首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the extrapulmonary effects of chronic obstructive pulmonary disease (COPD) is osteoporosis. Osteoporosis is characterized by a low bone mineral density (BMD) and microarchitectural deterioration. Most studies in COPD patients use dual‐energy X‐ray absorptiometry (DXA) only to determine osteoporosis; therefore, microarchitectural changes without a low BMD are missed. The aim of this study was to determine the prevalence and correlates of osteoporosis in COPD patients based on DXA, spinal X‐rays, and combinations thereof. DXA and spinal X‐rays were obtained and pulmonary function tests, body composition, 6‐minute walking distance, medical history, and medication use were assessed in 255 clinically stable COPD outpatients of a large teaching hospital in the Netherlands. Half of all patients had radiologic evidence of osteoporosis. Combining the results of DXA with spinal X‐rays augmented the proportion of COPD patients with osteoporosis compared with both methods separately. The prevalence of osteoporosis was not significantly different after stratification for Global Strategy for the Diagnosis, Management, and Prevention of COPD (GOLD) stage. Most patients with osteoporosis did not receive pharmacologic treatment. Age, body mass index (BMI), and parathyroid hormone (PTH) level were significant independent correlates for osteoporosis. Chest physicians should be aware of the high prevalence of osteoporosis in patients with COPD, even in the presence of a low GOLD score, as well as especially in elder COPD patients with a low BMI and/or an increased PTH level. © 2011 American Society for Bone and Mineral Research.  相似文献   

2.
During teriparatide (TPTD) treatment, high levels of bone formation are accompanied by an increase in bone resorption. The aim of this work was to test if coadministration of raloxifene (RAL) or alendronate (ALN) following 9 months of ongoing TPTD therapy would reopen the anabolic window, thereby exerting additional benefit on bone mineral density (BMD). Postmenopausal women (n = 125) with severe osteoporosis on TPTD treatment for 9 months were randomized into three open‐label groups for a further 9 months: ALN (70 mg/week) in addition to TPTD; RAL (60 mg/d) in addition to TPTD; or no medication in addition to TPTD. Amino‐terminal propeptide of type I procollagen (P1NP) and cross‐linked C‐telopeptide (CTX), and areal and volumetric BMD at the lumbar spine and hip were assessed. During the combination period, P1NP concentrations did not change on TPTD monotherapy (693% ± 371%, p < 0.0001) and decreased in the ALN (360% ± 153%, p < 0.0001) and RAL (482% ± 243%, p < 0.0001) combination groups; whereas CTX did not change on TPTD monotherapy (283% ± 215%, p < 0.0001), decreased to the starting level in the ALN combination group (17% ± 72%, p = 0.39), and remained elevated in the RAL combination group (179% ± 341%, p < 0.0001). The increase in lumbar spine BMD was 5% ± 6.3% in the ALN and 6% ± 5.2% in the RAL combination groups compared with 2.8% ± 9.3% in the TPTD monotherapy group (p = 0.085 and p = 0.033, respectively). The increase of trabecular lumbar spine BMD for both the ALN and RAL combination groups was superior to TPTD monotherapy. Total hip BMD changes were 4% ± 5.3% for the ALN combination group and 1.4% ± 5.1% for the TPTD monotherapy (p = 0.032), and 1.4% ± 3.4% (p = 0.02) for the RAL combination group. With the exception of no differences in the trabecular compartment of femoral neck, volumetric BMD changes in the ALN combination group for all other comparisons were significantly superior to the two other groups. Our data suggest that ALN when added to TPTD 9 months after initiation of TPTD monotherapy results in a more robust increase in BMD, probably due to a reopening of the anabolic window. The clinical relevance of the BMD increase is unknown. © 2013 American Society for Bone and Mineral Research  相似文献   

