共查询到20条相似文献,搜索用时 0 毫秒
1.
Julia Zeiträg Frank Dahlström Yinshui Chang Dominik Alterauge Daniel Richter Julia Niemietz Dirk Baumjohann 《European journal of immunology》2021,51(2):408-413
Constitutive T cell-intrinsic miRNA expression is required for the differentiation of naïve CD4+ T cells into Tfh cells, thus making it difficult to study the role of miRNAs in the maintenance of already established Tfh cells and ongoing germinal center (GC) responses. To overcome this problem, we here used temporally controlled ablation of mature miRNAs specifically in CD4+ T cells during acute LCMV infection in mice. T cell-intrinsic miRNA expression was not only critical at early stages of Tfh cell differentiation, but also important for the maintenance of already established Tfh cells. In addition, CD4+ T cell-specific ablation of miRNAs resulted in impaired GC B cell responses. Notably, miRNA deficiency also compromised the antigen-specific CD4+ T cell compartment, Th1 cells, Treg cells, and Tfr cells. In conclusion, our results highlight miRNAs as important regulators of Tfh cells, thus providing novel insights into the molecular events that govern T cell–B cell interactions and Th cell identity. 相似文献
2.
《Immunology》2017,152(3):382-387
T follicular helper (Tfh) cells have the important function of providing B‐cell help for the induction of antigen‐specific antibody production. As such, it is important to determine the factors that regulate the development, differentiation and function of Tfh cells. This review highlights some of the recent advances in our understanding of Tfh cell migration, Tfh cell memory and the origins and fate of circulating Tfh cells in the blood, that have been revealed from studies in humans and mice. 相似文献
3.
4.
5.
The interactions of CD4+ T cells and B cells are fundamental for the generation of protective antibody responses, as well as for the development of harmful autoimmune diseases. Recent studies of human tissues and blood samples have established a new subset of CD4+ B helper T cells named peripheral helper T (Tph) cells. Unlike T follicular helper (Tfh) cells, which interact with B cells within lymphoid organs, Tph cells provide help to B cells within inflamed tissues. Tph cells share many B helper-associated functions with Tfh cells and induce B cell differentiation toward antibody-producing cells. The differentiation mechanism is also partly shared between Tph and Tfh cells in humans, and both Tfh and Tph cells can be found within the same tissues, including cancer tissues. However, Tph cells display features distinct from those of Tfh cells, such as the expression of chemokine receptors associated with Tph cell localization within inflamed tissues and a low Bcl-6/Blimp1 ratio. Unlike that of Tfh cells, current evidence shows that the target of Tph cells is limited to memory B cells. In this review, we first summarize recent findings on human Tph cells and discuss how Tph and Tfh cells play shared and distinct roles in human diseases. 相似文献
6.
滤泡辅助性T细胞(Tfh)是近几年发现的一种新的T细胞亚群,与Th1细胞、Th2细胞、Th17细胞及调节性T细胞(Tr)相互促进或拮抗,维持免疫系统的正常生理功能,其主要功能是辅助B细胞分化、发育和促进体液免疫应答,当Tfh细胞数量或功能紊乱时可引起自身免疫病、免疫缺陷病、肿瘤或感染性疾病的发生或加重. 相似文献
7.
8.
9.
10.
11.
《Immunobiology》2019,224(4):539-550
Autoimmune regulator (Aire), primarily expressed in medullary thymic epithelial cells (mTECs), maintains central immune tolerance through the clearance of self-reactive T cells. Aire can also be expressed in dendritic cells (DCs), and DCs can mediate T follicular helper (TFH) cell differentiation and self-reactive B cell activation through inducible costimulator molecule ligand (ICOSL) and interleukin 6 (IL-6), which can cause autoimmune diseases. To confirm whether Aire in DCs affects TFH cell differentiation and to determine the role of Aire in the maintenance of peripheral immune tolerance, this study observed the effects of Aire deficiency on TFH cells using Aire knockout mice. The results showed that Aire deficiency caused increased number of TFH cells, both in vivo and in vitro. Further studies showed that Aire deficiency promoted TFH differentiation through the upregulation of ICOSL and IL-6 in DCs. Thus Aire could suppress the expression of ICOSL and IL-6 to inhibit TFH cell differentiation. 相似文献
12.
A fundamental function of T helper (Th) cells is to regulate B-cell proliferation
and immunoglobulin class switching, especially in the germinal centers. Th1 and
Th2 lineages of CD4+ T cells have long been considered to play
an essential role in helping B cells by promoting the production immunoglobulin
G2a (IgG2a) and IgG1/IgE, respectively. Recently, it has become clear that a
subset CD4+ T cells, named T follicular helper (Tfh) cells, is
critical to B-cell response induction. In this review, we summarize the latest
advances in our understanding of the regulation of Tfh cell differentiation, the
relationship of Tfh cells to other CD4+ T-cell lineages, and the
role of Tfh cells in health and disease. 相似文献
13.
