首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The crystal structure of the extracellular domain of CD94, a component of the CD94/NKG2 NK cell receptor, has been determined to 2.6 A resolution, revealing a unique variation of the C-type lectin fold. In this variation, the second alpha helix, corresponding to residues 102-112, is replaced by a loop, the putative carbohydrate-binding site is significantly altered, and the Ca2+-binding site appears nonfunctional. This structure may serve as a prototype for other NK cell receptors such as Ly-49, NKR-P1, and CD69. The CD94 dimer observed in the crystal has an extensive hydrophobic interface that stabilizes the loop conformation of residues 102-112. The formation of this dimer reveals a putative ligand-binding region for HLA-E and suggests how NKG2 interacts with CD94.  相似文献   

3.
Immune responses must be tightly regulated to avoid hyporesponsiveness on one hand or excessive inflammation and the development of autoimmunity (hyperresponsiveness) on the other hand. This balance is attained through the throttling of activating signals by inhibitory signals that ideally leads to an adequate immune response against an invader without excessive and extended inflammatory signals that promote the development of autoimmunity. The CD94/NKG2 family of receptors is composed of members with activating or inhibitory potential. These receptors are expressed predominantly on NK cells and a subset of CD8+T cells, and they have been shown to play an important role in regulating responses against infected and tumori genic cells. In this review, we discuss the current knowledge about this family of receptors, including ligand and receptor interaction, signaling, membrane dynamics, regulation of gene expression and their roles in disease regulation, infections, and cancer, and bone marrow transplantation.  相似文献   

4.
Summary: A multigene family of immunoglobulin superfamily (Ig-SF) killer cell inhibitory receptors (KIRs) specifically recognize HLA class I molecules, while the interaction with H-2 products is mediated by members of the murine Ly49 C-type lectin family. A common structural feature of these receptors with inhibitory function is the presence of cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that couple them to SHP phosphatases. Strong support for the involvement of the CD94 C-type lectin receptor complex in NK cell-mediated recognition of Bw6+ HLA-B, HLA A and HLA-C alleles has been obtained. The cloned CD94 molecule covalently assembles with at least two different glyco-proteins (43 kDa and 39 kDa) to form functional receptors. NK cells inhibited upon HLA recognition express the CD94/p43 dimer, whose specificity for HLA molecules partially overlaps the Ig-SF receptor system. By contrast. NK clones bearing the homologous CD94/p39 receptor are triggered upon its ligation by CD94-specific mAbs. Remarkably, a set of Ig-SF receptors (p50) homologous to p58 KIRs also display an activating function. CD94-associated molecules belong to the NKG2 family of C-type lectins; the NKG2-A gene encodes for the p43 subunit. which contains cytoplasmic ITIMS. Expression of the different CD94 heterodimeric receptors will enable precise analysis of their putative interaction with HLA class I molecules.  相似文献   

5.
The mouse natural killer (NK) gene complex is located on chromosome 6 and contains a number of genes encoding C-type lectin receptors which have been found to regulate NK cell function. Among these are CD94 and four NKG2 genes. Like its human counterpart, the mouse CD94 protein associates with different NKG2 isoforms and recognizes the atypical MHC class I molecule Qa-1b. Here, the genomic organization of the mouse CD94 gene was determined by analysing a BAC clone containing the CD94 gene. The mouse CD94 gene contains six exons separated by five introns. Exons I and II encode the 5' untranslated region (UTR) and the transmembrane domain. Exon III encodes the stalk region and exons IV-VI encode the carbohydrate recognition domain (CRD). Furthermore, we cloned and sequenced the CD94 promoter region, and putative regulatory DNA elements were identified. Further studies on the CD94 promoter region may help to elucidate the restricted expression pattern of CD94 in NK cells and a subpopulation of T cells.  相似文献   