3.
This prospective case‐cohort study aimed to map the distribution of bone density in the proximal femur and examine its association with hip fracture. We analyzed baseline quantitative computed tomography (QCT) scans in 250 men aged 65 years or older, which comprised a randomly‐selected subcohort of 210 men and 40 cases of first hip fracture during a mean follow‐up period of 5.5 years. We quantified cortical, trabecular, and integral volumetric bone mineral density (vBMD), and cortical thickness (CtTh) in four quadrants of cross‐sections along the length of the femoral neck (FN), intertrochanter (IT), and trochanter (TR). In most quadrants, vBMDs and CtTh were significantly (p < 0.05) lower in cases compared to the subcohort and these deficits were present across the entire proximal femur. To examine the association of QCT measurements with hip fracture, we merged the two quadrants in the medial and lateral aspects of the FN, IT, and TR. At most sites, QCT measurements were associated significantly (p < 0.001) with hip fracture, the hazard ratio (HR) adjusted for age, body mass index (BMI), and clinical site for a 1‐SD decrease ranged between 2.28 (95% confidence interval [CI], 1.44–3.63) to 6.91 (95% CI, 3.11–15.53). After additional adjustment for total hip (TH) areal BMD (aBMD), trabecular vBMDs at the FN, TR, and TH were still associated with hip fracture significantly (p < 0.001), the HRs ranged from 3.21 (95% CI, 1.65–6.24) for the superolateral FN to 6.20 (95% CI, 2.71–14.18) for medial TR. QCT measurements alone or in combination did not predict fracture significantly (p > 0.05) better than TH aBMD. With an area under the receiver operating characteristic curve (AUC) of 0.901 (95% CI, 0.852–0.950), the regression model combining TH aBMD, age, and trabecular vBMD predicted hip fracture significantly (p < 0.05) better than TH aBMD alone or TH aBMD plus age. These findings confirm that both cortical and trabecular bone contribute to hip fracture risk and highlight trabecular vBMD at the FN and TR as an independent risk factor. © 2012 American Society for Bone and Mineral Research.  相似文献   

4.
Androgen deprivation therapy (ADT), a treatment for prostate cancer, is associated with bone loss and fractures. Dual‐energy X‐ray absorptiometry (DXA)–measured bone mineral density does not assess vertebral fractures (VF). High‐resolution micro‐magnetic resonance imaging (HR‐MRI) assesses bone microarchitecture and provides structural information. To determine if VF identification increased the diagnosis of osteoporosis beyond DXA and if HR‐MRI demonstrated skeletal deterioration in men with VF, we cross‐sectionally studied 137 men aged ≥ 60 years with nonmetastatic prostate cancer on ADT for ≥ 6 months. Vertebral fracture assessment (VFA) by DXA was confirmed with X‐rays. HR‐MRI of the wrist included bone volume to total volume (BV/TV), surface density (trabecular plates), surface/curve ratio (plates/rods), and erosion index (higher depicts deterioration). VF were found in 37% of men; the majority were unknown. Seven percent of participants were classified as osteoporotic by hip or spine DXA. Thirty‐seven percent of men without osteoporosis by DXA had VF identified, suggesting that 90% of patients with clinical osteoporosis would have been misclassified by DXA alone. By ANOVA comparison across VF grades, the BV/TV, surface density, and spine, hip, and wrist DXA were lower, and erosion index was higher in men with moderate‐severe VF compared with lesser grades (all p < 0.05). By unadjusted ROC analysis, the addition of HR‐MRI to DXA at the spine, hip, and femoral neck added substantially (AUC increased 0.831 to 0.902, p < 0.05) to prediction of moderate‐severe vertebral fracture. HR‐MRI indices were associated with spine, hip, and wrist DXA measures (p < 0.01). Longer duration of ADT was associated with lower BV/TV, surface density, and surface/curve ratio (p < 0.05). ADT for men with prostate cancer is associated with silent VF. DXA alone leads to misclassifications of osteoporosis, which can be avoided by VF assessment. HR‐MRI provides a novel technique to assess deterioration of structural integrity in men with VF and adds micro‐structural information. © 2013 American Society for Bone and Mineral Research  相似文献   

