首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Common complaints of the elderly involve impaired cognitive abilities, such as loss of memory and inability to attend. Although much research has been devoted to these cognitive impairments, other factors such as disrupted sleep patterns and increased daytime drowsiness may contribute indirectly to impaired cognitive abilities. Disrupted sleep–wake cycles may be the result of age-related changes to the internal (circadian) clock. In this article, we review recent research on aging and circadian rhythms with a focus on the senescence-accelerated mouse (SAM) as a model of aging. We explore some of the neurobiological mechanisms that appear to be responsible for our aging clock, and consider implications of this work for age-related changes in cognition.  相似文献   

2.
SAMP8 exhibits accelerated aging and a short lifespan. Insulin-like growth factor-1 receptor (IGF-1R)/FOXO pathway is associated with aging. Phosphorylation of IGF-1R, Akt, and FOXO1 was found to be increased during aging in the liver of SAMR1 normal aging mice. However, significant decreases in the phosphorylation of IGF-1R and Akt were observed in the liver of SAMP8 during aging compared with that in SAMR1, whereas phosphorylation of FOXO1 was markedly increased with age in SAMP8. In addition, the protein level of FOXO1 was decreased with age in SAMP8. Protein phosphatase 2A (PP2A) directly dephosphorylates FOXO1. Significant reduction of PP2A activity was observed in the liver nucleus of SAMP8. These results suggest the possibility that the increased FOXO1 phosphorylation might occur by the decreased activity of PP2A, resulting in the decrease in the protein level of FOXO1 in SAMP8. Furthermore, FOXO1 regulates longevity and the expression of antioxidant enzymes such as Mn-SOD and catalase. The expression of Mn-SOD and catalase was significantly decreased in the liver of SAMP8. Therefore, it is possible that the elevation of phosphorylated FOXO1 level with age causes a short lifespan in SAMP8.  相似文献   

3.
SAMP8 exhibits accelerated aging and a short lifespan. Insulin-like growth factor-1 receptor (IGF-1R)/FOXO pathway is associated with aging. Phosphorylation of IGF-1R, Akt, and FOXO1 was found to be increased during aging in the liver of SAMR1 normal aging mice. However, significant decreases in the phosphorylation of IGF-1R and Akt were observed in the liver of SAMP8 during aging compared with that in SAMR1, whereas phosphorylation of FOXO1 was markedly increased with age in SAMP8. In addition, the protein level of FOXO1 was decreased with age in SAMP8. Protein phosphatase 2A (PP2A) directly dephosphorylates FOXO1. Significant reduction of PP2A activity was observed in the liver nucleus of SAMP8. These results suggest the possibility that the increased FOXO1 phosphorylation might occur by the decreased activity of PP2A, resulting in the decrease in the protein level of FOXO1 in SAMP8. Furthermore, FOXO1 regulates longevity and the expression of antioxidant enzymes such as Mn-SOD and catalase. The expression of Mn-SOD and catalase was significantly decreased in the liver of SAMP8. Therefore, it is possible that the elevation of phosphorylated FOXO1 level with age causes a short lifespan in SAMP8.  相似文献   

4.
5.
Age-related changes in levels of melatonin and 6-hydroxymelatonin sulfate and effects of dietary melatonin on their levels in different tissues were determined in mice. Levels of melatonin were highest in the serum followed by liver, kidney, cerebral cortex and heart as measured by a quantitative and sensitive enzyme-labeled immunosorbent assay (ELISA). Serum melatonin levels decreased with age, and were reduced by 80% in 27-month old mice relative to 12-month old mice. Levels of 6-hydroxymelatonin sulfate were measured independently in various tissues. Levels of the melatonin metabolite, 6-hydroxymelatonin sulfate were significantly higher than free melatonin in all tissues tested. Levels of 6-hydroxymelatonin sulfate were highest in the cerebral cortex followed by the serum, heart, kidney, and liver. In 12-month old mice 6-hydroxymelatonin sulfate concentration was approximately 1000-fold greater than that of melatonin in the cerebral cortex, it was only 3-fold greater than melatonin levels in the serum. Thus only 0.1% of total melatonin in the brain was present in the free and unconjugated form but the corresponding value for serum was 27.4%. The cerebral cortex had the highest levels of combined melatonin and 6-hydroxymelatonin sulfate than other tissue tested in control mice. There was no significant change in 6-hydroxymelatonin sulfate levels between young and old mice. There was also no age-dependent change in levels of serotonin or cortisol in the serum samples. Dietary supplementation with melatonin resulted in a significant increase in levels of melatonin in the serum and all other tissue samples tested. Thus, any age-related decline of tissue melatonin can be reversed by supplementation with dietary melatonin.  相似文献   

