首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Skeletal cells synthesize bone morphogenetic proteins (BMPs) and BMP antagonists. Noggin is a glycoprotein that binds BMPs selectively and antagonizes BMP actions. Noggin expression in osteoblasts is induced by BMPs and noggin opposes the effects of BMPs on osteoblastic differentiation and function in vitro. However, its effects in vivo are not known. We investigated the direct in vivo effects of noggin on bone remodeling in transgenic mice overexpressing noggin under the control of the osteocalcin promoter. Noggin transgenics suffered long bone fractures in the first month of life. Total, vertebral, and femoral bone mineral densities were reduced by 23-29%. Static and dynamic histomorphometry of the femur revealed that noggin transgenic mice had decreased trabecular bone volume, number of trabeculae, and bone formation rate. Osteoblast surface and number of osteoblasts/trabecular area were not significantly decreased, indicating impaired osteoblastic function. Osteoclast surface and number were normal/decreased, there was no increase in bone resorption, and the tissue had the appearance of woven bone. Vertebral microcomputed tomography scanning confirmed decreased trabecular bone volume and trabecular number. In conclusion, transgenic mice overexpressing noggin in the bone microenvironment have decreased trabecular bone volume and impaired osteoblastic function, leading to osteopenia and fractures.  相似文献   

2.
Connective tissue growth factor (CTGF), a member of the CCN family of proteins, is expressed in skeletal cells, and the ctgf null mutation leads to neonatal lethality due to defects in skeletal development. To define the function of CTGF in the postnatal skeleton, we created transgenic mice overexpressing CTGF under the control of the human osteocalcin promoter. CTGF transgenic female and male mice exhibited a significant decrease in bone mineral density, compared with wild-type littermate controls. Bone histomorphometry revealed that CTGF overexpression caused decreased trabecular bone volume due to impaired osteoblastic activity because mineral apposition and bone formation rates were decreased. Osteoblast and osteoclast number and bone resorption were not altered. Calvarial osteoblasts and stromal cells from CTGF transgenics displayed decreased alkaline phosphatase and osteocalcin mRNA levels and reduced bone morphogenetic protein (BMP) signaling mothers against decapentaplegic, Wnt/beta-catenin, and IGF-I/Akt signaling. In conclusion, CTGF overexpression in vivo causes osteopenia, secondary to decreased bone formation, possibly by antagonizing BMP, Wnt, and IGF-I signaling and activity.  相似文献   

3.
4.
5.
Notch inhibits osteoblast differentiation and causes osteopenia   总被引:2,自引:0,他引:2  
Notch receptors are determinants of cell fate decisions. To define the role of Notch in the adult skeleton, we created transgenic mice overexpressing the Notch intracellular domain (NICD) under the control of the type I collagen promoter. First-generation transgenics were small and osteopenic. Bone histomorphometry revealed that NICD caused a decrease in bone volume, secondary to a reduction in trabecular number; osteoblast and osteoclast number were decreased. Low fertility of founder mice and lethality of young pups did not allow the complete establishment of transgenic lines. To characterize the effect of Notch overexpression in vitro, NICD was induced in osteoblasts and stromal cells from Rosa(notch) mice, in which a STOP cassette flanked by lox(P) sites is upstream of NICD, by transduction with an adenoviral vector expressing Cre recombinase (Cre) under the control of the cytomegalovirus (CMV) promoter (Ad-CMV-Cre). NICD impaired osteoblastogenesis and inhibited Wnt/beta-catenin signaling. To determine the effects of notch1 deletion in vivo, mice in which notch1 was flanked by lox(P) sequences (notch1(loxP/loxP)) were mated with mice expressing Cre recombinase under the control of the osteocalcin promoter. Conditional null notch1 mice had no obvious skeletal phenotype, possibly because of rescue by notch2; however, 1-month-old females exhibited a modest increase in osteoclast surface and eroded surface. Osteoblasts from notch1(loxP/loxP) mice, transduced with Ad-CMV-Cre and transfected with Notch2 small interfering RNA, displayed increased alkaline phosphatase activity. In conclusion, Notch signaling in osteoblasts causes osteopenia and impairs osteo-blastogenesis by inhibiting the Wnt/beta-catenin pathway.  相似文献   