5.
Major alterations in body composition, such as with obesity and weight loss, have complex effects on the measurement of bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA). The effects of altered body fat on quantitative computed tomography (QCT) measurements are unknown. We scanned a spine phantom by DXA and QCT before and after surrounding with sequential fat layers (up to 12 kg). In addition, we measured lumbar spine and proximal femur BMD by DXA and trabecular spine BMD by QCT in 13 adult volunteers before and after a simulated 7.5 kg increase in body fat. With the spine phantom, DXA BMD increased linearly with sequential fat layering at the normal (p < 0.01) and osteopenic (p < 0.01) levels, but QCT BMD did not change significantly. In humans, fat layering significantly reduced DXA spine BMD values (mean ± SD: ?2.2 ± 3.7%, p = 0.05) and increased the variability of measurements. In contrast, fat layering increased QCT spine BMD in humans (mean ± SD: 1.5 ± 2.5%, p = 0.05). Fat layering did not change mean DXA BMD of the femoral neck or total hip in humans significantly, but measurements became less precise. Associations between baseline and fat‐simulation scans were stronger for QCT of the spine (r2 = 0.97) than for DXA of the spine (r2 = 0.87), total hip (r2 = 0.80), or femoral neck (r2 = 0.75). Bland‐Altman plots revealed that fat‐associated errors were greater for DXA spine and hip BMD than for QCT trabecular spine BMD. Fat layering introduces error and decreases the reproducibility of DXA spine and hip BMD measurements in human volunteers. Although overlying fat also affects QCT BMD measurements, the error is smaller and more uniform than with DXA BMD. Caution must be used when interpreting BMD changes in humans whose body composition is changing. © 2012 American Society for Bone and Mineral Research  相似文献   

6.
Previous studies using dual-energy X-ray absorptiometry (DXA) have demonstrated that age is a major predictor of bone fragility and fracture risk independent of areal bone mineral density (aBMD). Although this aBMD-independent effect of age has been attributed to poor bone "quality," the structural basis for this remains unclear. Because high-resolution peripheral quantitative computed tomography (HRpQCT) can assess bone microarchitecture, we matched younger and older subjects for aBMD at the ultradistal radius and assessed for possible differences in trabecular or cortical microstructure by HRpQCT. From an age-stratified, random sample of community adults, 44 women aged <50 years (mean age 41.0 years) were matched to 44 women aged ≥50 years (mean age 62.7 years) by ultradistal radius aBMD (mean ± SEM, younger and older aBMD 0.475 ± 0.011 and 0.472 ± 0.011 g/cm2, respectively), and 57 men aged <50 years (mean age 41.3 years) were matched to 57 men aged ≥50 years (mean age 68.1 years; younger and older aBMD both 0.571 ± 0.008 g/cm2). In these matched subjects, there were no sex-specific differences in trabecular microstructural parameters. However, significant differences were noted in cortical microstructure (all p < 0.05): Older women and men had increased cortical porosity (by 91% and 56%, respectively), total cortical pore volume (by 77% and 61%, respectively), and mean cortical pore diameter (by 9% and 8%, respectively) compared with younger subjects. These findings indicate that younger and older women and men matched for DXA aBMD have similar trabecular microarchitecture but clearly different cortical microstructure, at least at an appendicular site represented by the radius. Further studies are needed to define the extent to which this deterioration in cortical microstructure contributes to the aBMD-independent effect of age on bone fragility and fracture risk at the distal radius and other sites of osteoporotic fractures.  相似文献   

7.
In children the diagnosis of osteoporosis is based on fracture history and DXA‐derived BMD. Bone biopsy is an invasive but accurate method for studying bone characteristics. In this study we evaluated bone biopsy findings and their correlation with noninvasive measures of bone health. Transiliac bone biopsy was performed on 24 consecutive children (17 boys, median age 12 years, range 6 to 16 years) evaluated for suspected primary osteoporosis. Biopsy findings were compared with normative data and correlated with clinical, radiological, biochemical, and densitometric findings. The patients had sustained altogether 64 nonvertebral fractures (median 2.5) from low‐ or moderate‐energy traumas, and 14 patients (58%) had vertebral fractures. The median lumbar spine BMD Z‐score was ?1.2 (range ?3.1 to +1.0). Hypovitaminosis D was present in 58%. Histomorphometry showed low bone volume in 7 patients and normal bone volume in 17. Bone turnover was high in 7, low in 7, and normal in 10 patients. Histomorphometric findings correlated poorly with fracture history, serum bone turnover markers, and DXA findings. Vitamin D deficiency and low lumbar BMD were associated with high bone turnover in the biopsy. These findings underscore the difficulties in diagnosing pediatric osteoporosis. Bone histomorphometry gives additional information and may be useful when considering bisphosphonate treatment in children with suspected primary osteoporosis. © 2011 American Society for Bone and Mineral Research  相似文献   

