首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary. The origin of severe acute respiratory syndrome-associated corona-virus (SARS-CoV) is still a matter of speculation, although more than one year has passed since the onset of the SARS outbreak. In this study, we implemented a 3-step strategy to test the intriguing hypothesis that SARS-CoV might have been derived from a recombinant virus. First, we blasted the whole SARS-CoV genome against a virus database to search viruses of interest. Second, we employed 7 recombination detection techniques well documented in successfully detecting recombination events to explore the presence of recombination in SARS-CoV genome. Finally, we conducted phylogenetic analyses to further explore whether recombination has indeed occurred in the course of coronaviruses history predating the emergence of SARS-CoV. Surprisingly, we found that 7 putative recombination regions, located in Replicase 1ab and Spike protein, exist between SARS-CoV and other 6 coronaviruses: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), bovine coronavirus (BCoV), human coronavirus 229E (HCoV), murine hepatitis virus (MHV), and avian infectious bronchitis virus (IBV). Thus, our analyses substantiate the presence of recombination events in history that led to the SARS-CoV genome. Like the other coronaviruses used in the analysis, SARS-CoV is also a mosaic structure.  相似文献   

3.
Multiple recombination sites at the 5'-end of murine coronavirus RNA   总被引:11,自引:0,他引:11  
J G Keck  S A Stohlman  L H Soe  S Makino  M M Lai 《Virology》1987,156(2):331-341
Mouse hepatitis virus (MHV), a murine coronavirus, contains a nonsegmented RNA genome. We have previously shown that MHV could undergo RNA-RNA recombination in crosses between temperature-sensitive mutants and wild-type viruses at a very high frequency (S. Makino, J.G. Keck, S.A. Stohlman, and M.M.C. Lai (1986) J. Virol. 57, 729-737). To better define the mechanism of RNA recombination, we have performed additional crosses involving different sets of MHV strains. Three or possibly four classes of recombinants were isolated. Recombinants in the first class, which are similar to the ones previously reported, contain a single crossover in either gene A or B, which are the 5'-most genes. The second class of recombinants contain double crossovers in gene A. The third class of recombinants have crossovers within the leader sequence located at the 5'-end of the genome. The crossover sites of the third class have been located between 35 and 60 nucleotides from the 5'-end of the leader RNA. One of these recombinants has double crossovers within the short region comprising the leader sequences. Finally, we describe one recombinant which may contain a triple crossover. The presence of so many recombination sites within the 5'-end of the genome of murine coronaviruses confirms that RNA recombination is a frequent event during MHV replication and is consistent with our proposed model of "copy-choice" recombination in which RNA replication occurs in a discontinuous and nonprocessive manner.  相似文献   

4.
5.
We describe the isolation, biological and genetic characterization of a host-range variant of bovine coronavirus (BCoV) detected in water buffalo (Bubalus bubalis). By conventional and real-time RT-PCR assays, the virus was demonstrated in the intestinal contents of two 20-day-old buffalo calves dead of a severe form of enteritis and in the feces of additional 17 buffalo calves with diarrhea. Virus isolation, hemagglutination and receptor-destroying enzyme activity showed that the buffalo coronavirus (BuCoV) is closely related to BCoV but possesses some different biological properties. Sequence and phylogenetic analyses of the 3' end (9.6 kb) of the BuCoV RNA revealed a genomic organization typical of group 2 coronaviruses. Moreover, the genetic distance between BuCoV and BCoV was proven to be the same or even higher than the distance between other ruminant coronaviruses and BCoV. In conclusion, our data support the existence of a host-range variant of BCoV associated with enteritis in buffaloes.  相似文献   

