首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
New test methods are being developed to improve the prediction of human and environmental risks and to benefit animal welfare by reducing, refining, and replacing animal use. Regulatory adoption of new test methods is often a complex and protracted process, requiring test method validation, regulatory acceptance, and implementation. Assessments of new test methods have not always been uniform within or among regulatory agencies. Thus, there have been increased pressures for a harmonized approach to test method evaluation and acceptance. In 1997, in response to these pressures and to U.S. Public Law 103-43, the National Institute of Environmental Health Sciences (NIEHS) established the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) to coordinate interagency consideration of new and revised test methods. This article describes the validation and acceptance criteria and process used for the first test method evaluated by ICCVAM, the murine local lymph node assay (LLNA). Based on ICCVAM's conclusions and recommendations, the LLNA has been accepted by U.S. regulatory agencies as a stand-alone assay for allergic contact dermatitis. Two related articles in this series of three present the results of the independent peer review evaluation of the LLNA and summarize the performance characteristics of the database substantiating the validity of the LLNA.  相似文献   

3.
New test methods are being developed to improve the prediction of human and environmental risks and to benefit animal welfare by reducing, refining, and replacing animal use. Regulatory adoption of new test methods is often a complex and protracted process, requiring test method validation, regulatory acceptance, and implementation. Assessments of new test methods have not always been uniform within or among regulatory agencies. Thus, there have been increased pressures for a harmonized approach to test method evaluation and acceptance. In 1997, in response to these pressures and to U.S. Public Law 103-43, the National Institute of Environmental Health Sciences (NIEHS) established the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) to coordinate interagency consideration of new and revised test methods. This article describes the validation and acceptance criteria and process used for the first test method evaluated by ICCVAM, the murine local lymph node assay (LLNA). Based on ICCVAM's conclusions and recommendations, the LLNA has been accepted by U.S. regulatory agencies as a stand-alone assay for allergic contact dermatitis. Two related articles in this series of three present the results of the independent peer review evaluation of the LLNA and summarize the performance characteristics of the database substantiating the validity of the LLNA.  相似文献   

4.
5.
The regulatory use of the Local Lymph Node Assay (LLNA) for new chemicals registration was monitored by screening the New Chemicals Database (NCD), which was managed by the former European Chemicals Bureau (ECB) at the European Commission Joint Research Centre (JRC). The NCD centralised information for chemicals notified after 1981, where toxicological information has been generated predominantly according to approved test methods. The database was searched to extract notifications for which the information for skin sensitisation labelling was based on results derived with the LLNA. The details of these records were extracted and pooled, and evaluated with regard to the extent of use of the LLNA over time, as well as for analysing the information retrieved on critical aspects of the procedure e.g. strain and amount of animals used, lymph node processing, solvent and doses selected, stimulation indices, and for assessing their level of compliance to the OECD Test Guideline 429. In addition the accuracy of the reduced LLNA when applied to new chemicals was investigated.  相似文献   

6.
To encourage the development and validation of alternative toxicity test methods, the effort required for validation of test methods proposed for regulatory purposes should be minimized. Performance standards (PS) facilitate efficient validation by requiring limited testing. Based on the validated method, PS define accuracy and reliability values that must be met by the new similar test method. The OECD adopted internationally harmonized PS for evaluating new endpoint versions of the local lymph node assay (LLNA). However, in the process of evaluating a lymph node cell count alternative (LNCC), simultaneous conduct of the regulatory LLNA showed that this standard test may not always perform in perfect accord with its own PS. The LNCC results were similar to the concurrent LLNA. Discrepancies between PS, LLNA and LNCC were largely associated with “borderline” substances and the variability of both endpoints. Two key lessons were learned: firstly, the understandable focus on substances close to the hazard classification borderline are more likely to emphasise issues of biological variability, which should be taken into account during the evaluation of results; secondly, variability in the results for the standard assay should be considered when selecting reference chemicals for PS.  相似文献   