8.
We examined if height loss in older women predicts risk of hip fractures, other nonspine fractures, and mortality, and whether this risk is independent of both vertebral fractures (VFx) and bone mineral density (BMD) by dual‐energy X‐ray absorptiometry. Among 3124 women age 65 and older in the Study of Osteoporotic Fractures, we assessed the association with measured height change between year 0 (1986–1988) and year 15 (2002–2004) and subsequent risk of radiologically confirmed hip fractures, other nonspine fractures, and mortality assessed via death certificates. Follow‐up occurred every 4 months for fractures and vital status (>95% contacts complete). Cox proportional hazards models assessed risk of hip fracture, nonspine fracture, and mortality over a mean of 5 years after height change was assessed (ie, after final height measurement). After adjustment for VFx, BMD, and other potential covariates, height loss >5 cm was associated with a marked increased risk of hip fracture [hazard ratio (HR) 1.50, 95% confidence interval (CI) 1.06, 2.12], nonspine fracture (HR 1.48; 95% CI 1.20, 1.83), and mortality (1.45; 95% CI 1.21, 1.73). Although primary analyses were a subset of 3124 survivors healthy enough to return for a year 15 height measurement, a sensitivity analysis in the entire cohort (n = 9677) using initial height in earlier adulthood [self‐reported height at age 25 (?40 years) to measured height age >65 years (Year 0)] demonstrated consistent results. Height loss >5 cm (2″) in older women was associated with a nearly 50% increased risk of hip fracture, nonspine fracture, and mortality—independent of incident VFx and BMD. © 2012 American Society for Bone and Mineral Research  相似文献   

9.
Excess thyroid hormone is associated with increased bone loss and fracture risk in older women, but few data exist for men. We sought to determine if thyroid function is independently associated with bone loss and fracture risk in older men. Data were analyzed from the Osteoporotic Fractures in Men (MrOS) study, a cohort of community‐dwelling U.S. men aged 65 years and older. Using a case‐cohort design, fasting baseline serum archived at ?80°C was assayed for thyroid‐stimulating hormone (thyrotropin) (TSH) and free thyroxine (FT4) in 397 men with confirmed nonspine fracture, including 157 hip fractures, and 1420 randomly selected men without fracture. TSH and FT4 were analyzed as continuous variables and as thyroid function categories (subclinical hyperthyroid, euthyroid, and subclinical hypothyroid). Hip dual‐energy X‐ray absorptiometry (DXA) (Hologic QDR4500) was measured at baseline and after a mean follow‐up of 4.6 years. Incident nonspine fractures were centrally adjudicated. Bone loss was evaluated with multivariate regression methods and fractures risk was evaluated using hazard models that accounted for the case‐cohort sampling, adjusted for age, clinic‐site, body mass index (BMI), race, physical activity, corticosteroid use, smoking, alcohol intake, and thyroid medication use. In fully adjusted analyses, TSH was not associated with risk of nonspine fracture (relative hazard [RH] 0.92 per SD decrease in TSH; 95% confidence interval [CI], 0.74–1.14), but was significantly associated with risk of hip fracture (RH 1.31; 95% CI, 1.01–1.71), which persisted among normal range TSH values (RH 1.21; 95% CI, 1.00–1.47). There was no association between TSH or FT4 and bone loss, and fracture risk did not differ significantly by thyroid function category. We conclude that although neither TSH nor FT4 are associated with bone loss, lower serum TSH may be associated with an increased risk of hip fractures in older men. © 2013 American Society for Bone and Mineral Research.  相似文献   