6.
S Makino  C K Shieh  L H Soe  S C Baker  M M Lai 《Virology》1988,166(2):550-560
An intracellular defective-interfering (DI) RNA, DIssE, of mouse hepatitis virus (MHV) obtained after serial high multiplicity passage of the virus was cloned and sequenced. DIssE RNA is composed of three noncontiguous genomic regions, representing the first 864 nucleotides of the 5' end, an internal 748 nucleotides of the polymerase gene, and 601 nucleotides from the 3' end of the parental MHV genome. The DIssE sequence contains one large continuous open reading frame. Two protein products from this open reading frame were identified both by in vitro translation and in DI-infected cells. Sequence comparison of DIssE and the corresponding parts of the parental virus genome revealed that DIssE had three base substitutions within the leader sequence and also a deletion of nine nucleotides located at the junction of the leader and the remaining genomic sequence. The 5' end of DIssE RNA was heterogeneous with respect to the number of UCUAA repeats within the leader sequence. The parental MHV genomic RNA appears to have extensive and stable secondary structures at the regions where DI RNA rearrangements occurred. These data suggest that MHV DI RNA may have been generated as a result of the discontinuous and nonprocessive manner of MHV RNA synthesis.  相似文献   

7.
8.
9.
Cologna R  Spagnolo JF  Hogue BG 《Virology》2000,277(2):235-249
  相似文献   

10.
Genome cyclization through conserved RNA sequences located in the 5' and 3' terminal regions of flavivirus genomic RNA is essential for virus replication. Although the role of various cis-acting RNA elements in panhandle formation is well characterized, almost nothing is known about the potential contribution of protein cofactors to viral RNA cyclization. Proteins with nucleic acid chaperone activities are encoded by many viruses (e.g., retroviruses, coronaviruses) to facilitate RNA structural rearrangements and RNA-RNA interactions during the viral replicative cycle. Since the core protein of flaviviruses is also endowed with potent RNA chaperone activities, we decided to examine the effect of West Nile virus (WNV) core on 5'-3' genomic RNA annealing in vitro. Core protein binding resulted in a dramatic, dose-dependent increase in 5'-3' complex formation. Mutations introduced in either the UAR (upstream AUG region) or CS (conserved sequence) elements of the viral RNA diminished core protein-dependent annealing, while compensatory mutations restored the 5'-3' RNA interaction. The activity responsible for stimulating RNA annealing was mapped to the C-terminal RNA-binding region of WNV core protein. These results indicate that core protein - besides its function in viral particle formation - might be involved in the regulation of flavivirus genomic RNA cyclization, and thus virus replication.  相似文献   

11.
12.
It has previously been shown that the 5' untranslated leader region (UTR), including about 495 bp of the gag gene, is sufficient for the efficient encapsidation and propagation of Mason-Pfizer monkey virus (MPMV) based retroviral vectors. In addition, a deletion upstream of the major splice donor, SD, has been shown to adversely affect MPMV RNA packaging. However, the precise sequence requirement for the encapsidation of MPMV genomic RNA within the 5' UTR and gag remains largely unknown. In this study, we have used a systematic deletion analysis of the 5' UTR and gag gene to define the cis-acting sequences responsible for efficient MPMV RNA packaging. Using an in vivo packaging and transduction assay, our results reveal that the MPMV packaging signal is primarily found within the first 30 bp immediately downstream of the primer binding site. However, its function is dependent upon the presence of the last 23 bp of the 5' UTR and approximately the first 100 bp of the gag gene. Thus, sequences that affect MPMV RNA packaging seem to reside both upstream and downstream of the major splice donor with the downstream region responsible for the efficient functioning of the upstream primary packaging determinant.  相似文献   

13.
Panavas T  Nagy PD 《Virology》2003,314(1):315-325
Defective interfering (DI) RNA associated with Tomato bushy stunt virus (TBSV), which is a plus-strand RNA virus, requires p33 and p92 proteins of TBSV or the related Cucumber necrosis virus (CNV), for replication in plants. To test if DI RNA can replicate in a model host, we coexpressed TBSV DI RNA and p33/p92 of CNV in yeast. We show evidence for replication of DI RNA in yeast, including (i) dependence on p33 and p92 for DI replication; (ii) presence of active CNV RNA-dependent RNA polymerase in isolated membrane-containing preparations; (iii) increasing amount of DI RNA(+) over time; (iv) accumulation of (-)stranded DI RNA; (v) presence of correct 5' and 3' ends in DI RNA; (vi) inhibition of replication by mutations in the replication enhancer; and (vii) evolution of DI RNA over time, as shown by sequence heterogeneity. We also produced evidence supporting the occurrence of DI RNA recombinants in yeast. In summary, development of yeast as a host for replication of TBSV DI RNA will facilitate studies on the roles of viral and host proteins in replication/recombination.  相似文献   