6.
Several studies have indicated that a caloric restriction mimetic or treatment for type 2 diabetes may reverse brain aging. Therefore, we investigated the effect of 1-deoxynojirimycin (DNJ), an alkaloid acting as an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. SAMP8 mice were randomly assigned to a control group labeled “old” or to the 10- or 20-mg/kg/day DNJ groups. The mice in the DNJ groups were administered DNJ orally from 3 to 9 months of age, and then, a “young” control group was added to analyze the age effect. The old controls exhibited significant declines in sensorimotor ability, open-field anxiety, spatial and nonspatial memory abilities, and age-related biochemical changes, including decreased serum insulin level; increased levels of insulin-like growth factor 1 receptor, presynaptic protein synaptotagmin-1, and astrocyte activation; and decreased levels of insulin receptor, brain-derived neurotrophic factor, presynaptic protein syntaxin-1, and acetylation of histones H4 at lysine 8 in the dorsal hippocampus. Significant correlations exist between the age-related behavioral deficits and the serological and histochemical data. Chronic DNJ treatment alleviated these age-related changes, and the 20-mg/kg/day DNJ group showed more significant improvement. Thus, DNJ may have the potential to maintain successful brain aging.

Electronic supplementary material

The online version of this article (doi:10.1007/s11357-015-9839-0) contains supplementary material, which is available to authorized users.  相似文献   

7.
Abstract: This study explored the role of the melatonin receptors in methamphetamine (METH)‐induced locomotor sensitization during the light and dark phases in C3H/HeN mice with genetic deletion of the MT1 and/or MT2 melatonin receptors. Six daily treatments with METH (1.2 mg/kg, i.p.) in a novel environment during the light phase led to the development of locomotor sensitization in wild‐type (WT), MT1KO and MT2KO mice. Following four full days of abstinence, METH challenge (1.2 mg/kg, i.p.) triggered the expression of locomotor sensitization in METH‐pretreated but not in vehicle (VEH)‐pretreated mice. In MT1/MT2KO mice, the development of sensitization during the light phase was significantly reduced and the expression of sensitization was completely abrogated upon METH challenge. During the dark phase the development of locomotor sensitization in METH‐pretreated WT, MT1KO and MT2KO mice was statistically different from VEH‐treated controls. However, WT and MT2KO, but not MT1KO mice receiving repeated VEH pretreatments during the dark phase expressed a sensitized response to METH challenge that is of an identical magnitude to that observed upon 6 days of METH pretreatment. We conclude that exposure to a novel environment during the dark phase, but not during the light phase, facilitated the expression of sensitization to a METH challenge in a manner dependent on MT1 melatonin receptor activation by endogenous melatonin. We suggest that MT1 and MT2 melatonin receptors are potential targets for pharmacotherapeutic intervention in METH abusers.  相似文献   

8.
Melatonin-sensitive receptors were expressed in Xenopus laevis oocytes following an injection of mRNA from rat brain. The administration of 0.1-100 micromol/L melatonin to voltage-clamped oocytes activates calcium-dependent chloride currents via a pertussis toxin-sensitive G protein and the phosphoinositol pathway. To determine which melatonin receptor type (mt1, MT2, MT3) is functionally expressed in the Xenopus oocytes, we used (i) agonists and antagonists of different receptor types to characterize the pharmacological profile of the expressed receptors and (ii) a strategy of inhibiting melatonin receptor function by antisense oligonucleotides. During pharmacological screening administration of the agonists 2-iodomelatonin and 2-iodo-N-butanoyl-5-methoxytryptamine (IbMT) to the oocytes resulted in oscillatory membrane currents, whereas the administration of the MT3 agonist 5-methoxycarbonylamino-N-acetyltryptamine (GR135,531) exerted no detectable membrane currents. The melatonin response was abolished by a preceding administration of the antagonists 2-phenylmelatonin and luzindole but was unaffected by the MT3 antagonist prazosin and the MT2 antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT). In the antisense experiments, in the control group the melatonin response occurred in 45 of 54 mRNA-injected oocytes (83%). Co-injection of the antisense oligonucleotide, corresponding to the mt1 receptor mRNA, caused a marked and significant reduction in the expression level (13%; P < 0.001). In conclusion, the results demonstrate that injection of mRNA from rat brain in Xenopus oocytes induced the expression of the mt1 receptor which is coupled to the phosphoinositol pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号