首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Changes in densities and in the morphology of dendritic spines in the hippocampus are linked to hippocampal long-term potentiation (LTP), spatial learning, and depression. Decreased brain-derived neurotrophic factor (BDNF) levels seem to contribute to depression. Through its receptor trkB, BDNF is also involved in hippocampal LTP and hippocampus-dependent learning. Conditionally gene-targeted mice in which the ablation of trkB is restricted to the forebrain and occurs only during postnatal development display impaired learning and LTP. METHODS: To examine whether there is a link among impaired hippocampal synaptic plasticity, altered spines, and trkB receptors, we performed a quantitative analysis of spine densities and spine length in the hippocampal area CA1 and the dentate gyrus in conditional mutant mice (trkB(lox/lox)CaMKII-CRE mice). TrkB protein and mRNA levels were assayed using Western blot and in situ hybridization analysis. RESULTS: Fifteen-week-old mutant mice exhibit specific reductions in spine densities and a significant increase in spine length of apical and basal dendrites in area CA1. These alterations correlate with a time- and region-specific reduction in full-length trkB mRNA in the hippocampus. CONCLUSIONS: TrkB functions in structural remodeling of hippocampal dendritic spines, which in turn may affect synaptic transmission and plasticity.  相似文献   

2.
Spine changes associated with long-term potentiation   总被引:2,自引:0,他引:2  
Muller D  Toni N  Buchs PA 《Hippocampus》2000,10(5):596-604
High-frequency stimulation of excitatory synapses in many regions of the brain triggers a lasting increase in the efficacy of synaptic transmission referred to as long-term potentiation (LTP) and believed to contribute to learning and memory. One hypothesis proposed to account for the stability and properties of this functional plasticity is a structural remodeling of spine synapses. This possibility has recently received support from several studies. It has been found that spines are highly dynamic structures, that they can be formed very rapidly, and that synaptic activity and calcium modulate changes in spine shape and formation of new spines. Ultrastructural analyses bring additional support to these observations and suggest that LTP is associated with a remodeling of the postsynaptic density (PSD) and a process of spine duplication. This new information is reviewed and interpreted in light of other recent advances concerning the mechanisms of LTP and especially the role of postsynaptic glutamate receptor turnover in this form of plasticity. Taken together, a view is emerging that suggests that morphologic changes of spine synapses are associated with LTP and that they not only correlate with, but probably also contribute to the increase in synaptic transmission.  相似文献   

3.
The function of the spine apparatus in dendritic spines and the cisternal organelles in axon initial segments is little understood. The actin-associated protein, synaptopodin, is essential for the formation of these organelles which are absent in synaptopodin -/- mice. Here, we used synaptopodin -/- mice to explore the role of the spine apparatus and the cisternal organelle in synaptic plasticity and local circuit excitability in response to activation of the perforant path input to the dentate gyrus in vivo. We found impaired long-term potentiation following theta-burst stimulation, whereas tetanus-evoked LTP was unaffected. Furthermore, paired-pulse inhibition of the population spike was reduced and granule cell excitability was enhanced in mutants, hence revealing an impairment of local network inhibition. In summary, our data represent the first electrophysiological evidence that the lack of the spine apparatus and the cisternal organelle leads to a defect in long-term synaptic plasticity and alterations in local circuit control of granule cell excitability under adult in vivo conditions.  相似文献   

4.
NMDA receptor-dependent long-term potentiation (LTP) and depression (LTD) are forms of synaptic plasticity underlying learning and memory that are expressed through increases and decreases, respectively, in dendritic spine size and AMPA receptor (AMPAR) phosphorylation and postsynaptic localization. The A-kinase anchoring protein 79/150 (AKAP79/150) signaling scaffold regulates AMPAR phosphorylation, channel activity, and endosomal trafficking associated with LTP and LTD. AKAP79/150 is targeted to dendritic spine plasma membranes by an N-terminal polybasic domain that binds phosphoinositide lipids, F-actin, and cadherin cell adhesion molecules. However, we do not understand how regulation of AKAP targeting controls AMPAR endosomal trafficking. Here, we report that palmitoylation of the AKAP N-terminal polybasic domain targets it to postsynaptic lipid rafts and dendritic recycling endosomes. AKAP palmitoylation was regulated by seizure activity in vivo and LTP/LTD plasticity-inducing stimuli in cultured rat hippocampal neurons. With chemical LTP induction, we observed AKAP79 dendritic spine recruitment that required palmityolation and Rab11-regulated endosome recycling coincident with spine enlargement and AMPAR surface delivery. Importantly, a palmitoylation-deficient AKAP79 mutant impaired regulation of spine size, endosome recycling, AMPAR trafficking, and synaptic potentiation. These findings emphasize the emerging importance of palmitoylation in controlling synaptic function and reveal novel roles for the AKAP79/150 signaling complex in dendritic endosomes.  相似文献   