10.
Higher rates of hip fracture and all fractures combined have been observed in urban compared with rural areas, but whether there are urban‐rural differences in distal forearm fracture rates is less studied. The aim of this longitudinal study was to compare the incidence of forearm fracture in postmenopausal women in urban and rural areas in Norway and to investigate risk factors that could explain potential fracture differences. The study included data from 11,209 women aged 65 years or more who participated in two large health studies, the Tromsø Health Study in 1994–1995 and the Nord‐Trøndelag Health Study in 1995–1997. Forearm bone mineral density (BMD) was measured by single‐energy X‐ray absorptiometry in a subsample of women (n = 7333) at baseline. All women were followed with respect to hospital‐verified forearm fractures (median follow‐up 6.3 years). A total of 9249 and 1960 women lived in areas classified as rural and urban, respectively. Urban women had an increased forearm fracture risk [relative risk (RR) = 1.29, 95% confidence interval (CI) 1.09–1.52] compared with women in rural areas. Rural women had higher body mass index (BMI) than urban women, and the RR was moderately reduced to 1.21 (95% CI 1.02–1.43) after BMI adjustments. Rural women had the highest BMD. In the subgroup with measured BMD, adjustments for BMD changed the urban versus rural RR from 1.21 (95% CI 0.96–1.52) to 1.05 (95% CI 0.83–1.32), suggesting that BMD is an important explanatory factor. In conclusion, higher rates of forearm fractures was found in urban compared with rural women. © 2011 American Society for Bone and Mineral Research.  相似文献   

11.
Although height is a risk factor for osteoporotic fracture, current risk assessments do not consider height loss. Height loss may be a simple measurement that clinicians could use to predict fracture or need for further testing. The objective was to examine height loss and subsequent hip fracture, evaluating both long‐term adult height loss and recent height loss. Prospective cohort of 3081 adults from the Framingham Heart Study. Height was measured biennially since 1948, and cohort followed for hip fracture through 2005. Adult height loss from middle‐age years across 24 years and recent height loss in elderly years were considered. Cox proportional hazard regression was used to estimate association between height loss and risk of hip fracture. Of 1297 men and 1784 women, mean baseline age was 66 years (SD = 7.8). Average height loss for men was 1.06 inches (0.76), and for women was 1.12 inches (0.84). A total of 11% of men and 15% of women lost ≥2 inches of height. Mean follow‐up was 17 years, during which 71 men and 278 women had incident hip fractures. For each 1‐inch of height loss, hazard ratio (HR) = 1.4 in men [95% confidence interval (CI): 1.00, 1.99], and 1.04 in women (95% CI: 0.88, 1.23). Men and women who lost ≥2 inches of height had increased fracture risk (compared with 0 to <2 inches) of borderline significance: men HR = 1.8, 95% CI: 0.86, 3.61; women HR = 1.3, 95% CI: 0.90, 1.76. Recent height loss in elders significantly increased the risk of hip fracture, 54% in men and 21% in women (95% CI: 1.14, 2.09; 1.03, 1.42, respectively). Adult height loss predicted hip fracture risk in men in our study. Recent height loss in elderly men and women predicted risk of hip fracture. © 2012 American Society for Bone and Mineral Research  相似文献   

12.
Dietary flavonoids exert bone-protective effects in animal models, but there is limited information on the effect of different flavonoid subclasses on bone health in humans. The aim of this observational study was to examine the association between habitual intake of flavonoid subclasses with bone mineral density (BMD) in a cohort of female twins. A total of 3160 women from the TwinsUK adult twin registry participated in the study. Habitual intakes of flavonoids and subclasses (flavanones, anthocyanins, flavan-3-ols, polymers, flavonols, and flavones) were calculated from semiquantitative food frequency questionnaires using an updated and extended U.S. Department of Agriculture (USDA) database. Bone density was measured using dual-energy X-ray absorptiometry. In multivariate analyses, total flavonoid intake was positively associated with higher BMD at the spine but not at the hip. For the subclasses, the magnitude of effect was greatest for anthocyanins, with a 0.034 g/cm2 (3.4%) and 0.029 g/cm2 (3.1%) higher BMD at the spine and hip, respectively, for women in the highest intake quintile compared to those in the lowest. Participants in the top quintile of flavone intake had a higher BMD at both sites; 0.021 g/cm2 (spine) and 0.026 g/cm2 (hip). At the spine, a greater intake of flavonols and polymers was associated with a higher BMD (0.021 and 0.024 g/cm2, respectively), whereas a higher flavanone intake was positively associated with hip BMD (0.008 g/cm2). In conclusion, total flavonoid intake was positively associated with BMD, with effects observed for anthocyanins and flavones at both the hip and spine, supporting a role for flavonoids present in plant-based foods on bone health. © 2012 American Society for Bone and Mineral Research.  相似文献   