6.
Seo J  Park JS  Nam JH  Bang D  Sohn S  Lee ES  Park KS 《Tissue antigens》2007,70(4):307-313
Inhibitory CD94/NKG2A and activating CD94/NKG2C receptors are expressed on natural killer, CD4, and CD8 T cells and recognize human leukocyte antigen (HLA)-E, resulting in the modulation of cytotoxic activity and cytokine production. An imbalance in cytotoxic activity and cytokine production has been implicated in Behcet's disease (BD). The results of this study showed that the NKG2A c.-4258*C, c.338-90*G, and CD94 c.-134*T alleles (P= 0.015, OR = 0.8; P < 0.0001, OR = 0.5; and P= 0.034, OR = 0.8, respectively) were associated with decreased risk and that NKG2A c.284-67_-62del, c.1077*C, and the activating receptor, NKG2C c.305*T were not associated with 345 patients with BD. But a significant difference in NKG2C c.305*T was detected among BD patients with ocular lesions and arthritis (P < 0.0001, OR = 2.1 and P= 0.0001, OR = 1.8, respectively). We already showed in our previous research that HLA-E*0101 also appears to contribute to a reduction in risk through the inhibitory CD94/NKG2A-mediated immune response. This result led us to the analyses of the combined risk of the HLA-E and the NKG2A for BD. Individuals harboring HLA-E*0101, NKG2A c.-4258*C, and c.338-90*G evidenced a reduced risk of BD compared with healthy controls (21.1% vs 40.1%, P < 0.0001, OR = 0.4). By way of contrast, individuals without the HLA-E*0101, NKG2A c.-4258*C, and c.338-90*G alleles evidenced a twofold increased risk of BD (P= 0.014, OR = 2.0). Individuals without HLA-E*0101, NKG2A c.-4258*G/*G, and c.338-90*G evidenced a 4.8-fold increase in BD risk (P= 0.0002, OR = 4.8). Although the effects of these single nucleotide polymorphisms (SNPs) remain unclear, our results indicate that the SNPs of the inhibitory receptor CD94/NKG2A and its haplotypes, as well as its ligand HLA-E, are associated with BD immune systems.  相似文献   

7.
The human non-classical MHC class I molecule HLA-E is a ligand for both an inhibitory NK cell receptor (CD94/NKG2A) and an activating receptor (CD94/NKG2C). To identify HLA-E surface recognized by both receptors, especially to determine if both receptors recognize the same epitope, we made a series of individually Ala-substituted HLA-E proteins and analyzed their binding to CD94/NKG2A orCD94/NKG2C. Eight HLA-E mutations that significantly impaired HLA-E binding to CD94/NKG2A are all found in the top of alpha1/alpha2 domain of HLA-E. These results suggest that CD94/NKG2A binds a HLA-E surface equivalent to a NKG2D binding site on MICA. Of the eight mutations that impaired HLA-E binding to CD94/NKG2A, six significantly impaired HLA-E binding to CD94/NKG2C suggesting that CD94/NKG2C also binds a similar surface of HLA-E. Unexpectedly, the two HLA-E mutations (D69A and H155A) selectively abrogated HLA-E binding to CD94/NKG2A, not largely affected CD94/NKG2C. These results indicate that a mostly shared, but partly distinct set of HLA-E residues is discriminated by the two receptors.  相似文献   

8.
To avoid destruction of normal bystander cells, natural killer (NK) cells must provide a continuous supply of functional inhibitory receptors to their cell surface. After interaction with its ligand HLA-E, which is expressed on normal cells, the C-type lectin inhibitory receptor CD94/NKG2A suppresses activation signaling processes. CD94/NKG2A receptors continuously recycle from the cell surface through endosomal compartments and back again in a process that requires energy and the cytoskeleton. This steady state process appears to be largely unaffected by exposure to ligand. CD94/NKG2A receptors move freely within the plasma membrane and accumulate at the site of contact with the ligand bearing target cells (or monoclonal antibodies (mAb) coated beads). As expected, ligated CD94/NKG2A receptors are less mobile than the nonligated receptors, and the lipid raft marker cholera toxin B is excluded from the CD94/NKG2A enriched target cell contact sites. Also, methylcyclodextrin does not interfere with CD94/NKG2A accumulation at these contact sites. The constant renewal of CD94/NKG2A receptors at the cell surface and their free mobility within the plasma membrane likely facilitates and insures inhibitory capacity.  相似文献   

9.
There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.  相似文献   

10.
The role of CD94/NKG2 in innate and adaptive immunity   总被引:7,自引:0,他引:7  
CD94/NKG2 is a heterodimer expressed on natural killer (NK) and a small subset of T cells. This receptor varies in function as an inhibitor or activator depending on which isoform of NKG2 is expressed. The ligand for CD94/NKG2 is HLA-E in human and its homolog, Qa1 in mouse, which are both nonclassical class I molecules that bind leader peptides from other class I molecules. Although <5% of CD8 T cells express the receptor in a naïve mouse, its expression is upregulated upon specific recognition of antigen. Similar to NK cells, most CD8 T cells that express high levels of CD94 co-express NKG2A, the inhibitory isoform. The engagement of this receptor can lead to a blocking of cytotoxicity. However, these receptors have also been implicated in the cell survival of both NK and CD8T cells. The level of CD94 expression is inversely correlated with the level of apoptosis in culture. Thus, CD94/NKG2 receptors may regulate effector functions and cell survival of NK cells and CD8 T cells, thereby playing a crucial role in the innate and adaptive immune response to a pathogen.  相似文献   