5.
Synaptopodin (SP), an actin binding protein associated with the spine apparatus, has been proposed to affect the ability of neurons to undergo synaptic plasticity. In the present study, we compared the density of SP puncta in stratum radiatum of the dorsal hippocampus (DH) with that of the ventral hippocampus (VH), a region that expresses only small and short lived LTP. Surprisingly, the VH contains significantly higher density of SP puncta than the DH. Following exposure to an acute stress, LTP was enhanced in the VH and suppressed in the DH. While SP density did change following stress, no similar trends were seen in the two sectors of the hippocampus. Thus, our results indicate a lack of clear interrelation between the density of SP and the ability to express LTP in the hippocampus.  相似文献   

6.
CX 546, an allosteric positive modulator of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid‐type ionotropic glutamate receptors (AMPARs), belongs to a drug class called ampakines. These compounds have been shown to enhance long‐term potentiation (LTP), a cellular model of learning and memory, and improve animal learning task performance, and have augmented cognition in neurodegenerative patients. However, the chronic effect of CX546 on synaptic structures has not been examined. The structure and integrity of dendritic spines are thought to play a role in learning and memory, and their abnormalities have been implicated in cognitive disorders. In addition, their structural plasticity has been shown to be important for cognitive function, such that dendritic spine remodeling has been proposed as the morphological correlate for LTP. Here, we tested the effect of CX546 on dendritic spine remodeling following long‐term treatment. We found that, with prolonged CX546 treatment, organotypic hippocampal slice cultures showed a significant reduction in CA3–CA1 excitatory synapse and spine density. Electrophysiological approaches revealed that the CA3–CA1 circuitry compensates for this synapse loss by increasing synaptic efficacy through enhancement of presynaptic release probability. CX546‐treated slices showed prolonged and enhanced potentiation upon LTP induction. Furthermore, structural plasticity, namely spine head enlargement, was also more pronounced after CX546 treatment. Our results suggest a concordance of functional and structural changes that is enhanced with prolonged CX546 exposure. Thus, the improved cognitive ability of patients receiving ampakine treatment may result from the priming of synapses through increases in the structural plasticity and functional reliability of hippocampal synapses.  相似文献   

7.
There are multiple types of plasticity at both excitatory glutamatergic and inhibitory GABAergic synapses onto a cerebellar Purkinje neuron (PN). At parallel fiber to PN synapses, long-term depression (LTD) and long-term potentiation (LTP) occur, while at molecular layer interneuron to PN synapses, a type of LTP called rebound potentiation (RP) takes place. LTD, LTP, and RP seem to contribute to motor learning. However, each type of synaptic plasticity might play a different role in various motor learning paradigms. In addition, defects in one type of synaptic plasticity could be compensated by other forms of synaptic plasticity, which might conceal the contribution of a particular type of synaptic plasticity to motor learning. The threshold stimulation for inducing each type of synaptic plasticity and the induction conditions are different for different plasticity mechanisms, and they change depending on the state of an animal. Facilitation and/or saturation of synaptic plasticity occur after certain behavioral experiences or in some transgenic mice. Thus, the regulation and roles of synaptic plasticity are complicated. Toward a comprehensive understanding of the respective roles of each type of synaptic plasticity and their possible interactions during motor learning processes, I summarize induction conditions, modulations, interactions, and saturation of synaptic plasticity and discuss how multiple types of synaptic plasticity in a PN might work together in motor learning processes.  相似文献   