6.
Skeletal cells synthesize insulin like growth factors (IGF) and six IGF binding proteins (IGFBP). IGFBP-5 and fragments were reported to stimulate bone cell growth and parameters of osteoblastic function. We investigated the effects of IGFBP-5 1-162 and 1-193 on bone remodeling in transgenic mice overexpressing these fragments under the control of the osteocalcin promoter. Transgenic mice had normal appearance, weight, and bone mineral density. Static and dynamic histomorphometry revealed that transgenic mice overexpressing IGFBP-5 1-162 or 1-193 had normal trabecular bone volume, osteoblast and osteoclast number, and normal bone formation rate. MC3T3 cells transduced with retroviral vectors overexpressing IGFBP-5 1-235, 1-193, and 1-162 fragments displayed normal cell growth and maturation, and failed to enhance the expression of alkaline phosphatase, osteocalcin, and type I collagen mRNA when compared to cells transduced with vector alone. In conclusion, transgenic mice expressing IGFBP-5 1-162 and 1-193 in the bone microenvironment do not exhibit an obvious skeletal phenotype.  相似文献   

7.
Recent reports highlight the importance of BMP in the vasculature. We investigated the expression pattern and role of the BMP antagonist gremlin in VSMC. We detected gremlin mRNA constitutive expression in adult and embryonic rat aortic VSMC, and in rat carotids. In vitro analysis demonstrated that angiotensin II, TGF-β1 and PDGF induced significant changes in gremlin mRNA expression. Gremlin stable overexpression in A7r5 cells blocked BMP signaling. BMP-induced reduction in VSMC DNA synthesis was markedly inhibited by gremlin overexpression. In fact, gremlin overexpression increased DNA synthesis and cell counts, and accelerated cell cycle progression of VSMC, through mechanisms that include p27kip1 down-regulation. Gremlin also led to marked increments in VSMC migration. In addition, gremlin gene silencing promoted a significant blockade on cell proliferation and migration. In vivo studies disclosed increased gremlin protein expression in the neointima of balloon-injured carotid arteries. In summary, the BMP antagonist gremlin is constitutively expressed in the normal vasculature. Gremlin induces VSMC proliferation and migration and is significantly regulated by growth factors and injury. We postulate that gremlin plays a part in the development of pathological phenotypic changes of adult VSMC.  相似文献   

8.
Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A-mFc) in vivo. mBMPR1A-mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A-mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A-mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders.  相似文献   

9.
Tob (transducer of erbB2) is a member of antiproliferative family proteins and acts as a bone morphogenic protein inhibitor as well as a suppressor of proliferation in T cells, which have been implicated in postmenopausal bone loss. To determine the effect of Tob deficiency on estrogen deficiency-induced bone loss, we analyzed bone metabolism after ovariectomy or sham operation in Tob-deficient mice. Ovariectomy in WT mice decreased trabecular bone volume and bone mineral density (BMD) as expected. In Tob-deficient mice, ovariectomy reduced bone volume and BMD. However, even after ovariectomy, both trabecular bone volume and BMD levels in Tob-deficient bone were comparable to those in sham-operated WT bones. Bone formation parameters (mineral apposition rate and bone formation rate) in the ovariectomized Tob-deficient mice were significantly higher than those in the ovariectomized WT mice. In contrast, the ovariectomy-induced increase in the bone resorption parameters, osteoclast surface, and osteoclast number was similar between Tob-deficient mice and WT mice. Furthermore, in ex vivo nodule formation assay, ovariectomy-induced enhancement of nodule formation was significantly higher in the bone marrow cells from Tob-deficient mice than in the bone marrow cells from ovariectomized WT mice. Both Tob and estrogen signalings converge at bone morphogenic protein activation of alkaline phosphatase and GCCG-reporter gene expression in osteoblasts, revealing interaction between the two signals. These data indicate that Tob deficiency prevents ovariectomy-induced bone loss through the superenhancement of osteoblastic activities in bone and that this results in further augmentation in the bone formation rate and the mineral apposition rate after ovariectomy in vivo.  相似文献   

