首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The quality of spiral images depends on the accuracy of the k-space sampling locations. Although newer gradient systems can provide more accurate gradient waveforms, the sampling positions can be significantly distorted by timing misregistration between data acquisition and gradient systems. Even after the timing of data acquisition is tuned, minor residual errors can still cause shading artifacts which are problematic for quantitative MR applications such as phase-contrast flow quantitation. These timing errors can ideally be corrected by measuring the actual k-space trajectory, but trajectory measurement requires additional data acquisition and scan time. Therefore, off-centered spiral trajectories which are more robust against timing errors are proposed and applied to the phase-contrast method. The new trajectories turn shading artifacts into a slowly varying linear phase in reconstructed images without affecting the magnitude of images.  相似文献   

2.
A variable-density k-space sampling method is proposed to reduce aliasing artifacts in MR images. Because most of the energy of an image is concentrated around the k-space center, aliasing artifacts will contain mostly low-frequency components if the k-space is uniformly undersampled. On the other hand, because the outer k-space region contains little energy, undersampling that region will not contribute severe aliasing artifacts. Therefore, a variable-density trajectory may sufficiently sample the central k-space region to reduce low-frequency aliasing artifacts and may undersample the outer k-space region to reduce scan time and to increase resolution. In this paper, the variable-density sampling method was implemented for both spiral imaging and two-dimensional Fourier transform (2DFT) imaging. Simulations, phantom images and in vivo cardiac images show that this method can significantly reduce the total energy of aliasing artifacts. In general, this method can be applied to all types of k-space sampling trajectories.  相似文献   

3.
4.
Three-dimensional (3D) k-space trajectories are needed to acquire volumetric images in MRI. While scan time is determined by the trajectory efficiency, image quality and distortions depend on the shape of the trajectories. There are several 3D trajectory strategies for sampling the k-space using rectilinear or curve schemes. Since there is no evidence about their optimality in terms of image quality and acquisition time, a new design method based on missile guidance ideas is explored. Since air-to-air missile guidance shares similar goals and constraints with the problem of k-space trajectory design, a control approach for missiles is used to design a 3D trajectory. The k-space is divided into small cubes, and each one is treated as a target to be sampled. The main goal is to cover the entire space as quickly and efficiently as possible, with good performance under different conditions. This novel design method is compared to other trajectories using simulated and real data. As an example, a trajectory that requires 0.11 times the number of shots needed by the cylindrical 3DFT acquisition was designed. This trajectory requires more shots (1.66 times) than the stack of spirals, but behaves better under nonideal conditions, such as off-resonance and motion.  相似文献   

5.
An optimized interleaved-spiral pulse sequence, providing high spatial and temporal resolution, was developed for dynamic imaging of pulmonary ventilation with hyperpolarized (3)He, and tested in healthy volunteers and patients with lung disease. Off-resonance artifacts were minimized by using a short data-sampling period per interleaf, and gradient-fidelity errors were compensated for by using measured k-space trajectories for image reconstruction. A nonsequential acquisition order was implemented to improve image quality during periods of rapid signal change, such as early inspiration. Using a sliding-window reconstruction, cine-movies with a frame rate of 100 images per second were generated. Dynamic images demonstrating minimal susceptibility- and motion-induced artifacts were obtained in sagittal, coronal, and axial orientations. The pulse sequence had the flexibility to image multiple slices almost simultaneously. Our initial experience in healthy volunteers and subjects with lung pathology demonstrated the potential of this new tool for capturing the features of lung gas-flow dynamics.  相似文献   

6.
Although spiral imaging seldom produces apparent artifacts related to flow, it remains sensitive to rapid object motion. In this article, a new correction method is presented for rapid rigid body motion in interleaved spiral imaging. With this technique, an identical circular navigator k-space trajectory is linked to each spiral trajectory. Data inconsistency due to both rotation and translation among spiral interleaves can be corrected by evaluating the magnitudes and phases of the data contained in the navigator "ring." Further, it is difficult to create a frequency field map for off-resonance correction when an object moves during a scan, because there is motion-dependent misregistration between the two images acquired with different TEs. However, this difficulty can be overcome by combining the motion-correction method with a recently proposed technique (off-resonance correction using variable-density spirals (ORC-VDS)), thereby enabling both motion compensation and off-resonance correction with no additional scanning.  相似文献   

