首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decreased survival of von Willebrand factor (VWF) in plasma has been implicated as a mechanism in a subset of type 1 von Willebrand disease (VWD) patients. We have previously reported that the ratio of plasma levels of VWF and its propeptide (VWFpp) can be used to identify patients with reduced VWF survival. In this study, we report the assay of VWFpp and VWF:Ag in 19 individuals recruited from 6 European centers within the MCMDM-1VWD study. Eight individuals had a VWF:Ag level less than 30 IU/dL. Seven of these patients had a robust desmopressin response and significantly reduced VWF half-life that was predicted by a markedly increased steady-state plasma VWFpp/VWF:Ag ratio. VWF mutations previously associated with reduced VWF survival were identified in each of the 7 individuals. Thus, a substantially increased ratio of steady-state VWFpp/VWF:Ag predicted a reduced VWF half-life in patients with markedly decreased VWF:Ag levels. These data indicate that a reduced VWF survival is found in a subpopulation of patients with type 1 VWD. The systematic assay of both plasma VWF and the VWF propeptide in moderately severe type 1 VWD patients may identify patients with a reduced VWF survival phenotype.   相似文献   

2.
One of the more recent findings concerning Von Willebrand disease (VWD) is that a shorter Von Willebrand factor (VWF) survival either decides or modulates the VWD phenotype by downregulating circulating VWF levels. VWF survival is currently investigated with the desmopressin (DDAVP) test, a time-consuming strategy enabling the main pharmacokinetic parameters (e.g., VWF half-life elimination time and clearance) to be defined. An alternative now available involves assaying the VWF propeptide (VWFpp) in single steady-state blood samples, which reportedly increases as VWF survival decreases. This article demonstrates how measuring VWFpp and calculating the VWFpp-to-VWF:antigen ratio (VWFpp ratio) are good alternatives to DDAVP for investigating VWF survival. In type 1 VWD, the VWFpp ratio has been found normal in patients with pure quantitative VWF defects, markedly increased in cases with an isolated decline in VWF survival, and more or less increased in patients with both quantitative defects and a shorter VWF survival. The same applies to type 2B VWD, which is characterized by an increased VWFpp ratio and a shorter VWF survival, with values that appear inversely related. Exploring VWF half-life by assaying VWFpp is useful not only for the more precise characterization of VWD but also for defining its most appropriate treatment.  相似文献   

3.
Reduced von Willebrand factor (VWF) half-life has been suggested as a new pathogenic mechanism in von Willebrand disease (VWD). The usefulness of VWF propeptide (VWFpp) in exploring VWF half-life was assessed in 22 type 1 and 14 type Vicenza VWD patients, and in 30 normal subjects, by comparing the findings on post-Desmopressin (DDAVP) VWF t(1/2) elimination (t(1/2el)). The VWFpp/VWF antigen ratio (VWFpp ratio) was dramatically increased in type Vicenza VWD (13.02 +/- 0.49) when compared to normal subjects (1.45 +/- 0.06), whereas it appeared to be normal in all type 1 VWD patients (1.56 +/- 0.7), except for the four carrying the C1130F mutation (4.69 +/- 0.67). A very short VWF t(1/2el) was found in type Vicenza VWD (1.3 +/- 0.2 h), while all type 1 VWD patients had a t(1/2el) similar to that of the controls (11.6 +/- 1.4 and 15.4 +/- 2.5 h respectively), except for the four patients carrying the C1130F mutation, who had a significantly shorter VWF survival (4.1 +/- 0.2 h). A significant inverse correlation emerged between VWFpp ratio and VWF t(1/2el) in both VWD patients and normal subjects. The VWFpp ratio thus seemed very useful for distinguishing between type 1 VWD cases with a normal and a reduced VWF survival, as well as for identifying type Vicenza VWD.  相似文献   