14.
15.
Tilgner M  Deas TS  Shi PY 《Virology》2005,331(2):375-386
A reporting replicon of West Nile virus (WN) was used to distinguish between the function of the 3' untranslated region (UTR) in viral translation and RNA replication. Deletions of various regions of the 3' UTR of the replicon did not significantly affect viral translation, but abolished RNA replication. A systematic mutagenesis showed that the flavivirus-conserved penta-nucleotide (5'-CACAG-3' located at the top of the 3' stem-loop of the genome) requires a specific sequence and structure for WN RNA synthesis, but not for viral translation. (i) Basepair structure and sequence at the 1st position of the penta-nucleotide are critical for RNA replication. (ii) The conserved nucleotides at the 2nd, 3rd, and 5th positions, but not at the 4th position of the penta-nucleotide, are essential for RNA synthesis. (iii) The nucleotide U (which is partially conserved in the genus Flavivirus) immediately downstream of the penta-nucleotide is not essential for viral replication.  相似文献   

16.
Fabian MR  Na H  Ray D  White KA 《Virology》2003,313(2):567-580
The plus-strand RNA genome of tomato bushy stunt virus (TBSV) contains a 351-nucleotide (nt)-long 3'-untranslated region. We investigated the role of the 3'-proximal 130 nt of this sequence in viral RNA accumulation within the context of a TBSV defective interfering (DI) RNA. Sequence comparisons between different tombusviruses revealed that the 3' portion of the 130-nt sequence is highly conserved and deletion analysis confirmed that this segment is required for accumulation of DI RNAs in protoplasts. Computer-aided sequence analysis and in vitro solution structure probing indicated that the conserved sequence consists of three stem-loop (SL) structures (5'-SL3-SL2-SL1-3'). The existence of SLs 1 and 3 was also supported by comparative secondary structure analysis of sequenced tombusvirus genomes. Formation of the stem regions in all three SLs was found to be very important, and modification of the terminal loop sequences of SL1 and SL2, but not SL3, decreased DI RNA accumulation in vivo. For SL3, alterations to an internal loop resulted in significantly reduced DI RNA levels. Collectively, these data indicate that all three SLs are functionally relevant and contribute substantially to DI RNA accumulation. In addition, secondary structure analysis of other tombusvirus replicons and related virus genera revealed that a TBSV satellite RNA and members of the closely related genus Aureusvirus (family Tombusviridae) share fundamental elements of this general structural arrangement. Thus, this secondary structure model appears to extend beyond tombusvirus genomes. These conserved 3'-terminal RNA elements likely function in vivo by promoting and/or regulating minus-strand synthesis.  相似文献   

17.
The 3' end of the turkey coronavirus (TCV) genome (1740 bases) including the nucleocapsid (N) gene and 3' untranslated region (UTR) were sequenced and compared with published sequences of other avian and mammalian coronaviruses. The deduced sequence of the TCV N protein was determined to be 409 amino acids with a molecular mass of approximately 45 kDa. The TCV N protein was identical in size and had greater than 90% amino acid identity with published N protein sequences of infectious bronchitis virus (IBV); less than 21% identity was observed with N proteins of bovine coronavirus and transmissible gastroenteritis virus. The 3' UTR showed some variation among the three TCV strains examined, with two TCV strains, Minnesota and Indiana, containing 153 base segments which are not present in the NC95 strain. Nucleotide sequence identity between the 3' UTRs of TCV and IBV was greater than 78%. Similarities in both size and sequence of TCV and IBV N proteins and 3' UTRs provide additional evidence that these avian coronaviruses are closely related.  相似文献   