11.
CD94, a type II membrane protein containing a C-type lectin domain, has been shown to be involved in natural killer (NK) cell-mediated recognition of different HLA allotypes. The inhibitory form of the CD94 receptor has recently been identified by the specific monoclonal antibody (mAb) Z199. Herein, we demonstrate that the inhibitory receptor is in fact a complex formed by the covalent association of CD94 with the NKG2-A molecule (Mr ~ 43 kDa), another member of the C-type lectin superfamily, and that Z199 mAb specifically recognize NKG2-A molecules. Although the NKG2-A-encoding cDNA has been known for several years, the corresponding protein and its possible function remained undefined. Moreover, we show that the NKG2-B protein, an alternatively spliced product of the NKG2-A gene, can also assemble with CD94. Remarkably, both NKG2-A and NKG2-B proteins contain cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIM). This may provide the molecular basis of the inhibitory function mediated by the CD94/NKG2-A receptor complexes.  相似文献   

12.
13.
CD69 represents a functional triggering molecule on activated NK and T cells, capable of inducing cytotoxic activity and costimulating cytokine production. It belongs to the C-lectin type superfamily, and its gene maps in the NK gene complex, close to other genes coding for NK receptors. CD94 / NKG2-A complex is the inhibitory receptor for the non classical MHC class I molecule HLA-E on human NK cells. To investigate CD69-initiated signal transduction pathways, and to evaluate CD94 / NKG2-A interference on CD69 triggering ability, we have generated transfectants expressing both receptors in the RBL cell line. Here we report that CD69 engagement leads to the activation of extracellular signal-regulated kinase (ERK) enzymes belonging to the MAPK family, and that this event is required for CD69-mediated cell degranulation. Moreover, we show that the co-engagement of CD94 / NKG2-A inhibitory receptor effectively suppresses both CD69-triggered cell degranulation in RBL transfectants, through the inhibition of ERK activation, and CD69-induced cytotoxicity in human NK cells. Thus, here we provide new information on the molecular mechanisms initiated by CD69 activation receptor, and show that CD69-initiated signaling pathways and functional activity are negatively regulated by CD94 / NKG2-A inhibitory complex.  相似文献   

14.
目的: 分析多发性硬化(MS)进展型患者不同表型NK细胞亚群对临床主要治疗方法的反应性差异.方法: 分离患者外周血中的NK细胞, 以流式细胞术根据表面抑制性受体CD94/NKG2A表达情况分为两个亚群CD94/NKG2A-bright和CD94/NKG2A-dim.分别加入IFN-β, 测定两个亚群表面CD94/NKG2A变化及细胞增殖, 同时检测两种亚群分泌IL-10和TGF-β情况.结果: CD94/NKG2A阳性表达的NK细胞占25.5%, 其中CD94/NKG2A-bright和CD94/NKG2A-dim分别占其中的23.6%和76.4%.加入IFN-β, CD94/NKG2A-bright组增殖率明显低于CD94/NKG2A-dim组, CD94/NKG2A表达峰度变化不大.CD94/NKG2A-dim组中CD94/NKG2A表达显著增加.两个亚群分泌的IL-10和TGF-β与未刺激组相比, 均有明显差异.CD94/NKG2A-bright和CD94/NKG2A-dim组间亦有明显差异.结论: IFN-β通过诱导NK细胞CD94/NKG2A表达在非特异免疫系统中抑制NK细胞; 同时刺激IL-10 和TGF-β分泌进一步发挥对免疫系统的抑制.CD94/NKG2A-bright和CD94/NKG2A-dim对IFN-β反应有差异性.  相似文献   

15.
HLA-E belongs to the non-classical HLA (class Ib family) broadly defined by a limited polymorphism and a restricted pattern of cellular expression. So far, only two functional alleles differing at only one amino acid position (non-synonymous mutation) in the α2 heavy chain domain, where an arginine in position 107 in HLA-E*0101 is replaced by a glycine in HLA-E*0103, have been reported. The interaction between non-classical HLA-E molecule and CD94/NKG2A receptor plays a crucial role in the immunological response involving natural killer (NK) cells and cytotoxic T lymphocytes. All proteins forming CD94/NKG2 receptors are encoded by genes situated in the same cluster on chromosome 12, allowing tight control over the order of their expression. The inhibitory members of the NKG2 receptor family are available on the cell surface before activating the members to prevent autoimmune incidents during immune cells’ ontogenesis. In the present review, the potential role of this interaction in viral infection, pregnancy and transplantation of allogeneic hematopoietic stem cells (HSC) is presented and discussed. The review will also include the effect of HLA-E polymorphism on the outcome of HSC transplants in humans.  相似文献   