4.
Recessive type 3 von Willebrand disease (VWD) is caused by homozygosity or double heterozygosity for two non-sense mutations (null alleles). Type 3 VWD is easy to diagnose by the combination of a strongly prolonged bleeding time (BT), absence of ristocetine-induced platelet aggregation (RIPA), absence of von Willebrand factor (VWF) protein, and prolonged activated partial thromboplastin time (aPTT) due to factor VIII:coagulant (FVIII:C) deficiency. VWD type 3 is associated with a pronounced tendency to mucocutaneous and musculoskeletal bleedings since early childhood. Carriers of one null allele are usually asymptomatic at VWF levels of 50% of normal. Recessive severe type 1 VWD is caused by homozygosity or double heterozygosity for a missense mutation. Recessive type 1 VWD differs from type 3 VWD by the presence of detectable von Willebrand factor: antigen VWF:Ag and FVIII:C levels between 0.09 and 0.40 U/mL. Patients with recessive type 1 VWD show an abnormal VWF multimeric pattern in plasma and/or platelets consistent with severe type 2 VWD. Carriers of a missense mutation may have mild bleeding and mild VWF deficiency and can be diagnosed by a double VWF peak on cross immunoelectrophoresis (CIE). There will be cases of mild and moderate recessive type 1 VWD due to double heterozygosity of two missense mutations, or with the combination of one missense mutation with a non-sense or bloodgroup O. Mild deficiency of VWF in the range of 0.20 to 0.60 U/mL, with normal ratios of von Willebrand factor: ristocetine cofactor/antigen VWF:RCo/Ag and VWF:collagen binding/antigen (VWF:CB/Ag), normal VWF multimers, and a completely normal response to desmopressin acetate (DDAVP) with VWF level rising from below to above 1.00 U/mL are very likely cases of so-called pseudo-VWF deficiency in individuals with normal VWF protein and gene. Autosomal dominant type 1 VWD variants are in fact type 2 variants caused by a heterozygous missense mutation in the VWF gene that produces a mutant VWF protein that has a dominant effect on normal VWF protein produced by the normal VWF allele with regard to the synthesis, processing, storage, secretion, and/or proteolysis of VWF in endothelial cells. A DDAVP challenge test clearly differentiates between dominant type 1 VWD phenotype and dominant type 2 M VWD.  相似文献   

5.
To date, no dominant mutation has been identified in a significant proportion of patients with type 1 von Willebrand disease (VWD). In this study, we examined 70 families as part of the Canadian Type 1 VWD Study. The entire VWF gene was sequenced for 1 index case, revealing 2 sequence variations: intron 30 (5312-19A>C) and exon 28 at Tyr1584Cys (4751A>G). The Tyr1584Cys variation was identified in 14.3% (10 of 70) of the families and was in phase with the 5312-19A>C variation in 7 (10.0%) families. Both variants were observed in 2 of 10 UK families with type 1 VWD, but neither variant was found in 200 and 100 healthy, unrelated persons, respectively. Mean von Willebrand factor antigen (VWF:Ag), VWF ristocetin cofactor (VWF:RCo), and factor VIII coagulant activity (FVIII:C) for the index cases in these families are 0.4 U/mL, 0.36 U/mL, and 0.54 U/mL, respectively, and VWF multimer patterns show no qualitative abnormalities. Aberrant VWF splicing was not observed in these patients, and both alleles of the VWF gene are expressed as RNA. Molecular dynamic simulation was performed on a homology model of the VWF-A2 domain containing the Tyr1584Cys mutation. This showed that no significant structural changes occur as a result of the substitution but that a new solvent-exposed reactive thiol group is apparent. Expression studies revealed that the Tyr1584Cys mutation results in increased intracellular retention of the VWF protein. We demonstrate that all the families with the Tyr1584Cys mutation share a common, evolved VWF haplotype, suggesting that this mutation is ancient. This is the first report of a mutation that segregates in a significant proportion of patients with type 1 VWD.  相似文献   

6.

Background

Mutation C1149R in the von Willebrand factor (VWF) gene has been thought to cause autosomal dominant severe type 1 von Willebrand disease (VWD).

Design and Methods

Eight patients from three unrelated families with this mutation were included in the present study who had distinct VWF abnormalities, not described in earlier studies.

Results

The patients showed notably low levels of VWF antigen (VWF:Ag), VWF ristocetin cofactor activity (VWF:RCo), VWF collagen binding (VWF:CB), and a reduced ristocetin-induced platelet aggregation (RIPA). VWF:RCo/VWF:Ag and VWF:CB/VWF:Ag ratios were lower than 0.7. At basal conditions, all the VWF multimers were decreased in plasma, with a clearly lower relative proportion of the high molecular weight VWF multimers (HMWM). In high-resolution agarose gels, a large decrease in the relative proportions of the satellite bands was seen. The patients had a brief good response to desmopressin (DDAVP) administration, but the released VWF half-life was shorter than normal, indicating an accelerated clearance of their VWF. Platelet VWF was abnormal.