8.
9.
Reagan LP  McEwen BS 《Neuroreport》2002,13(14):1801-1804
Neuronal nitric oxide synthase (nNOS) plays an important role in synaptic plasticity and learning and memory. Since deficits in long-term potentiation (LTP) and learning are observed in diabetic rats and following stress, we examined the expression of nNOS mRNA and protein in the hippocampus of streptozotocin (STZ) diabetic rats and rats subjected to restraint stress. Stress did not modulate nNOS expression, while nNOS mRNA and protein levels were significantly decreased in the hippocampus of STZ diabetic rats. These results suggest that: (1) decreased expression of nNOS mRNA and protein may contribute to deficits in hippocampal dependent learning and LTP in diabetic rats; and (2) other mechanisms may be involved in stress mediated decreases in hippocampal synaptic plasticity.  相似文献   

10.
Long-term potentiation (LTP) is a form of experimentally induced enhancement of chemical synaptic transmission that has long been proposed as a model of the endogenous processes of synaptic plasticity that mediate memory. There is a large body of evidence that the molecular mechanisms underlying experimentally induced LTP also subserve various forms of naturally occurring, experience-dependent synaptic plasticity in animals and humans. Here we describe a phenomenon called stimulus-specific response potentiation (SRP), which occurs in the primary visual cortex of mice as a result of repeated exposure to visual stimuli and is believed to reveal the mechanisms that underlie perceptual learning. We first describe evidence that SRP represents naturally occurring LTP of thalamo-cortical synaptic transmission. We then discuss the potential value of SRP as a preclinical assay for the assessment of putative drug treatments on synaptic plasticity. Stimulus-specific response potentiation is not only easy to assay and robust but captures features of feed-forward glutamatergic function and visual learning that are deficient in human psychiatric disorders, notably including schizophrenia. We suggest that phenomena analogous to SRP in humans are likely to be useful biomarkers of altered cortical LTP and of treatment response in diseases associated with impaired cognition.  相似文献   

11.
Changes in the strength of synapses in the hippocampus that occur with long-term potentiation (LTP) or long-term depression (LTD) are thought to underlie the cellular basis of learning and memory. Memory formation is known to be regulated by spacing intervals between training episodes. Using paired whole-cell recordings to record from synapses connecting two CA3 pyramidal neurons, we now show that stimulation frequency and spacing between LTP and LTD induction protocols alter the expression of synaptic plasticity. These effects were found to be dependent on protein phosphatase 1 (PP1), an essential protein serine/threonine phosphatase involved in synaptic plasticity, learning and memory. We also show for the first time that PP1 not only regulates the expression of synaptic plasticity, but also has the ability to depress synaptic transmission at basal activity levels. Moreover, PP1 can sort two consecutive messages received by the postsynaptic neuron and control the direction of change in synaptic strength. This study highlights new roles of PP1 in regulating timing-dependent constraints on the expression of synaptic plasticity that may correlate with memory processes, and together PP1 and the spacing of stimulation protocols provide mechanisms to regulate the expression of synaptic plasticity at CNS synapses.  相似文献   

12.
Cyclooxygenase (COX), which is present in two isoforms (COX1 and 2), synthesizes prostaglandins from arachidonic acid; it plays a crucial role in inflammation in both central and peripheral tissues. Here, we describe its role in synaptic plasticity and spatial learning in vivo via an effect on brain-derived neurotrophic factor (BDNF) and prostaglandin E2 (PGE2; both measured by Elisa). We found that broad-spectrum COX inhibition (BSCI) inhibits the induction of long-term potentiation (LTP; the major contemporary model of synaptic plasticity), and causes substantial and sustained deficits in spatial learning in the watermaze. Increases in BDNF and PGE2 following spatial learning and LTP were also blocked. Importantly, 4 days of prior exercise in a running wheel increased endogenous BDNF levels sufficiently to reverse the BSCI of LTP and spatial learning, and restored a parallel increase in LTP and learning-related BDNF and PGE2. In control experiments, we found that BSCI had no effect on baseline synaptic transmission or on the nonhippocampal visible-platform task; there was no evidence of gastric ulceration from BSCI. COX2 is inhibited by glucorticoids; there was no difference in blood corticosterone levels as measured by radioimmunoassay in any condition. Thus, COX plays a previously undescribed, permissive role in synaptic plasticity and spatial learning via a BDNF-associated mechanism.  相似文献   