7.
Spiral acquisitions are used in fast cardiac imaging because they traverse k-space efficiently and minimize flow artifacts. A variable pitch logarithmic spiral trajectory is designed to critically sample the low-frequency region in k-space and gradually undersample the high-frequency region. An approximate analytical expression for the trajectory provides a fast means to calculate the gradient waveforms and the sampled data points. A numerical method is introduced based on the trajectory curvature and the rate of change in the gradient magnitude with time for the composite Archimedean-logarithmic trajectory. The pulse sequence is implemented and images are acquired on phantoms and human hearts. The images show improved image resolution and some improvement in image quality as a result of increased extent in k-space and reduction in aliasing artifacts, respectively.  相似文献   

8.
The shells trajectory is a 3D data acquisition method with improved efficiency compared to Cartesian sampling. It is a true center-out trajectory that does not repeatedly resample the center of k-space, and also offers advantages for motion correction. This work demonstrates that k-space undersampling can be combined with the shells trajectory to further accelerate the acquisition. The undersampling was implemented by removing selected interleaves from shells with larger radii. Because only the outer portion of k-space was undersampled, the artifacts introduced were of low energy and high spatial frequency. The undersampling rate was determined by a Kaiser window with a variable shape parameter beta. Various undersampling schemes with different beta values were examined. Phantom and volunteer studies demonstrate that when up to a twofold acceleration is achieved, only minor artifacts are introduced by undersampling the shells trajectory. For a fixed acquisition time, the improved efficiency can be used to increase spatial resolution.  相似文献   

9.
The radial trajectory has found applications in cardiac imaging because of its resilience to undersampling and motion artifacts. Recent work has shown that interleaved and weighted radial imaging can produce images with multiple contrasts from a single data set. This feature was investigated for inversion recovery imaging of scar using a radial technique. The 2D radial imaging method was modified to acquire quadruply interleaved projection sets within each acquisition window of the cardiac cycle. These data were reconstructed using k-space weightings that used a smaller segment of the acquisition window for the central k-space data, the determinant of image contrast. This method generates four images with different T1 weightings. The novel approach was compared with noninterleaved radial imaging, interleaved radial without weightings, and Cartesian imaging in simulations, phantoms, and seven subjects with clinical myocardial infarction. The results show that during a typical acquisition window after an inversion pulse, magnetization changes rapidly. The interleaved acquisition provided better image quality than the noninterleaved radial acquisition. Interleaving with weighting provided better quality when the inversion time (TI) was shorter than optimal; otherwise, interleaving without weighting was superior. These methods enable a radial trajectory to be employed in conjunction with preparation pulses for viability imaging.  相似文献   

10.
The use of spiral trajectories is an efficient way to cover a desired k-space partition in magnetic resonance imaging (MRI). Compared to conventional Cartesian k-space sampling, it allows faster acquisitions and results in a slight reduction of the high gradient demand in fast dynamic scans, such as in functional MRI (fMRI). However, spiral images are more susceptible to off-resonance effects that cause blurring artifacts and distortions of the point-spread function (PSF), and thereby degrade the image quality. Since off-resonance effects scale with the readout duration, the respective artifacts can be reduced by shortening the readout trajectory. Multishot experiments represent one approach to reduce these artifacts in spiral imaging, but result in longer scan times and potentially increased flow and motion artifacts. Parallel imaging methods are another promising approach to improve image quality through an increase in the acquisition speed. However, non-Cartesian parallel image reconstructions are known to be computationally time-consuming, which is prohibitive for clinical applications. In this study a new and fast approach for parallel image reconstructions for spiral imaging based on the generalized autocalibrating partially parallel acquisitions (GRAPPA) methodology is presented. With this approach the computational burden is reduced such that it becomes comparable to that needed in accelerated Cartesian procedures. The respective spiral images with two- to eightfold acceleration clearly benefit from the advantages of parallel imaging, such as enabling parallel MRI single-shot spiral imaging with the off-resonance behavior of multishot acquisitions.  相似文献   