16.
The KIR and CD94/NKG2 families of molecules in the rhesus monkey   总被引:1,自引:0,他引:1  
Summary: Natural killer (NK) cells and a subset of T cells express families of receptors that are capable of detecting major histocompatibility complex (MHC) class I expression on the surface of cells. Molecules of the killer cell immunoglobulin-like receptor (KIR) family bind directly to MHC class I, while those of the CD94/NKG2 family recognize MHC class I signal sequences bound to HLA-E. Both the KIR and CD94/NKG2 families are composed of activating and inhibitory molecules that serve to regulate the function of NK cells as a result of their MHC class I recognition. Here we review the recently described KIR and CD94/NKG2 family members in the rhesus monkey.  相似文献   

17.
TCR specificity dictates CD94/NKG2A expression by human CTL   总被引:7,自引:0,他引:7  
Activating and inhibitory CD94/NKG2 receptors regulate CTL responses by altering TCR signaling, thus modifying antigen activation thresholds set during thymic selection. To determine whether their expression was linked to TCR specificity, we examined the TCR repertoire of oligoclonal CTL expansions found in human blood and tissues. High-resolution TCR repertoire analysis revealed that commitment to inhibitory NKG2A expression was a clonal attribute developmentally acquired after TCR expression and during antigen encounter, whereas actual surface expression depended on recent TCR engagement. Further, CTL clones expressing sequence-related TCR, and therefore sharing the same antigen specificity, invariably shared the same NKG2A commitment. These findings suggest that TCR antigenic specificity dictates NKG2A commitment, which critically regulates subsequent activation of CTL.  相似文献   

18.
The CD94/NKG2C killer lectin-like receptor (KLR) specific for HLA-E is coupled to the KARAP/DAP12 adapter in a subset of NK cells, triggering their effector functions. We have studied the distribution and function of this KLR in T lymphocytes. Like other NK cell receptors (NKR), CD94/NKG2C was predominantly expressed by a CD8(+) T cell subset, though TCRgammadelta(+) NKG2C(+) and rare CD4(+) NKG2C(+) cells were also detected in some individuals. Coculture with the 721.221 HLA class I-deficient lymphoma cell line transfected with HLA-E (.221-AEH) induced IL-2Ralpha expression in CD94/NKG2C+ NK cells and a minor subset of CD94/NKG2C(+) T cells, promoting their proliferation; moreover, a similar response was triggered upon selective engagement of CD94/NKG2C with a specific mAb. CD8(+) TCRalphabeta CD94/NKG2C(+) T cell clones, that displayed different combinations of KIR and CD85j receptors, expressed KARAP/DAP12 which was co-precipitated by an anti-CD94 mAb. Specific engagement of the KLR triggered cytotoxicity and cytokine production in CD94/NKG2C(+) T cell clones, inducing as well IL-2Ralpha expression and a proliferative response. Altogether these results support that CD94/NKG2C may constitute an alternative T cell activation pathway capable of driving the expansion and triggering the effector functions of a CTL subset.  相似文献   

19.
20.
Human cytomegalovirus (HCMV) infection promotes a persistent expansion of a functionally competent NK‐cell subset expressing the activating CD94/NKG2C receptor. Factors underlying the wide variability of this effect observed in HCMV‐seropositive healthy individuals and exacerbated in immunocompromized patients are uncertain. A deletion of the NKG2C gene has been reported, and an apparent relation of NKG2C genotype with circulating NKG2C+ NK‐cell numbers was observed in HCMV+ children. We have assessed the influence of NKG2C gene dose on the NK‐cell repertoire in a cohort of young healthy adults (N = 130, median age 19 years). Our results revealed a relation of NKG2C copy number with surface receptor levels and with NKG2C+ NK‐cell numbers in HCMV+ subjects, independently of HLA‐E dimorphism. Functional studies showed quantitative differences in signaling (i.e. iCa2+ influx), degranulation, and IL‐15‐dependent proliferation, in response to NKG2C engagement, between NK cells from NKG2C+/+ and hemizygous subjects. These observations provide a mechanistic interpretation on the way the NKG2C genotype influences steady‐state NKG2C+ NK‐cell numbers, further supporting an active involvement of the receptor in the HCMV‐induced reconfiguration of the NK‐cell compartment. The putative implications of NKG2C zygosity over viral control and other clinical variables deserve attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号