13.
It is well established that the formation of long-term memory requires de novo protein synthesis. Altered gene expression is therefore critical in the signal transduction cascade activated by the learning experience. Long-term potentiation (LTP) is a mnemonic model in which particular patterns of activation of incoming excitatory fibers (representing the learning experience) may induce long-lasting enhancement of the communication between the involved pre- and post-synapses (representing the memory). Therefore, cellular and molecular mechanisms of LTP have been extensively studied under the assumption that their understanding will contribute to our comprehension of the mechanisms underlying memory formation. In recent years, however, this analogy has been challenged by reports of inconsistency between LTP and memory. Here we assess LTP in the hippocampus as a model system to study spatial memory-related alterations in gene expression. We focus on three molecular families that are likely to play a role in synaptic plasticity: (1) synaptic communication related proteins; (2) signal transduction machinery; and (3) growth factors. Reviewing first the literature on LTP and then behavioral research we found both consistent and inconsistent findings regarding the LTP/memory linkage. The importance of restricting the discussion to both a learning phase and a brain (sub)structure, as well as of incorporating more physiological LTP stimulation protocols, is discussed. We conclude that while LTP is indeed limited as a model of memory, a careful use of it as a model system of synaptic plasticity is fruitful and productive in screening out candidate memory-related genes.  相似文献   

14.
The noradrenergic system, driven by locus coeruleus (LC) activation, plays a key role in the regulating and directing of changes in hippocampal synaptic efficacy. The LC releases noradrenaline in response to novel experience and LC activation leads to an enhancement of hippocampus‐based learning, and facilitates synaptic plasticity in the form of long‐term depression (LTD) and long‐term potentiation (LTP) that occur in association with spatial learning. The predominant receptor for mediating these effects is the β‐adrenoreceptor. Interestingly, the dependency of synaptic plasticity on this receptor is different in the hippocampal subfields whereby in the CA1 in vivo, LTP, but not LTD requires β‐adrenoreceptor activation, whereas in the mossy fiber synapse LTP and LTD do not depend on this receptor. By contrast, synaptic plasticity that is facilitated by spatial learning is highly dependent on β‐adrenoreceptor activation in both hippocampal subfields. Here, we explored whether LTP induced by perforant‐path (pp) stimulation in vivo or that is facilitated by spatial learning depends on β‐adrenoreceptors. We found that under both LTP conditions, antagonising the receptors disabled the persistence of LTP. β‐adrenoreceptor‐antagonism also prevented spatial learning. Strikingly, activation of the LC before high‐frequency stimulation (HFS) of the pp prevented short‐term potentiation but not LTP, and LC stimulation after pp‐HFS‐induced depotentiation of LTP. This depotentiation was prevented by β‐adrenoreceptor‐antagonism. These data suggest that β‐adrenoreceptor‐activation, resulting from noradrenaline release from the LC during enhanced arousal and learning, comprises a mechanism whereby the duration and degree of LTP is regulated and fine tuned. This may serve to optimize the creation of a spatial memory engram by means of LTP and LTD. This process can be expected to support the special role of the dentate gyrus as a crucial subregional locus for detecting and processing novelty within the hippocampus. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

15.
Memory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory. Key plasticity genes, such as the immediate early gene Arc, are induced by learning and by LTP induction. Mice that lack Arc have severe deficits in memory consolidation, and Arc has been implicated in numerous other forms of synaptic plasticity, including long-term depression and cell-to-cell signaling. Here, we take a comprehensive approach to determine if Arc is necessary for hippocampal LTP in male and female mice. Using a variety of Arc knock-out (KO) lines, we found that germline Arc KO mice show no deficits in CA1 LTP induced by high-frequency stimulation and enhanced LTP induced by theta-burst stimulation. Temporally restricting the removal of Arc to adult animals and spatially restricting it to the CA1 using Arc conditional KO mice did not have an effect on any form of LTP. Similarly, acute application of Arc antisense oligodeoxynucleotides had no effect on hippocampal CA1 LTP. Finally, the maintenance of in vivo LTP in the dentate gyrus of Arc KO mice was normal. We conclude that Arc is not necessary for hippocampal LTP and may mediate memory consolidation through alternative mechanisms.SIGNIFICANCE STATEMENT The immediate early gene Arc is critical for maintenance of long-term memory. How Arc mediates this process remains unclear, but it has been proposed to sustain Hebbian synaptic potentiation, which is a key component of memory encoding. This form of plasticity is modeled experimentally by induction of LTP, which increases Arc mRNA and protein expression. However, mechanistic data implicates Arc in the endocytosis of AMPA-type glutamate receptors and the weakening of synapses. Here, we took a comprehensive approach to determine if Arc is necessary for hippocampal LTP. We find that Arc is not required for LTP maintenance and may regulate memory storage through alternative mechanisms.  相似文献   