11.
The correction of motion artifacts continues to be a significant problem in MRI. In the case of uncooperative patients, such as children, or patients who are unable to remain stationary, the accurate determination and correction of motion artifacts becomes a very important prerequisite for achieving good image quality. The application of conventional motion-correction strategies often produces inconsistencies in k-space data. As a result, significant residual artifacts can persist. In this work a formalism is introduced for parallel imaging in the presence of motion. The proposed method can improve overall image quality because it diminishes k-space inconsistencies by exploiting the complementary image encoding capacity of individual receiver coils. Specifically, an augmented version of an iterative SENSE reconstruction is used as a means of synthesizing the missing data in k-space. Motion is determined from low-resolution navigator images that are coregistered by an automatic registration routine. Navigator data can be derived from self-navigating k-space trajectories or in combination with other navigation schemes that estimate patient motion. This correction method is demonstrated by interleaved spiral images collected from volunteers. Conventional spiral scans and scans corrected with proposed techniques are shown, and the results illustrate the capacity of this new correction approach.  相似文献   

12.
RATIONALE AND OBJECTIVES: We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. MATERIALS AND METHODS: Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. RESULTS: BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. CONCLUSION: BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.  相似文献   

13.
14.
Variable-density k-space sampling using a stack-of-spirals trajectory is proposed for ultra fast 3D imaging. Since most of the energy of an image is concentrated near the k-space origin, a variable-density k-space sampling method can be used to reduce the sampling density in the outer portion of k-space. This significantly reduces scan time while introducing only minor aliasing artifacts from the low-energy, high-spatial-frequency components. A stack-of-spirals trajectory allows control over the density variations in both the k(x)-k(y) plane and the k(z) direction while fast k-space coverage is provided by spiral trajectories in the k(x)-k(y) plane. A variable-density stack-of-spirals trajectory consists of variable-density spirals in each k(x)-k(y) plane that are located in varying density in the k(z) direction. Phantom experiments demonstrate that reasonable image quality is preserved with approximately half the scan time. This technique was then applied to first-pass perfusion imaging of the lower extremities which demands very rapid volume coverage. Using a variable-density stack-of-spirals trajectory, 3D images were acquired at a temporal resolution of 2.8 sec over a large volume with a 2.5 x 2.5 x 8 mm(3) spatial resolution. These images were used to resolve the time-course of muscle intensity following contrast injection.  相似文献   

15.
The additional data acquired when using multiple receiver coils is commonly used to improve SNR or reduce acquisition times. It may also be used to remove image artifacts by selectively replacing corrupt data. In the present study, a correction scheme is presented based on simultaneous acquisition of spatial harmonics (SMASH) that enables detection and correction of motion artifacts caused by 2D translations. Newly measured data is compared with predictions from previously measured data by making negative and positive spatial harmonics. Differences are attributed to motion occurring in the interval between the acquisition of separate phase encode lines and correction parameters are determined. Two types of rigid body motion are considered: 1) object and coil array move, and 2) object only moves, since each causes different phase errors in k-space. Simulation, phantom, and volunteer experiments demonstrate the validity of the technique.  相似文献   

16.
Automatic compensation of motion artifacts in MRI.   总被引:1,自引:0,他引:1  
Patient motion during the acquisition of a magnetic resonance image can cause blurring and ghosting artifacts in the image. This paper presents a new post-processing strategy that can reduce artifacts due to in-plane, rigid-body motion in times comparable to that required to re-scan a patient. The algorithm iteratively determines unknown patient motion such that corrections for this motion provide the best image quality, as measured by an entropy-related focus criterion. The new optimization strategy features a multi-resolution approach in the phase-encode direction, separate successive one-dimensional searches for rotations and translations, and a novel method requiring only one re-gridding calculation for each rotation angle considered. Applicability to general rigid-body in-plane rotational and translational motion and to a range of differently weighted images and k-space trajectories is demonstrated. Motion artifact reduction is observed for data from a phantom, volunteers, and patients.  相似文献   

