–690, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号