Conclusions

We conclude from the results obtained in these patients for plasma phenotypic data that this mutation should be classified as a VWD type 2A (IIE). DDAVP therapy may be somewhat helpful for this mutation, at least for mild to moderate bleeding. These data provide evidence that for VWD classification factors other than basal VWF, such as DDAVP response and platelet VWF, should be considered.  相似文献   

7.
Exon 28 polymorphism p.D1472H is associated with significantly lower von Willebrand Ristocetin cofactor activity (VWF:RCoF) to von Willebrand antigen (VWF:Ag) ratio compared to normal, but has been reported as not conferring haemorrhagic risk. The impact of this polymorphism while assessing symptomatic patients for von Willebrand disease (VWD) has not been previously analysed. We retrospectively reviewed charts of children with clinically significant bleeding and abnormal VW panel who underwent VW exon 28 analysis. Twenty‐three of 63 patients studied had p.D1472H. Of these 23 patients, 6 with borderline low VWF:RCo were given provisional diagnosis of VWD type 1 by treating physicians, which could be alternatively explained as due to the effect of p.D1472H. None of the patients with low VWF:RCo, decreased VWF:RCo/VWF:Ag ratio and p.D1472H had VWD type 2M mutations identified. This study illustrates the challenge in diagnosing VWD using ristocetin‐based VW assay in symptomatic patients with p.D1472H.  相似文献   

8.
The present study aimed to evaluate the parent-child relationship in differentiating between unaffected healthy individuals and those with von Willebrand disease (VWD). This study was performed on 15 children between the ages of 5 and 15 years and parents with personal and familial evidence of bleeding. Diagnosis of VWD as considered 'low von Willebrand factor (VWF) level or mild type 1 VWD' in the following children: those with low VWF levels (VWF:RCo and VWF:Ag between 30 and 50 U/dl), at least one bleeding symptom and a family member with at least one bleeding symptom. Laboratory values in the parents of families 1-7 were VWF:Ag 65-90, VWF:RCo 54-87, and FVIII:C 74-110, versus VWF:Ag 33-47, VWF:RCo 30-42, and FVIII:C 36-67 in their children. The normal laboratory values in the parents of families 1-7 suggested that their children would probably have low VWF levels. Our findings are that VWF levels are increasing with age. Laboratory values in the parents of families 8-15 were VWF:Ag 30-59, VWF:RCo 32-55, and FVIII:C 44-66, versus VWF:Ag 32-48, VWF:RCo 30-54, and FVIII:C 38-55 in their children. The laboratory values in the children from families 8-15 were close to the minimum range of normal or below normal, which suggested that it was possible that the parents and children in families 8-15 could be diagnosed as having mild type 1 VWD. The present study's findings show that comparison of the VWF levels in parents and their children may be helpful in differentiating children with low VWF levels and mild type 1 VWD from children that only have low VWF levels.  相似文献   

9.

Introduction

The correct diagnosis and classification of VWD (von Willebrand disease) is crucial and must be optimized by including the collagen binding assay (VWF:CB). VWF:CB remains an under‐recognized tool, not fully automated. The objective of this study was to evaluate and to compare the previously evaluated automated chemiluminescent assay (HemosIL AcuStar VWF:CB) to the ELISA ASSERACHROM® assay used routinely in our laboratory in patients with molecular diagnosis of VWD.

Methods

A plasma sample from 49 patients previously diagnosed with VWD (type 1; type 2A, type 2M, type 2B) through phenotype and VWF (von Willebrand factor) analysis and 15 healthy controls was analysed. The VWF ristocetin cofactor activity (VWF:Rco) and VWF antigen (VWF:Ag) were performed simultaneously on the VWD plasma samples, and VWF:CB/VWF:Ag ratios were calculated.

Results

The AcuStar VWF:CB assay was quickly performed with Pearson's correlation coefficient (r²) of .9571 between assays and a bias of +5.1U/dL (AcuStar > ELISA). Discrepancies of VWF:CB/VWF:Ag ratio were observed in type 2M‐2A‐like VWD (ratio <0.6 with AcuStar assay in 4/5 samples).