7.
One of the top priorities of the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM) is the identification and evaluation of non‐animal alternatives for skin sensitization testing. Although skin sensitization is a complex process, the key biological events of the process have been well characterized in an adverse outcome pathway (AOP) proposed by the Organisation for Economic Co‐operation and Development (OECD). Accordingly, ICCVAM is working to develop integrated decision strategies based on the AOP using in vitro, in chemico and in silico information. Data were compiled for 120 substances tested in the murine local lymph node assay (LLNA), direct peptide reactivity assay (DPRA), human cell line activation test (h‐CLAT) and KeratinoSens assay. Data for six physicochemical properties, which may affect skin penetration, were also collected, and skin sensitization read‐across predictions were performed using OECD QSAR Toolbox. All data were combined into a variety of potential integrated decision strategies to predict LLNA outcomes using a training set of 94 substances and an external test set of 26 substances. Fifty‐four models were built using multiple combinations of machine learning approaches and predictor variables. The seven models with the highest accuracy (89–96% for the test set and 96–99% for the training set) for predicting LLNA outcomes used a support vector machine (SVM) approach with different combinations of predictor variables. The performance statistics of the SVM models were higher than any of the non‐animal tests alone and higher than simple test battery approaches using these methods. These data suggest that computational approaches are promising tools to effectively integrate data sources to identify potential skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.  相似文献   

8.
Currently available in vitro methods used in the regulatory toxicology   总被引:5,自引:0,他引:5  
About two decades ago in vitro mutagenicity tests were adopted as the first in vitro methods in regulatory toxicology. For reasons of animal welfare and better science, many validation studies of various in vitro methods were performed between 1985 and 1995 for their potential to replace the Draize eye irritation test. Albeit the fact that four in vitro methods (HET-CAM, BCOP, IRE, and ECE) have gained regulatory tolerance in Europe for the classification of severe eye irritants, the lessons learned mainly from these validation studies led to the definition of internationally harmonised OECD validation principles and acceptance criteria (Final Report of the OECD Workshop on Harmonization of Validation and Acceptance Criteria for Alternative Toxicological Tests Methods, 1996. OECD Publication Office, Paris, France). Application of these principles to prevalidation and validation studies, and additional special studies performed in Europe with the support of ECVAM, ended in the scientific validation of new in vitro methods for the prediction of skin corrosivity and phototoxicity. They were accepted for regulatory use in Europe and adopted on 8 June 2000 as test methods B. 40 and B. 41 of Annex V of Directive 67/548/EEC. In quite a different approach, European industry has submitted in-house validation data to support a Draft OECD Test Guideline for in vitro dermal absorption testing, which-after peer review and a long lasting international discussion-will now be adopted by the OECD. The increasing importance of regulatory measures derived from quantitative cytotoxicity tests, and some examples of regulatory accepted in vitro methods, where the specific purpose is restricted to a specific regulation (e.g. testing of medicinal products, or medical devices), are also addressed.  相似文献   

9.
The local lymph node assay (LLNA) and modifications thereof were recently recognized by the OECD as stand-alone methods for the detection of skin-sensitizing potential. However, although the validity of the LLNA was acknowledged by the ICCVAM, attention was drawn to one major problem, i.e., the possibility of false positive results caused by non-specific cell activation as a result of inflammatory processes in the skin (irritation). This is based on the fact that inflammatory processes in the skin may lead to non-specific activation of dendritic cells, cell migration and non-specific proliferation of lymph node cells. Measuring cell proliferation by radioactive or non-radioactive methods, without taking the irritating properties of test items into account, leads thus to false positive reactions. In this paper, we have compared both endpoints: (1) cell proliferation alone and (2) cell proliferation in combination with inflammatory (irritating) processes. It turned out that a considerable number of tests were “false positive” to the definition mentioned above. By excluding such false positive results the LLNA seems not to be more sensitive than relevant guinea pig assays. These various methods and results are described here.  相似文献   