18.
Flavivirus RNA replication involves cyclization of the viral genome. A model for this process includes a promoter element at the 5' end of the genome and long-range RNA-RNA interactions. Two pairs of complementary sequences present at the ends of the viral RNA, known as 5'-3'CS and 5'-3'UAR, have been proposed to be involved in dengue virus genome cyclization. The requirement of 5'-3'CS complementarity for viral replication has been experimentally demonstrated for dengue and other mosquito borne flaviviruses. Here, we performed a functional analysis to study the role of 5'-3'UAR sequences using genomic and subgenomic dengue virus RNAs. We found that single mutations disrupting 5'-3' complementarity greatly compromised viral RNA synthesis. Although in most of the cases incorporation of compensatory mutations re-established viral RNA replication, certain nucleotides were found to be involved in alternative secondary structures also important for viral replication. In addition, mutations within 5' or 3'UAR in the context of an infectious dengue virus RNA resulted in spontaneous mutations that restored UAR base pairings. Together, we propose that specific UAR nucleotides as well as 5'-3'UAR complementarity constitute cis-acting signals involved in amplification of the dengue virus genome.  相似文献   

19.
Panaviene Z  Nagy PD 《Virology》2003,317(2):359-372
RNA recombination, which is thought to occur due to replicase errors during viral replication, is one of the major driving forces of virus evolution. In this article, we show evidence that the replicase proteins of Cucumber necrosis virus, a tombusvirus, are directly involved in RNA recombination in vivo. Mutations within the RNA-binding domains of the replicase proteins affected the frequency of recombination observed with a prototypical defective-interfering (DI) RNA, a model template for recombination studies. Five of the 17 replicase mutants tested showed delay in the formation of recombinants when compared to the wild-type helper virus. Interestingly, two replicase mutants accelerated recombinant formation and, in addition, these mutants also increased the level of subgenomic RNA synthesis (Virology 308 (2003), 191-205). A trans-complementation system was used to demonstrate that mutation in the p33 replicase protein resulted in altered recombination rate. Isolated recombinants were mostly imprecise (nonhomologous), with the recombination sites clustered around a replication enhancer region and a putative cis-acting element, respectively. These RNA elements might facilitate the proposed template switching events by the tombusvirus replicase. Together with data in the article cited above, results presented here firmly establish that the conserved RNA-binding motif of the replicase proteins is involved in RNA replication, subgenomic RNA synthesis, and RNA recombination.  相似文献   

20.
Yeh WB  Hsu YH  Chen HC  Lin NS 《Virology》2004,330(1):105-115
Satellite RNA (satRNA) associated with Bamboo mosaic virus (BaMV) is dependent on BaMV for replication and encapsidation. Molecular analyses of total RNA extracted from bamboo species collected worldwide revealed that 26 out of 61 BaMV isolates harbored satBaMV. Among them, two phylogenetically distinguishable groups, A and B, with a genetic diversity of 6.9 +/- 0.7% were identified. Greatest sequence diversity occurred in the 5' untranslated region (UTR) that contained one hypervariable region with variations of up to 20.7%. Concurrent covariations in the 5' hypervariable sequences support the existence of a conserved apical hairpin stem-loop structure, which was earlier mapped by enzymatic probings and functional analyses [Annamalai, P., Hsu, Y.H., Liu, Y.P., Tsai, C.H., Lin, N.S., 2003. Structural and mutational analyses of cis-acting sequences in the 5'-untranslated region of satellite RNA of bamboo mosaic potexvirus. Virology 311 (1), 229-239]. Furthermore, chimeric satBaMVs generated by interchanging the hypervariable region between groups A and B demonstrated the replication competence of satBaMV isolates in Nicotiana benthamiana protoplasts co-inoculated with BaMV RNA. The results suggest that an evolutionarily conserved secondary structure exists in the hypervariable region of 5' UTR of satBaMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号