17.
The number of MRI applications that use radial k-space data acquisition have been increasing because of their inherent robustness to motion-induced reconstruction image artifacts relative to Cartesian acquisition methods. However, images reconstructed from radial data are more prone to image degrading effects due to magnetic field inhomogeneities than images made from Cartesian data. Presented here is a method for acquiring several radial k-space data lines in one trajectory, the Single TrAjectory Radial, or STAR method, that is a variation of radial EPI. The STAR method allows for angular oversampling without the increase in imaging time that occurs with angularly oversampled single line imaging. It is shown that such oversampling potentially reduces the image degrading effect of magnetic field inhomogeneities so that the motion robust features of radial imaging may be realized in a segmented EPI approach.  相似文献   

18.
PURPOSE: To detect motion-corrupted measurements in multi-average turbo-spin-echo (TSE) acquisitions and reduce motion artifacts in reconstructed images. MATERIALS AND METHODS: An average-specific phase encoding (PE) ordering scheme was developed for multi-average TSE sequences in which each echo train is assigned a unique PE pattern for each pre-averaged image (PAI). A motion detection algorithm is developed based on this new PE ordering to identify which echo trains in which PAIs are motion-corrupted. The detected PE views are discarded and replaced by uncorrupted k-space data of the nearest PAI. Both phantom and human studies were performed to investigate the effectiveness of motion artifact reduction using the proposed method. RESULTS: Motion-corrupted echo trains were successfully detected in all phantom and human experiments. Significant motion artifact suppression has been achieved for most studies. The residual artifacts in the reconstructed images are mainly caused by residual inconsistencies that remain after the corrupted k-space data is corrected. CONCLUSION: The proposed method combines a novel data acquisition scheme, a robust motion detection algorithm, and a simple motion correction algorithm. It is effective in reducing motion artifacts for images corrupted by either bulk motion or local motion that occasionally happens during data acquisition.  相似文献   

19.
The fast acquisition interleaved spin-echo (FAISE) method is a partial RF echo-planar technique which utilizes a specific phase-encode reordering algorithm to manipulate image contrast (Melki et al., J. Magn. Reson. Imaging 1:319, 1991). The technique can generate "spin-echo" like images up to 16 times faster than conventional spin-echo methods. However, the presence of T2 decay throughout the variable k-space trajectories used to manipulate T2 contrast ensures the presence of image artifacts, especially along the phase-encode direction. In this work, we experimentally and theoretically examine the type and extent of artifacts associated with the FAISE technique. We demonstrate the existence of well-defined minima of phase-encode ghost noise for selected k-space trajectories, examine the extent of blurring and edge enhancement artifacts, demonstrate the influence of matrix size and number of echoes per train on phase-encode artifact, and show how proper choice of FAISE sequence parameters can lead to proton density brain images which are practically indistinguishable from conventional spin-echo proton density images. A comparison of contrast between FAISE and standard spin-echo methods is presented in a companion article referred to as II.  相似文献   

20.
A method for motion correction, involving both data collection and reconstruction, is presented. The PROPELLER MRI method collects data in concentric rectangular strips rotated about the k-space origin. The central region of k-space is sampled for every strip, which (a) allows one to correct spatial inconsistencies in position, rotation, and phase between strips, (b) allows one to reject data based on a correlation measure indicating through-plane motion, and (c) further decreases motion artifacts through an averaging effect for low spatial frequencies. Results are shown in which PROPELLER MRI is used to correct for bulk motion in head images and respiratory motion in nongated cardiac images. Magn Reson Med 42:963-969, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号