16.
Memory impairments, which occur regularly across species as a result of ageing, disease (such as diabetes mellitus) and psychological insults, constitute a useful area for investigating the neurobiological basis of learning and memory. Previous studies in rats found that induction of diabetes (with streptozotocin, STZ) impairs long‐term potentiation (LTP) but enhances long‐term depression (LTD) induced by high‐ (HFS) and low‐frequency stimulations (LFS), respectively. Using a pairing protocol under whole‐cell recording conditions to induce synaptic plasticity at Schaffer collateral synapses in hippocampal CA1 slices, we show that LTD and LTP have similar magnitudes in diabetic and age‐matched control rats. But, in diabetic animals, LTD is induced at more polarized and LTP more depolarized membrane potentials (Vms) compared with controls: diabetes produces a 10 mV leftward shift in the threshold for LTD induction and 10 mV rightward shift in the LTD–LTP crossover point of the voltage–response curve for synaptic plasticity. Prior repeated short‐term potentiations or LTP are known to similarly, though reversibly, lower the threshold for LTD induction and raise that for LTP induction. Thus, diabetes‐ and activity‐dependent modulation of synaptic plasticity (referred to as metaplasticity) display similar phenomenologies. In addition, compared with naïve synapses, prior induction of LTP produces a 10 mV leftward shift in Vms for inducing subsequent LTD in control but not in diabetic rats. This could indicate that diabetes acts on synaptic plasticity through mechanisms involved in metaplasticity. Persistent facilitation of LTD and inhibition of LTP may contribute to learning and memory impairments associated with diabetes mellitus.  相似文献   

17.
Cognitive functions such as learning and memory are widely believed to depend on patterns of short‐ and long‐term synaptic plasticity. Factors, such as acute stress, which affect learning and memory, may do so by altering patterns of synaptic plasticity in distinct neural circuits. Numerous studies have examined the effects of acute stress on long‐term synaptic plasticity; however, few have examined its influence on short‐term plasticity. The present experiments directly assessed the effects of acute stress on short‐term synaptic plasticity as measured by paired pulse facilitation (PPF) of excitatory postsynaptic potentials recorded from rat dorsal hippocampus (dHip) in vivo. Long‐term potentiation (LTP) was also examined. Acute stress induced by exposure to an elevated platform impaired PPF and LTP in the dHip. Pretreatment of rats exposed to stress with mifepristone (RU38486; 10 mg kg−1) blocked the stress‐induced impairment of both PPF and LTP. These data demonstrate that activation of glucocorticoid receptors during acute stress disrupts normal patterns of both PPF and LTP in the dHip. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Filamentous actin (F-actin) is highly enriched in the dendritic spine, a specialized postsynaptic structure on which the great majority of the excitatory synapses are formed in the mammalian central nervous system (CNS). The protein kinases of the Lim-kinase (LIMK) family are potent regulators of actin dynamics in many cell types and they are abundantly expressed in the CNS, including the hippocampus. Using a combination of genetic manipulations and electrophysiological recordings in mice, we have demonstrated that LIMK-1 signaling is important in vivo in the regulation of the actin cytoskeleton, spine morphology, and synaptic function, including hippocampal long-term potentiation (LTP), a prominent form of long lasting synaptic plasticity thought to be critical to memory formation. Our results provide strong genetic evidence that LIMK and its substrate ADF/cofilin are involved in spine morphology and synaptic properties and are consistent with the notion that the Rho family small GTPases and the actin cytoskeleton are critical to spine structure and synaptic regulation.  相似文献   

19.
Brain‐derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus‐dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience‐dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long‐term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long‐term potentiation (LTP) and long‐term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF+/?). We show that whereas early‐LTD (<90min) requires BDNF, short‐term depression (<45 min) does not. Furthermore, BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object‐place learning triggers LTD in the CA1 region of mice. We observed that object‐place memory was impaired and the object‐place exploration failed to induce LTD in BDNF+/? mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal‐dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning‐facilitated LTD and spatial reference memory are both impaired in BDNF+/? mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus‐dependent memory. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号