Conclusion

The AcuStar VWF:CB assay has demonstrated good performance to detect VWF mutational changes with capacity to discriminate quickly principal types of VWD.  相似文献   

10.
Type Vicenza variant of von Willebrand disease (VWD) is characterized by a low plasma von Willebrand factor (VWF) level and supranormal VWF multimers. Two candidate mutations, G2470A and G3864A at exons 17 and 27, respectively, of the VWF gene were recently reported to be present in this disorder. Four additional families, originating from northeast Italy, with both mutations of type Vicenza VWD are now described. Like the original type Vicenza subjects, they showed a mild bleeding tendency and a significant decrease in plasma VWF antigen level and ristocetin cofactor activity but normal platelet VWF content. Unlike the original patients, ristocetin-induced platelet aggregation was found to be normal. Larger than normal VWF multimers were also demonstrated in the plasma. Desmopressin (DDAVP) administration increased factor VIII (FVIII) and VWF plasma levels, with the appearance of even larger multimers. However, these forms, and all VWF oligomers, disappeared rapidly from the circulation. The half-life of VWF antigen release and of elimination was significantly shorter than that in healthy counterparts, so that at 4 hours after DDAVP administration, VWF antigen levels were close to baseline. Similar behavior was demonstrated by VWF ristocetin cofactor activity and FVIII. According to these findings, it is presumed that the low plasma VWF levels of type Vicenza VWD are mainly attributed to reduced survival of the VWF molecule, which, on the other hand, is normally synthesized. In addition, because normal VWF-platelet GPIb interaction was observed before or after DDAVP administration, it is proposed that type Vicenza VWD not be considered a 2M subtype.  相似文献   

11.
Some comorbidities, such as hypertension, are associated with higher von Willebrand factor (VWF) levels in the general population. No studies have been conducted to assess this association in patients with von Willebrand disease (VWD). Therefore, we studied this association in patients with type 1 (n = 333) and type 2 (n = 203) VWD from the ‘WiN” study. VWF antigen (VWF:Ag) was higher in type 1 VWD patients with hypertension [difference: 0·23 iu/ml, 95% confidence interval (CI): 0·11–0·35], diabetes mellitus (0·11 iu/ml, 95% CI: −0·02 to 0·23), cancer (0·14 iu/ml, 95% CI: 0·03–0·25) and thyroid dysfunction (0·14 iu/ml, 95% CI: 0·03–0·26) than in patients without these comorbidities (all corrected for age, sex and blood group). Similar results were observed for VWF collagen binding capacity (VWF:CB), VWF activity as measured by the VWF monoclonal antibody assay (VWF:Ab) and factor VIII (FVIII) coagulant activity (FVIII:C). In type 1 VWD, age was associated with higher VWF:Ag (0·03 iu/ml; 95% CI: 0·01–0·04), VWF:CB (0·02 iu/ml; 95% CI: 0·00–0·04), VWF:Ab (0·04 iu/ml; 95% CI: 0·02–0·06) and FVIII:C (0·03 iu/ml; 95% CI: 0·01–0·06) per decade increase. After adjustment for relevant comorbidities, these associations were no longer significant. Despite the higher VWF and FVIII levels, type 1 VWD patients with comorbidities had more bleeding episodes, particularly during surgery. There was no association between comorbidities and VWF/FVIII levels or bleeding phenotype in type 2 VWD patients. In conclusion, comorbidities are associated with higher VWF and FVIII levels in type 1 VWD and may explain the age‐related increase of VWF and FVIII levels.  相似文献   

12.
When normal volunteers or patients with type I von Willebrand disease (VWD) are given desmopressin (DDAVP), a set of larger-than-normal (supranormal) von Willebrand factor (VWF) multimers, similar to those present in VWF-containing cells such as platelets megakaryocytes and endothelial cells, appear transiently in postinfusion plasma. In two kindreds with mild lifelong bleeding symptoms transmitted as an autosomal dominant trait, all ten symptomatic members (but none of the five asymptomatic members) had a supranormal multimeric structure for plasma VWF, apparently identical to that seen for postdesmopressin normal plasma. Plasma factor VIII coagulant activity (VIII:C), VWF antigen (VWF:Ag), ristocetin-induced platelet agglutination, and ristocetin cofactor (RiCof) activity were low. Platelet VWF:Ag and RiCof levels (tested for three patients only) were normal. Bleeding times were normal or slightly prolonged. The patients' platelet multimeric structure was the same as that for normal platelets. After desmopressin infusion the plasma VWF multimeric structure remained supranormal as for preinfusion plasma, with VIII:C VWF:Ag and RiCof increasing markedly over baseline values and disappearing at a normal rate. Examination of the VWF subunit composition from three of these patients indicated that proteolytic processing of their VWF did not differ from normal. This study describes the first variant of VWD with a supranormal multimeric structure.  相似文献   