13.
Sclerostin is a potent inhibitor of Wnt signaling and bone formation. However, there is currently no information on the relation of circulating sclerostin levels to age, gender, or bone mass in humans. Thus we measured serum sclerostin levels in a population‐based sample of 362 women [123 premenopausal, 152 postmenopausal not on estrogen treatment (ET), and 87 postmenopausal on ET] and 318 men, aged 21 to 97 years. Sclerostin levels (mean ± SEM) were significantly higher in men than women (33.3 ± 1.0 pmol/L versus 23.7 ± 0.6 pmol/L, p < .001). In pre‐ and postmenopausal women not on ET combined (n = 275) as well as in men, sclerostin levels were positively associated with age (r = 0.52 and r = 0.64, respectively, p < .001 for both). Over life, serum sclerostin levels increased by 2.4‐ and 4.6‐fold in the women and men, respectively. Moreover, for a given total‐body bone mineral content, elderly subjects (age ≥ 60 years) had higher serum sclerostin levels than younger subjects (ages 20 to 39 years). Our data thus demonstrate that (1) men have higher serum sclerostin levels than women, (2) serum sclerostin levels increase markedly with age, and (3) compared with younger subjects, elderly individuals have higher serum sclerostin levels for a given amount of bone mass. Further studies are needed to define the cause of the age‐related increase in serum sclerostin levels in humans as well as the potential role of this increase in mediating the known age‐related impairment in bone formation. © 2011 American Society for Bone and Mineral Research.  相似文献   

14.
Finite element analysis of computed tomography (CT) scans provides noninvasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a 5‐year case‐control study of 1110 women and men over age 65 years from the AGES‐Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that for incident radiographically confirmed spine fractures (n = 167), the age‐adjusted odds ratio for vertebral strength was significant for women (2.8, 95% confidence interval [CI] 1.8 to 4.3) and men (2.2, 95% CI 1.5 to 3.2) and for men remained significant (p = 0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n = 171), the age‐adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI 2.6 to 6.9) and men (3.5, 95% CI 2.3 to 5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p = 0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD‐based interventional thresholds for osteoporosis and at corresponding preestablished thresholds for “fragile bone strength” (spine: women ≤ 4500 N, men ≤ 6500 N; hip: women ≤ 3000 N, men ≤ 3500 N). Because it is well established that individuals over age 65 years who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have fragile bone strength at the hip or spine should also be considered at high risk of fracture. © 2014 American Society for Bone and Mineral Research.  相似文献   

15.
All people are exposed to cadmium (Cd) via food; smokers are additionally exposed. High Cd exposure is associated with severe bone damage, but the public health impact in relation to osteoporosis and fractures at low environmental exposure remains to be clarified. Within the population‐based Swedish Mammography Cohort, we assessed urinary Cd [U‐Cd, µg/g of creatinine (cr)] as a marker of lifetime exposure and bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA) among 2688 women. Register‐based information on fractures was retrieved from 1997 to 2009. Associations were evaluated by multivariable regression analyses. In linear regression, U‐Cd was inversely associated with BMD at the total body (p < .001), femoral neck (p = .025), total hip (p = .004), lumbar spine (p = .088), and volumetric femoral neck (p = .013). In comparison with women with U‐Cd < 0.50 µg/g of cr, those with U‐Cd ≥ 0.75 µg/g of cr had odds ratios (ORs) of 2.45 [95% confidence interval (CI) 1.51–3.97] and 1.97 (95% CI 1.24–3.14) for osteoporosis at the femoral neck and lumbar spine, respectively. Among never‐smokers, the corresponding ORs were 3.47 (95% CI 1.46–8.23) and 3.26 (95% CI 1.44–7.38). For any first fracture (n = 395), the OR was 1.16 (95% CI 0.89–1.50) comparing U‐Cd ≥ 0.50 µg/g of cr with lower levels. Among never‐smokers, the ORs (95% CIs) were 2.03 (1.33–3.09) for any first fracture, 2.06 (1.28–3.32) for first osteoporotic fracture, 2.18 (1.20–3.94) for first distal forearm fracture, and 1.89 (1.25–2.85) for multiple incident fractures. U‐Cd at low environmental exposure from food in a general population of women showed modest but significant association with both BMD and fractures, especially in never‐smokers, indicating a larger concern than previously known. © 2011 American Society for Bone and Mineral Research.  相似文献   