10.
Molecular mechanisms underlying unloading-induced reduction of bone formation have not yet been fully understood. In vitro, Runx2 has been suggested to be involved in mechanical signaling in osteoblasts. However, the roles of Runx2 in vivo during the bone response to mechanical stimuli have not yet been known. The purpose of this paper was to examine the roles of Runx2 in unloading-induced bone loss in vivo. Tail suspension was conducted for 2 wk using 9- to 11-wk-old Runx2 heterozygous knockout mice (Runx2(+/-)) and wild-type (Wt) littermates. Bones were subjected to two-dimensional micro-x-ray computed tomography, bone histomorphometry and RT-PCR analyses. Loss of half Runx2 gene dosage-exacerbated unloading-induced bone loss in trabecular and cortical envelopes. Unloading-induced reduction in mineral apposition rate and bone formation rate in cortical bone as well as trabecular bone was exacerbated in Runx2(+/-) mice, compared with Wt mice. Bone resorption parameters were not significantly affected by unloading or Runx2(+/-) genotype. Basal Runx2 and osterix mRNA levels in bone were reduced by 50% in Wt, whereas unloading in Runx2(+/-) mice did not further alter Runx2 and osterix mRNA levels. In contrast, osteocalcin mRNA levels were reduced by unloading, regardless of Runx2 gene dosage. These data demonstrated that full Runx2 gene dosage is required for maintaining normal function of osteoblasts in mechanical unloading or nonphysiological condition. Finally, we propose Runx2 as a critical target gene in unloading to alter osteoblastic activity and bone formation in vivo.  相似文献   

11.
Experimental and clinical studies suggest that high serum levels of growth hormone (GH) increase cortical but not trabecular bone. We studied body composition and bone structure in transgenic mice (MT-bGH) with systemic overexpression of GH. Body composition was examined with dual-energy X-ray absorptiometry (DXA), ashing, and chemical analysis, and the femora with DXA and micro computerized tomography. The absolute fat and bone tissue contents were significantly higher in GH transgenic mice vs controls (P < or = 0.05), but no significant difference was noted when normalizing the values to body weight. Male transgenics displayed no change in apparent (volumetric) femoral bone density, relative cortical area and trabecular bone volume fraction. Female transgenic mice demonstrated an increase in apparent femoral density and in trabecular bone volume fraction (+130%; P < or = 0.01). The mineralized tissue matrix density was decreased in male and female transgenic mice (P < or = 0.05). The results show that chronic GH excess affects trabecular bone in a gender-specific manner and that bone changes depend on the compartment investigated.  相似文献   

12.
Gremlin是骨形态形成蛋白(BMP)拈抗剂家族的新成员,在脊椎动物肢体的胚胎发育和肾脏、肺的形态形成过程中起重要的作用.Gremlin分为Gremlin1、Gremlin2、Gremlin3三种,结构中均具有半胱氨酸结,Gremlin通过与BMP2和BMP4的直接结合阻断BMP作用的信号通路.Gremlin还可能参与调节中脑、卵泡、视神经细胞的发育和成骨细胞、前脂肪细胞的分化,并且可能与糖尿病、肿瘤、骨关节炎等疾病的发生相关.  相似文献   

13.
The androgen receptor (AR), as a classic steroid receptor, generally mediates biologic responses to androgens. In bone tissue, both AR and the estrogen receptor (ER) are expressed in a variety of cell types. Because androgens can be converted into estrogen via aromatase activity, the specific role of the AR in maintenance of skeletal homoeostasis remains controversial. The goal of this study was to use skeletally targeted overexpression of AR as a means of elucidating the specific role(s) for AR transactivation in bone homeostasis. Rat AR cDNA was cloned downstream of a 3.6-kb alpha1(I)-collagen promoter fragment and used to create AR-transgenic mice. AR-transgenic males gain less weight and body and femur length is shorter than wild-type controls, whereas females are not different. AR-transgenic males also demonstrate thickened calvaria and increased periosteal but reduced endosteal labeling by fluorescent labeling and reduced osteocalcin levels. High-resolution micro-computed tomography shows normal mineral content in both male and female AR-transgenic mice, but male AR-transgenics reveal a reduction in cortical area and moment of inertia. Male AR-transgenics also demonstrate an altered trabecular morphology with bulging at the metaphysis. Histomorphometric analysis of trabecular bone parameters confirmed the increased bone volume comprised of more trabeculae that are closer together but not thicker. Biomechanical analysis of the skeletal phenotype demonstrate reduced stiffness, maximum load, post-yield deflection, and work-to-failure in male AR-transgenic mice. Steady-state levels of selected osteoblastic and osteoclastic genes are reduced in tibia from both male and female transgenics, with the exception of increased osteoprotegerin expression in male AR-transgenic mice. These results indicate that AR action is important in the development of a sexually dimorphic skeleton and argue for a direct role for androgen transactivation of AR in osteoblasts in modulating skeletal development and homeostasis.  相似文献   