13.
Summary. von Willebrand disease (VWD) is a common autosomally inherited bleeding disorder associated with mucosal or trauma‐related bleeding in affected individuals. VWD results from a quantitative or qualitative deficiency of von Willebrand factor (VWF), a glycoprotein that is essential for primary haemostasis and that carries and protects coagulation factor VIII (FVIII) in the circulation. Through characterization of the phenotype and identification of mutations in the VWF gene in patients with VWD, understanding of the genetics and biochemistry of VWF and VWD has advanced considerably. The importance of specific regions of VWF for its interaction with other components of the vasculature has been revealed, and this has facilitated the formal classification of VWD into three subtypes based upon quantitative (types 1 and 3) and qualitative (type 2) deficiency of VWF. The underlying genetic lesions and associated molecular pathology have been identified in many cases of the qualitative type 2 VWD variants (2A, 2B, 2M, 2N) and in the severe quantitative deficiency, type 3 VWD. However in the partial quantitative deficiency, type 1 VWD, the picture is less clear: there is a variable relationship between plasma levels of VWF and bleeding, there is incomplete penetrance and variable expressivity within affected families, the causative molecular defect is unknown in a substantial number of cases, and even in those cases where the causative mutation is known, the associated molecular pathology is not necessarily understood. This guideline aims to provide a framework for best laboratory practice for the genetic diagnosis of VWD, based upon current knowledge and understanding.  相似文献   

14.
Haberichter SL  Jacobi P  Montgomery RR 《Blood》2003,101(4):1384-1391
Von Willebrand factor (VWF) is synthesized in endothelial cells, where it is stored in Weibel-Palade bodies. Administration of 1-desamino-8-D-arginine-vasopressin (DDAVP) to patients with type 1 von Willebrand disease and to healthy individuals causes a rapid increase in plasma VWF levels. This increase is the result of stimulated release of VWF from Weibel-Palade bodies in certain beds of endothelial cells. The VWF propeptide (VWFpp) targets VWF to storage granules through a noncovalent association. The nature of the VWFpp/VWF interaction was investigated by using cross-species differences in VWF storage. While canine VWFpp traffics to storage granules and facilitates the multimerization of human VWF, it does not direct human VWF to storage granules. Since storage takes place after furin cleavage, this defect appears to be due to the defective interaction of canine VWFpp and human VWF. To determine the regions within VWFpp and VWF important for this VWFpp/VWF association and costorage, a series of human-canine chimeric VWFpp and propeptide-deleted VWF (Deltapro) constructs were produced and expressed in AtT-20 cells. The intracellular localization of coexpressed proteins was examined by confocal microscopy. Two amino acids, 416 in VWFpp and 869 in the mature VWF molecule, were identified as being critical for the association and granular storage of VWF.  相似文献   

15.
The molecular pathogenesis of type 1 von Willebrand disease (VWD) is uncertain in most patients. We examined 30 type 1 VWD families in the UK Haemophilia Centre Doctors' Organization study. Heterozygosity for Y/C1584 was present in eight of 30 (27%) families and 19 of 76 (25%) individuals with type 1 VWD recruited into the study. Eighteen (95%) of these 19 individuals were blood group O. C1584 did not co-segregate with VWD in four families, and co-segregated in one family; the results were equivocal in three families. In all families increased susceptibility of von Willebrand factor (VWF) to a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS) 13 proteolysis co-segregated with C1584 in affected and unaffected individuals. These data show that C1584, associated with blood group O, is prevalent among patients with type 1 VWD but not necessarily causative of disease and should not be used in isolation to diagnose VWD. Increased susceptibility of C1584 VWF to ADAMTS13 proteolysis may be physiologically significant and increase an individual's risk of bleeding and presenting with VWD.  相似文献   

16.
The defective FVIII carrier function of von Willebrand factor (VWF) identifies type 2N von Willebrand disease (VWD), a variant with a pattern resembling hemophilia A. Type 2N characterization is based on the evaluation of the capacity of VWF to bind exogenous FVIII (VWF:FVIIIB). Here we report on a retrospective evaluation of hemostatic laboratory parameters most useful in detecting type 2N carriers. The diagnostic capacity of aPTT, FVIII, VWF:Ag, FVIII/VWF:Ag ratio, VWF:FVIIIB and VWF:FVIIIB/VWF:Ag ratio was evaluated in 21 type 2N VWD carriers. Twenty subjects were heterozygous for the R854Q mutation, one was heterozygous for the R760C missense mutation, which interferes with cleavage of the VWF propeptide. We found that prolongation of aPTT and decrease in FVIII and FVIII/VWF:Ag ratio were not frequent findings in type 2N carriers. The same was true for VWF:FVIIIB which was not always abnormal. On the contrary, VWF:FVIIIB/VWF:Ag ratio was always defective and its values were not related with FVIII and FVIII/VWF:Ag ratio or influenced by plasma VWF concentration. Given these results, we attribute the greatest significance to VWF:FVIIIB/VWF:Ag ratio in the diagnosis of type 2N defects, and only search for type 2N mutations, to validate the diagnosis, if the ratio proves abnormal.  相似文献   