10.
The Local Lymph Node Assay (LLNA) is the preferred test for the identification of skin-sensitizing potentials of chemicals in Europe and is also the first choice method within REACH. In the formal validation, only a very few surfactant chemicals were evaluated and SDS was identified as a false positive. In this study, 10 nonionic sugar lipid surfactants were tested in an LLNA, guinea pig maximization test (GPMT) and human repeated insult patch test. Of the 10 surfactants tested in the LLNA, 5 showed stimulation indices above 3.0. Three of five positive reactions were concomitant with signs of skin irritation indicated by an increase in ear thickness. In the GPMT, all test products were classified as nonsensitizers. In human volunteers, no skin reactions suggestive of sensitization were reported. In conclusion, these results are indicative of the LLNA overestimating sensitization potentials for this category of chemicals. This may in part be due to irritant effects generated by these surfactants. Until suitable nonanimal alternative tests obtain regulatory acceptance, use of other tests, e.g. GPMTs, may in cases be justified. Results such as these need be taken into account when developing nonanimal alternative methods to ensure reliable data sets for method validation purposes.  相似文献   

11.
An integral part of hazard and safety assessments is the estimation of a chemical's potential to cause skin sensitization. Currently, only animal tests (OECD 406 and 429) are accepted in a regulatory context. Nonanimal test methods are being developed and formally validated. In order to gain more insight into the responses induced by eight exemplary surfactants, a battery of in vivo and in vitro tests were conducted using the same batch of chemicals. In general, the surfactants were negative in the GPMT, KeratinoSens and hCLAT assays and none formed covalent adducts with test peptides. In contrast, all but one was positive in the LLNA. Most were rated as being irritants by the EpiSkin assay with the additional endpoint, IL1-alpha. The weight of evidence based on this comprehensive testing indicates that, with one exception, they are non-sensitizing skin irritants, confirming that the LLNA tends to overestimate the sensitization potential of surfactants. As results obtained from LLNAs are considered as the gold standard for the development of new nonanimal alternative test methods, results such as these highlight the necessity to carefully evaluate the applicability domains of test methods in order to develop reliable nonanimal alternative testing strategies for sensitization testing.  相似文献   

12.
The validation status of the murine local lymph node assay (LLNA), a method for assessing the allergic contact dermatitis potential of chemicals, was evaluated by an independent peer review panel (Panel) convened by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). The LLNA measures lymphocyte proliferation using incorporation of radioactive thymidine or iododeoxyuridine into cells of the draining lymph nodes of mice topically exposed to a test article. The Panel concluded that the assay performed as well as currently accepted guinea pig methods [guinea pig maximization test (GPMT)/Buehler assay (BA)] for the hazard identification of strong to moderate chemical sensitizing agents, but that it might not correctly identify all weak sensitizers or metals (potential false negative response) or all strong irritants (potential false positive response). The Panel concluded also that the LLNA involves less pain and distress than conventional guinea pig methods. The Panel unanimously recommended the LLNA as a stand-alone alternative for contact sensitization hazard assessment, provided that certain protocol modifications were made. These included collection of individual, rather than pooled, animal response data; the inclusion of a concurrent positive control; and consideration of dose-response information and statistical analyses. A standardized LLNA protocol is provided.  相似文献   

13.
Following the formal acceptance of the local lymph node assay (LLNA) as an Organization for Economic Cooperation and Development (OECD) guideline in April 2002, the UK Health and Safety Executive (HSE) informed notifiers that this was now the method of choice for the assessment of skin sensitization potential under the EU notification scheme for new industrial chemicals (NONS). This paper summarizes the experience of the HSE for the 2-year period immediately following the issuing of this statement, during which 48 LLNA study reports were assessed for notification purposes. The issues discussed here include adherence to the OECD guideline, interpretation of results, and classification outcomes. Generally, notifying laboratories followed the OECD guideline successfully, with regard to the sex/ strain/numbers of mice used, the precise process used for measurement of cell proliferation, and the use of recommended vehicles and positive controls. Initially, use of the individual animal approach (measuring the cell proliferation in each animal rather than for a pooled dose group) highlighted problems caused by technical inexperience, but these were overcome by practice. Toxicity or irritation were found to be minor factors in dose selection; more important was the choice of vehicle to correctly maximize the test substance concentration, while maintaining appropriate application properties. Contrary to concerns that the LLNA would prove to be less sensitive or more sensitive than the traditionally used Guinea Pig Maximization Test (GPMT), the proportion of new substances classified as skin sensitizers was within the range observed in previous years. Although the sample size is relatively small, the experience of the HSE indicates that the LLNA is satisfactory for routine regulatory use.  相似文献   