14.
Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow composition revealed a total absence of marrow adipocytes in HSD1(-/-) mice. Cells from Wt and HSD1(-/-) mice exhibited similar growth rates as well as similar levels of production of osteoblastic markers. The adipocyte-forming capacity of in vitro cultured bone marrow stromal cells and trabecular osteoblasts was similar in HSD1(-/-) and Wt mice. In conclusion, our results suggest that 11betaHSD1 amplification of intracellular GC actions in mice may be required for bone marrow adipocyte formation, but not for bone formation. The clinical relevance of this observation remains to be determined.  相似文献   

15.
B7-H3, a member of the B7 family of the Ig superfamily proteins, is expressed on the surface of the antigen-presenting cells and down-regulates T cell functions by engaging an unknown counterreceptor on T cells. Although B7-H3 is ubiquitously expressed, its potential nonimmune functions have not been addressed. We found that B7-H3 is highly expressed in developing bones during embryogenesis and that its expression increases as osteoblast precursor cells differentiate into mature osteoblasts. In vitro bone formation by osteoblastic cells was inhibited when B7-H3 function was interrupted by the soluble recombinant protein B7-H3-Fc. Analysis of calvarial cells derived from neonatal B7-H3 knockout (KO) mice revealed normal numbers of osteoblast precursor cells possessing a normal proliferative capacity. However, the B7-H3-deficient calvarial cells exhibited impaired osteogenic differentiation, resulting in decreased mineralized bone formation in vitro. These results suggest that B7-H3 is required for the later phase of osteoblast differentiation. Although B7-H3 KO mice had no gross skeletal abnormalities, they displayed a lower bone mineral density in cortical (but not trabecular) bones compared with WT controls. Consistent with the reduced bone mineral density, the femurs of B7-H3 KO mice were more susceptible to bone fracture compared with those of WT mice. Taken together, these results indicate that B7-H3 and its unknown counterreceptor play a positive regulatory role in bone formation. In addition, our findings identified B7-H3 as another molecule that has a dual role in the bone-immune interface.  相似文献   

16.
Insulin-like growth factor I (IGF-I) is an important growth factor for bone, yet the mechanisms that mediate its anabolic activity in the skeleton are poorly understood. To examine the effects of locally produced IGF-I in bone in vivo, we targeted expression IGF-I to osteoblasts of transgenic mice using a human osteocalcin promoter. The IGF-I transgene was expressed in bone osteoblasts in OC-IGF-I transgenic mice at high levels in the absence of any change in serum IGF-I levels, or of total body growth. Bone formation rate at the distal femur in 3-week-old OC-IGF-I transgenic mice was approximately twice that of controls. By 6 weeks, bone mineral density as measured by dual energy x-ray, and quantitative computed tomography was significantly greater in OC-IGF-I transgenic mice compared with controls. Histomorphometric measurements revealed a marked (30%) increase femoral cancellous bone volume in the OC-IGF-I transgenic mice, but no change in the total number of osteoblasts or osteoclasts. Transgenic mice also demonstrated an increase in the osteocyte lacunea occupancy, suggesting that IGF-I may extend the osteocyte life span. We conclude that IGF-I produced locally in bone osteoblasts exerts its anabolic effect primarily by increasing the activity of resident osteoblasts.  相似文献   

17.
We have previously demonstrated that administration of oestrogen, at doses sufficient to raise serum concentrations to those seen in late pregnancy, increases trabecular bone formation in the metaphysis of adult rats. To determine whether prostaglandins (PGs), which have been shown to induce osteogenesis in vivo, play a role in the induction of bone formation by oestrogen, 13-week-old female rats were given daily doses of 4 mg 17 beta-oestradiol (OE2)/kg for 17 days, alone or with indomethacin (1 mg/kg). The rats were also given double fluorochrome labels and at the end of the experiment tibias were subjected to histomorphometric assessment. Treatment with OE2 suppressed longitudinal bone growth and increased uterine wet weight, as expected, and neither response was affected by indomethacin. Oestrogen also induced a threefold increase in trabecular bone formation in the proximal tibial metaphysis, which resulted in a substantial increase in trabecular bone volume. As previously observed, the increase in bone formation was predominantly due to an increase in osteoblast recruitment (as judged by an increase in the percentage of bone surface showing double fluorochrome labels), with only a minor increase in the activity of mature osteoblasts (as judged by the mineral apposition rate). Indomethacin abolished the increase in osteoblastic recruitment, but the activity of mature osteoblastic cells remained high. The bone formation rate and bone volume remained similar to controls. The results suggest that PG production may be necessary for the increased osteoblastic recruitment induced by oestrogen, but not to mediate the effects of oestrogen on the activity of mature osteoblasts.  相似文献   