17.
von Willebrand disease (VWD) is a common bleeding disorder, but diagnosis is sometimes challenging because of issues with the current von Willebrand factor (VWF) assays, VWF antigen (VWF:Ag) and VWF ristocetin cofactor activity (VWF:RCo), used for diagnosis. We evaluated 113 healthy controls and 164 VWD subjects enrolled in the T.S. Zimmerman Program for the Molecular and Clinical Biology of VWD for VWF:Ag, VWF:RCo, and a new enzyme-linked immunosorbent assay (ELISA)-based assay of VWF-glycoprotein Ib (GPIb) interactions using a gain-of-function GPIb construct (tGPIbα(235Y;239V)) as a receptor to bind its ligand VWF in an assay independent of ristocetin (VWF:IbCo ELISA). Healthy controls, type 1, 2A, 2M, and 2N subjects had VWF:RCo/VWF:Ag ratios similar to the ratio obtained with VWF:IbCo ELISA/VWF:Ag. Type 2B VWD subjects, however, had elevated VWF:IbCo ELISA/VWF:Ag ratios. Type 3 VWD subjects had undetectable (< 1.6 U/dL) VWF:IbCo ELISA values. As previously reported, VWF:RCo/VWF:Ag ratio was decreased with a common A1 domain polymorphism, D1472H, as was direct binding to ristocetin for a 1472H A1 loop construct. The VWF:IbCo ELISA, however, was not affected by D1472H. The VWF:IbCo ELISA may be useful in testing VWF binding to GPIb, discrimination of type 2 variants, and in the diagnosis of VWD as it avoids some of the pitfalls of VWF:RCo assays.  相似文献   

18.
19.
In normal platelet α-granules von Willebrand factor (VWF) is stored with multimerin and factor V in an eccentric electron-lucent zone. Because the platelet stores of VWF are deficient in 'platelet low' type 1 and type 3 von Willebrand disease (VWD), we investigated their electron-lucent zone proteins. The patients with VWD had partial to complete deficiencies of plasma and platelet VWF but normal α-granular multimerin and factor V, and normal α-granular fibrinogen, thrombospondin-1, fibronectin, osteonectin and P-selectin. In type 3 VWD platelets, α-granular electron-lucent zones lacking VWF-associated tubules were identified and multimerin was found in its normal α-granular location. These findings indicate that the formation of the electron-lucent zone and the sorting of multimerin to this region occur independent of VWF. The isolated abnormalities in VWF suggests a VWF gene mutation is the cause of 'platelet low' type 1 VWD.  相似文献   

20.
Quantitative defects in von Willebrand factor (VWF) result in type 1 and type 3 von Willebrand disease (VWD). This study characterizes the defect in VWF expression resulting from a single nucleotide deletion in VWF exon 18, a mutation previously reported to be common among type 3 VWD patients. A severely affected (type 3) VWD patient in the current pedigree is homozygous for the mutation, whereas heterozygous individuals exhibit variable expression of type 1 VWD. In contrast to the previously reported high frequency of the exon 18 deletion in Sweden and Germany, this mutation appears to be infrequent among type 3 VWD patients in the United States. Although this frameshift mutation results in proximal premature termination of VWF translation, the abnormal VWF mRNA is stable. The mutant truncated recombinant VWF protein is retained within the transfected cell, and no propeptide processing is observed, suggesting a defect in protein folding. Cotransfection of mutant and wild-type recombinant VWF fails to demonstrate a dominant effect of the mutant on the normal allele. Consistent with these results, plasma VWF propeptide of the homozygous individual was markedly reduced whereas heterozygotes exhibited moderately reduced levels. In contrast to type 2A VWD (group 1), the misfolded mutant protein does not appear to exert a dominant-negative effect on normal VWF subunits expressed from the wild-type allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号