It is well established that the generation of a high-affinity long-lived antibody response requires the presence of T cells, specifically CD4+ T cells. These CD4+ T cells support the generation of a germinal centre (GC) response where somatic hypermutation and affinity maturation take place leading to the generation of memory B cells and plasma cells, which provide long-lasting protection. Greater insight into the nature of the CD4+ T cells involved in this process was provided by two studies in 2000 that described CD4+ T cells residing in the B cell follicle that expressed CXCR5. As a result these cells were named follicular B helper T cells, now more commonly known as T follicular helper (Tfh) cells. Since then there has been enormous growth in our understanding of these cells, now considered a distinct T helper (Th) cell lineage that can arise from naive CD4+ T cells following activation. This review summarizes some of the most recent work that has characterized Tfh cells and the pathways that lead to their generation. 相似文献
14.
15.
目的 探讨滤泡辅助性T细胞(Tfh细胞)在儿童川崎病(Kawasaki disease,KD)中的数量变化及其可能机制.方法 急性期川崎病患儿20例,采用流式细胞术检测外周血CD4+CXCR5+ICOS+T细胞(Tfh)的比例,采用real-time PCR检测转录调节因子Bcl-6、Blimp-1 mRNA表达,酶联免疫吸附试验检测血浆中IL-4和IL-21浓度;20例同龄健康儿童作为对照组.结果 (1)急性期KD患儿Tfh细胞比例明显高于正常对照组[(2.6±0.6)%vs(1.8±0.7)%,P<0.05];(2)Tfh细胞转录因子Bcl-6 mRNA表达较正常对照组明显增高(P<0.05),其拮抗因子Blimp-1 mRNA表达降低(P<0.05);(3)血浆IL-21和IL-4蛋白浓度明显高于正常对照组(P<0.05).结论 Tfh细胞过度活化可能参与了KD免疫发病机制,Bcl-6/Blimp-1表达失衡,IL-4和IL-21细胞因子微环境改变可能与Tfh细胞异常活化有关. 相似文献
16.
DM Kemeny 《Cellular & molecular immunology》2012,9(5):386-389
T follicular helper (Tfh) cells were discovered just over a decade ago as germinal centre T cells that help B cells make antibodies. Included in this role is affinity maturation and isotype switching. It is here that their functions become less clear. Tfh cells principally produce IL-21 which inhibits class switching to IgE. Recent studies have questioned whether the germinal centre is the main site of IgE class switching or IgE affinity maturation. In this review, I will examine the evidence that these cells are responsible for regulating IgE class switching and the relationship between Tfh cells and T helper 2 (Th2) effector cells. 相似文献
17.
Qi H 《Immunological reviews》2012,247(1):24-35
Operation of the immune system critically depends on intercellular communication among multiple cell types, frequently in the form of physical cell-cell interactions. Germinal centers (GCs) are highly organized tissue microdomains in which high affinity, class-switched, antibody-producing cells and humoral immune memory are generated. Critical underlying cell-cell interaction events include at the minimum binary interactions between CD4(+) T-helper cells and antigen-presenting dendritic cells (DCs), which ensure proper T-cell activation and acquisition of effecter potentials, and those between T-helper cells and antigen-activated B cells whereby the latter cells receive helper signals (e.g. CD40L) important for their proliferation, survival, and differentiation. How these critical cellular interaction events are molecularly regulated and dynamically orchestrated to support GC formation and function is still a study in progress. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) has recently been defined as a pivotal molecule that controls cognate T-B interactions and GC formation. Detailed analysis of interaction and migration dynamics of SAP-deficient T cells has raised the interesting possibility that T cell:antigen-presenting cell interactions underlying GC development and function are regulated in a cell type- and spatiotemporal stage-specific manner. This has important implications for our understanding of synapse formation, helper signal delivery to B cells, follicular helper T-cell differentiation, and quality control of the GC reaction in general. A model of selective T-B interactions involving bi-directional feedback and feed-forward logic is proposed to underlie GC development and function. 相似文献
18.
Allergic diseases are characterized by overactive type 2 immune responses to allergens and immunoglobulin E (IgE)-mediated hypersensitivity. Emerging evidence suggests that follicular helper T (TFH) cells, rather than type 2 T-helper (TH2) cells, play a crucial role in controlling IgE production. However, follicular regulatory T (TFR) cells, a specialized subset of regulatory T (TREG) cells resident in B-cell follicles, restricts TFH cell-mediated help in extrafollicular antibody production, germinal center (GC) formation, immunoglobulin affinity maturation, and long-lived, high-affinity plasma and memory B-cell differentiation. In mouse models of allergic asthma and food allergy, CXCR5+ TFH cells, not CXCR5− conventional TH2 cells, are needed to support IgE production, otherwise exacerbated by CXCR5+ TFR cell deletion. Upregulation of TFH cell activities, including a skewing toward type 2 TFH (TFH2) and IL-13 producing TFH (TFH13) phenotypes, and defects in TFR cells have been identified in patients with allergic diseases. Allergen immunotherapy (AIT) reinstates the balance between TFH and TFR cells in patients with allergic diseases, resulting in clinical benefits. Collectively, further understanding of TFH and TFR cells and their role in the immunopathogenesis of allergic diseases creates opportunities to develop novel therapeutic approaches. 相似文献
19.