18.
Twisted gastrulation (Tsg) is a secreted glycoprotein that binds bone morphogenetic protein-2 (BMP-2) and BMP-4 and can display both BMP agonist and antagonist functions. Tsg acts as a BMP agonist in chondrocytes, but its expression and actions on the differentiation of cells of the osteoblastic lineage are not known. We investigated the effects of Tsg overexpression by transducing murine ST-2 stromal and MC3T3 cells with a retroviral vector where Tsg is under control of the cytomegalovirus promoter and compared them to cells transduced with the parental vector alone. ST-2 cells were cultured in osteoblastic differentiating conditions in the presence or absence of BMP-2. Tsg overexpression precluded the appearance of mineralized nodules induced by BMP-2, led to a delay in the expression of osteoblastic gene markers, and decreased the responsiveness of ST-2 differentiating cells to PTH. BMP-2 induced the phosphorylation of signaling mothers against decapentaplegic-1/5/8, but not ERK, c-Jun N-terminal kinase, and p38. ST-2 cells overexpressing Tsg displayed an inhibition of BMP/signaling mother against decapentaplegic signaling. Tsg action was specific to BMP, because Tsg overexpression did not affect TGF-beta or Wnt/beta-catenin signaling pathways. Tsg also opposed MC3T3 cell differentiation and the expression of a mature osteoblast phenotype. In conclusion, Tsg overexpression inhibits BMP action in stromal and preosteoblastic cells and, accordingly, arrests their differentiation toward the osteoblastic pathway.  相似文献   

19.
Xia T  Liang Y  Ma J  Li M  Gong M  Yu X 《Endocrine》2011,39(2):104-112
SHARPIN is a novel protein thought to interact with SHANK family and is widely expressed in multiple tissues/cells, including osteoblasts and osteoclasts. Loss-of-function of Sharpin develops the chronic proliferative dermatitis mutation (CPDM) in mice as well as a severe inflammation in other organs. The actual function of SHARPIN is poorly understood. Our aim was to determine the functional roles of SHARPIN in bone metabolism by using CPDM mice. The skeletal phenotypes were determined by peripheral quantitative computed tomography, micro-computed tomography, and quantitative real-time RT-PCR, the cellular functions of osteoblasts and osteoclasts were investigated by ex vivo cell culture. Compared to wild-type controls, CPDM mice demonstrated significantly lower total and cortical bone mineral content and bone mineral density, trabecular and cortical bone volume, and trabecular number. The mRNA expression of Runx2, osterix, type I collagen, and osteocalcin was significantly lower in the bone from CPDM mice. Osteoclasts and osteoblasts from CPDM mice were functionally defective. Our result suggests that SHARPIN plays important regulating roles in bone metabolism. These functional roles may either come from systemic chronic inflammatory or directly signaling pathway within bone cells.  相似文献   

20.
Changes in extracellular [Ca2+] modulate the function of bone cells in vitro via the extracellular Ca2+-sensing receptor (CaR). Within bone microenvironments, resorption increases extracellular [Ca2+] locally. To determine whether enhanced CaR signaling could modulate remodeling and thereby bone mass in vivo, we generated transgenic mice with a constitutively active mutant CaR (Act-CaR) targeted to their mature osteoblasts by the 3.5 kb osteocalcin promoter. Longitudinal microcomputed tomography of cancellous bone revealed reduced bone volume and density, accompanied by a diminished trabecular network, in the Act-CaR mice. The bone loss was secondary to an increased number and activity of osteoclasts, demonstrated by histomorphometry of secondary spongiosa. Histomorphometry, conversely, indicates that bone formation rates were unchanged in the transgenic mice. Constitutive signaling of the CaR in mature osteoblasts resulted in increased expression of RANK-L (receptor activator of nuclear factor-kappaB ligand), the major stimulator of osteoclast differentiation and activation, which is the likely underlying mechanism for the bone loss. The phenotype of Act-CaR mice is not attributable to systemic changes in serum [Ca2+] or PTH levels. We provide the first in vivo evidence that increased signaling by the CaR in mature osteoblasts can enhance bone resorption and further propose that fluctuations in the [Ca2+] within the bone microenvironment may modulate remodeling via the CaR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号