14.
15.
The new OECD guideline 429 (skin sensitization: local lymph node assay) is based upon a protocol, which utilises the incorporation of radioactivity into DNA as a measure for cell proliferation in vivo. The guideline also enables the use of alternative endpoints in order to assess draining lymph node (LN) cell proliferation. Here we describe the first round of an inter-laboratory validation of alternative endpoints in the LLNA conducted in seven laboratories. The validation study was managed and supervised by the Swiss Agency for Therapeutic Products, Swissmedic. Statistical analyses of all data were performed by an independent centre at the University of Bern, Department of Statistics. Ear-draining, LN weight and cell count were used to assess proliferation instead of radioactive labeling of lymph node cells. In addition, the acute inflammatory skin reaction was measured by ear swelling and weight of circular biopsies of the ears to identify skin irritating properties of the test items. Hexylcinnamaldehyde (HCA) and three blinded test items were applied to female, 8--10 weeks old NMRI and BALB/c mice. Results were sent via the independent study coordinator to the statistician. The results of this first round showed that the alternative endpoints of the LLNA are sensitive and robust parameters. The use of ear weights added an important parameter assessing the skin irritation potential, which supports the differentiation of pure irritative from contact allergenic potential. There were absolute no discrepancies between the categorisation of the three test substances A--C determined by each single participating laboratories. The results highlighted also that many parameters do have an impact on the strength of the responses. Therefore, such parameters have to be taken into consideration for the categorisation of compounds due to their relative sensitizing potencies.  相似文献   

16.
The validation status of the murine local lymph node assay (LLNA), a method for assessing the allergic contact dermatitis potential of chemicals, was evaluated by an independent peer review panel (Panel) convened by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). The LLNA measures lymphocyte proliferation using incorporation of radioactive thymidine or iododeoxyuridine into cells of the draining lymph nodes of mice topically exposed to a test article. The Panel concluded that the assay performed as well as currently accepted guinea pig methods [guinea pig maximization test (GPMT)/Buehler assay (BA)] for the hazard identification of strong to moderate chemical sensitizing agents, but that it might not correctly identify all weak sensitizers or metals (potential false negative response) or all strong irritants (potential false positive response). The Panel concluded also that the LLNA involves less pain and distress than conventional guinea pig methods. The Panel unanimously recommended the LLNA as a stand-alone alternative for contact sensitization hazard assessment, provided that certain protocol modifications were made. These included collection of individual, rather than pooled, animal response data; the inclusion of a concurrent positive control; and consideration of dose–response information and statistical analyses. A standardized LLNA protocol is provided.  相似文献   

17.
The local lymph node assay using 5-bromo-2-deoxyuridine (BrdU) with flow cytometry (LLNA: BrdU-FCM) is a modified LLNA that is used to identify skin sensitizers by counting BrdU-incorporated lymph node cells (LNCs) with flow cytometry. Unlike other LLNA methods (OECD TG 429, 442A and 442B) in which the CBA/J mouse strain is used, LLNA: BrdU-FCM was originally designed to be compatible with BALB/c, a mouse strain that is more widely used in many countries. To justify the substitution of CBA/J for BALB/c, the equivalence of the test results between two strains shall be established prior to the official implementation of LLNA: BrdU-FCM. This study aims to compare the test results of LLNA: BrdU-FCM produced in BALB/c mice with those in CBA/J mice for 18 reference substances, including 13 sensitizers and 5 non-sensitizers, listed in OECD Test Guideline 429. Based on the LLNA: BrdU-FCM test procedure, we selected an appropriate solvent and then performed preliminary tests to determine the non-irritating dose ranges for the main study, which revealed the difference in the irritation responses to 8 of the 18 chemicals between the two strains. In the main study, we measured the changes in the number of total LNCs, which indicated differences in the responses to test chemicals between the two strains. However, the stimulation index obtained with the counts of BrdU-incorporated LNCs with 7-AAD using flow cytometry yielded comparable results and 100% concordance between the BALB/c and CBA/J mouse strains was achieved, suggesting that the performance of LLNA: BrdU-FCM using BALB/c mice was equivalent to that with CBA/J mice.  相似文献   