16.
This randomized, double‐blind, placebo‐controlled, dose‐response late phase 2 study evaluated the efficacy and safety of bazedoxifene in postmenopausal Japanese women 85 years of age or younger with osteoporosis. Eligible subjects received daily treatment with oral doses of bazedoxifene 20 or 40 mg or placebo for 2 years. Efficacy assessments included bone mineral density (BMD) at the lumbar spine and other skeletal sites, bone turnover marker levels, lipid parameters, and incidence of new fractures. Of 429 randomized subjects, 387 were evaluable for efficacy, and 423 were included in the safety analyses (mean age, 64 years). At 2 years, the mean percent changes from baseline in lumbar spine BMD were significantly greater with bazedoxifene 20 and 40 mg (2.43% and 2.74%, respectively) than with placebo (?0.65%, p < .001 for both). Both bazedoxifene doses significantly improved BMD at the total hip, femoral neck, and greater trochanter compared with placebo (p < .001 for all). Decreases in bone turnover markers were observed with bazedoxifene 20 and 40 mg as early as 12 weeks (p < .05 for all) and were sustained throughout the study. Total and low‐density lipoprotein cholesterol levels were significantly decreased from baseline with both bazedoxifene doses compared with placebo (p < .05 for all). Incidences of new vertebral and nonvertebral fractures were similar among the bazedoxifene and placebo groups. Overall, the incidence of adverse events with bazedoxifene 20 and 40 mg was similar to that with placebo. Bazedoxifene significantly improved BMD, reduced bone turnover, and was well tolerated in postmenopausal Japanese women with osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

17.
Spinal cord injury (SCI) is associated with rapid and sustained bone loss and increase risk of fracture. Disuse is the primary cause for bone loss, although neural and hormonal changes may also contribute via different mechanisms. Bisphosphonates are used widely to treat osteoporosis in adults and are used increasingly for primary and secondary osteoporosis in children. Current data are insufficient to recommend routine use of bisphosphonates for fracture prevention in adult patients post-SCI and there are no available data in pediatric SCI. We report a 12-year-old boy with non-traumatic SCI who was treated with six monthly zoledronic acid (0.05 mg/kg/dose) for 18 months. The patient (AA) was diagnosed with transverse myelitis at 8.1 years of age, resulting in ventilator-dependent incomplete C3 tetraplegia. Following a fragility fracture to the surgical neck of the right humerus at 9.5 years of age, he was started on zoledronic acid. Bone turnover decreased and bone densitometry data (dual-energy X-ray absorptiometry [DXA] and peripheral quantitative computed tomography [pQCT]) showed improvement in metaphyseal and diaphyseal bone mineral content (BMC), volumetric bone mineral density (vBMD), and size, after 18 months of treatment. In the growing skeleton post-SCI, zoledronic acid potentially increases vertebral and long-bone strength by preserving trabecular bone (increased BMC and vBMD) and increasing cortical vBMD and cross-sectional area (CSA).  相似文献   