18.
As no scientific approach or regulatory guidelines existed for the experimental validation of in vitro toxicity tests, in 1990 a US/European validation workshop agreed in Amden (Switzerland) on a simple definition of the validation process. Several international validation studies failed, although they were conducted according to these recommendations. Taking into account the lessons learned from this experience, a second validation workshop was held by ECVAM in Amden in 1994 to develop a more precisely defined validation concept. Prevalidation and the development of biostatistically defined prediction models were added as essential elements to the validation process. In 1995/1996 the ECVAM validation procedure was officially accepted by EU member countries and at the international level by the US regulatory agencies and the OECD. The improved validation concept was immediately introduced into ongoing validation studies. In 1996 the ECVAM/COLIPA validation study of the in vitro phototoxicity test, which was conducted according to the ECVAM/OECD validation concept, was finished successfully and in 1998 a supporting study on UV-filter chemicals was undertaken. In 1998 the 3T3 NRU PT in vitro phototoxicity test was the first experimentally validated in vitro toxicity test that was recommended for regulatory purposes by ESAC, the ECVAM Scientific Advisory Committee, and by the DG ENV of the EU Commission. Meanwhile, two in vitro skin corrosivity tests have successfully been validated by ECVAM. Finally, in June 2000 the three experimentally validated tests were accepted by EU member states for regulatory purposes as the first in vitro toxicity tests. In addition, ECVAM has funded a successful validation study of three in vitro embryotoxicity tests, which was conducted in 12 European laboratories and finished in July 2000. The three tests validated in this study were the whole embryo culture (WEC) test applied to rat embryos, the micromass (MM) test employing primary cultures of dissociated mouse limb bud cells and the mouse embryonic stem cell test (EST). Examples will be given of successful validation studies during the past decade with particular reference to in vitro toxicity tests that were evaluated for regulatory purposes either by the US validation centre ICCVAM or ECVAM in the fields of sensitisation, phototoxicity and embryotoxicity  相似文献   

19.
《Toxicology in vitro》2015,29(8):1482-1497
Allergic contact dermatitis can develop following repeated exposure to allergenic substances. To date, hazard identification is still based on animal studies as non-animal alternatives have not yet gained global regulatory acceptance. Several non-animal methods addressing key-steps of the adverse outcome pathway (OECD, 2012) will most likely be needed to fully address this effect. Among the initial cellular events is the activation of keratinocytes and currently only one method, the KeratinoSens™, has been formally validated to address this event. In this study, a further method, the LuSens assay, that uses a human keratinocyte cell line harbouring a reporter gene construct composed of the antioxidant response element (ARE) of the rat NADPH:quinone oxidoreductase 1 gene and the luciferase gene. The assay was validated in house using a selection of 74 substances which included the LLNA performance standards. The predictivity of the LuSens assay for skin sensitization hazard identification was comparable to other non-animal methods, in particular to the KeratinoSens™. When used as part of a testing battery based on the OECD adverse outcome pathway for skin sensitization, a combination of the LuSens assay, the DPRA and a dendritic cell line activation test attained predictivities similar to that of the LLNA.  相似文献   

20.
《Toxicology in vitro》2014,28(8):1482-1497
Allergic contact dermatitis can develop following repeated exposure to allergenic substances. To date, hazard identification is still based on animal studies as non-animal alternatives have not yet gained global regulatory acceptance. Several non-animal methods addressing key-steps of the adverse outcome pathway (OECD, 2012) will most likely be needed to fully address this effect. Among the initial cellular events is the activation of keratinocytes and currently only one method, the KeratinoSens™, has been formally validated to address this event. In this study, a further method, the LuSens assay, that uses a human keratinocyte cell line harbouring a reporter gene construct composed of the antioxidant response element (ARE) of the rat NADPH:quinone oxidoreductase 1 gene and the luciferase gene. The assay was validated in house using a selection of 74 substances which included the LLNA performance standards. The predictivity of the LuSens assay for skin sensitization hazard identification was comparable to other non-animal methods, in particular to the KeratinoSens™. When used as part of a testing battery based on the OECD adverse outcome pathway for skin sensitization, a combination of the LuSens assay, the DPRA and a dendritic cell line activation test attained predictivities similar to that of the LLNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号