18.
Glucocorticoids (GCs) are potent anti‐inflammatory drugs, but their use is limited by their adverse effects on the skeleton. Compound A (CpdA) is a novel GC receptor modulator with the potential for an improved risk/benefit profile. We tested the effects of CpdA on bone in a mouse model of GC‐induced bone loss. Bone loss was induced in FVB/N mice by implanting slow‐release pellets containing either vehicle, prednisolone (PRED) (3.5 mg), or CpdA (3.5 mg). After 4 weeks, mice were killed to examine the effects on the skeleton using quantitative computed tomography, bone histomorphometry, serum markers of bone turnover, and gene expression analysis. To assess the underlying mechanisms, in vitro studies were performed with human bone marrow stromal cells (BMSCs) and murine osteocyte‐like cells (MLO‐Y4 cells). PRED reduced the total and trabecular bone density in the femur by 9% and 24% and in the spine by 11% and 20%, respectively, whereas CpdA did not influence these parameters. Histomorphometry confirmed these results and further showed that the mineral apposition rate was decreased by PRED whereas the number of osteoclasts was increased. Decreased bone formation was paralleled by a decline in serum procollagen type 1 N‐terminal peptide (P1NP), reduced skeletal expression of osteoblast markers, and increased serum levels of the osteoblast inhibitor dickkopf‐1 (DKK‐1). In addition, serum CTX‐1 and the skeletal receptor activator of NF‐κB ligand (RANKL)/osteoprotegerin (OPG) ratio were increased by PRED. None of these effects were observed with CpdA. Consistent with the in vivo data, CpdA did not increase the RANKL/OPG ratio in MLO‐Y4 cells or the expression of DKK‐1 in bone tissue, BMSCs, and osteocytes. Finally, CpdA also failed to transactivate DKK‐1 expression in bone tissue, BMSCs, and osteocytes. This study underlines the bone‐sparing potential of CpdA and suggests that by preventing increases in the RANKL/OPG ratio or DKK‐1 in osteoblast lineage cells, GC‐induced bone loss may be ameliorated. © 2012 American Society for Bone and Mineral Research.  相似文献   

19.
Cognitive decline and osteoporosis often coexist and some evidence suggests a causal link. However, there are no data on the longitudinal relationship between cognitive decline, bone loss and fracture risk, independent of aging. This study aimed to determine the association between: (i) cognitive decline and bone loss; and (ii) clinically significant cognitive decline (≥3 points) on Mini Mental State Examination (MMSE) over the first 5 years and subsequent fracture risk over the following 10 years. A total of 1741 women and 620 men aged ≥65 years from the population-based Canadian Multicentre Osteoporosis Study were followed from 1997 to 2013. Association between cognitive decline and (i) bone loss was estimated using mixed-effects models; and (ii) fracture risk was estimated using adjusted Cox models. Over 95% of participants had normal cognition at baseline (MMSE ≥ 24). The annual % change in MMSE was similar for both genders (women −0.33, interquartile range [IQR] −0.70 to +0.00; and men −0.34, IQR: −0.99 to 0.01). After multivariable adjustment, cognitive decline was associated with bone loss in women (6.5%; 95% confidence interval [CI], 3.2% to 9.9% for each percent decline in MMSE from baseline) but not men. Approximately 13% of participants experienced significant cognitive decline by year 5. In women, fracture risk was increased significantly (multivariable hazard ratio [HR], 1.61; 95% CI, 1.11 to 2.34). There were too few men to analyze. There was a significant association between cognitive decline and both bone loss and fracture risk, independent of aging, in women. Further studies are needed to determine mechanisms that link these common conditions. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

20.
Annual costs are enormous for musculoskeletal diseases such as osteoporosis and sarcopenia and for bone and muscle injuries, costing billions annually in health care. Although it is clear that muscle and bone development, growth, and function are connected, and that muscle loads bone, little is known regarding cellular and molecular interactions between these two tissues. A conference supported by the National Institutes of Health (NIH) and the American Society for Bone and Mineral Research (ASBMR) was held in July 2012 to address the enormous burden of musculoskeletal disease. National and international experts in either bone or muscle presented their findings and their novel hypotheses regarding muscle‐bone interactions to stimulate the exchange of ideas between these two fields. The immediate goal of the conference was to identify critical research themes that would lead to collaborative research interactions and grant applications focusing on interactions between muscle and bone. The ultimate goal of the meeting was to generate a better understanding of how these two tissues integrate and crosstalk in both health and disease to stimulate new therapeutic strategies to enhance and maintain musculoskeletal health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号