首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intra-alveolar fibrin deposition is a common response to localized and diffuse lung infection and acute lung injury (ALI). We hypothesized that the alveolar epithelium modulates intra-alveolar fibrin deposition through activation of protein C. Our objectives [corrected] were to determine whether components of the protein C activation pathway are present in the alveolar compartment in ALI and whether alveolar epithelium is a potential source. In patients with ALI, pulmonary edema fluid levels of endothelial protein C receptor (EPCR) were higher than plasma, suggesting a source in the lung. To determine whether alveolar epithelial cells are a potential source, protein C activation by A549, small airway epithelial, and primary human alveolar epithelial type II cells was measured. All three cell types express thrombomodulin (TM) and EPCR, and activate protein C on the cell surface. Activation of protein C was inhibited by cytomix (TNF-alpha, IL-1beta, and IFN-gamma). Release of EPCR and TM into the conditioned medium was inhibited by the metalloproteinase inhibitors tumor necrosis factor protease inhibitor (TAPI) and GM6001, indicating that the shedding of EPCR and TM from the alveolar epithelium is mediated by a metalloproteinase. These findings provide new evidence that the alveolar epithelium can modulate the protein C pathway and thus could be an important determinant of alveolar fibrin deposition. Local fibrin deposition may be a fundamental mechanism for the lung to localize and confine injury, thus limiting the risk of dissemination of injury or infection to the systemic circulation.  相似文献   

2.
急性肺损伤(acute lung injury,ALI)以及它的严重形式——急性呼吸窘迫综合征(acute respiratorydistress syndrome,ARDS)是危重病人发病和死亡的重要原因之一,最近2个世纪以来,死亡率仍在36%~44%左右。ALI/ARDS的病因众多,发病机制十分复杂,涉及的环节多,受损的靶细胞多,主要涉及的环节有:炎症反应失控、细胞损伤与修复、细胞凋  相似文献   

3.
宋宁  丛斌 《中国病理生理杂志》2010,26(11):2279-2283
急性肺损伤/急性呼吸窘迫综合征(acute lung injury/accute respiratory distress syndrome,ALI/ARDS)是在非心源性疾病过程中.  相似文献   

4.
Receptor for advanced glycation end products (RAGE) is a membrane bound receptor and member of the immunoglobulin super family and is normally present in a highly abundant basal level expression in lung. This high expression of RAGE in lung alveolar epithelial type I (ATI) cells is presumably involved in the proliferation and differentiation of pulmonary epithelial cells. However, typically higher than basal level expression of RAGE may indicate the existence of severe pathophysiological condition in lung, e.g. acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). During pulmonary tissue injury an endogenous secretory isoform of RAGE called EsRAGE is noticed at high levels in broncho-alveolar lavage (BAL) and plasma. Recently, a soluble form of RAGE (sRAGE) produced by recombinant gene technology was shown to exhibit a therapeutic potential in experimental animal models. Detailed study of RAGE in the pulmonary tissues will facilitate the understanding of the importance of RAGE signaling in the pulmonary health and pathophysiology.  相似文献   

5.
肺泡是肺脏进行气体交换的基本单位,其内表面覆盖着Ⅰ型和Ⅱ型肺泡上皮细胞。肺泡上皮细胞在面积上的绝对优势使其相较于肺泡巨噬细胞,更有机会在第一时间和病原体直接接触。肺泡上皮除了形成致密的屏障以隔绝外源性致病原外,也通过其表面受体和分泌产物与免疫细胞相互作用,来维持肺部的稳态和相对无菌性。肺上皮异常损伤和过度修复与多种肺部疾病如慢性阻塞性肺病、肺纤维化直接相关。本文综述了关于肺泡上皮细胞在屏障作用、病原防御、调节免疫功能以及和肺部疾病关系的研究进展。  相似文献   

6.
Apoptosis and inflammation play an important role in the pathogenesis of direct/pulmonary acute lung injury (ALI). However, the role of the Fas receptor-driven apoptotic pathway in indirect/nonpulmonary ALI is virtually unstudied. We hypothesized that if Fas or caspase-8 plays a role in the induction of indirect ALI, their local silencing using small interfering RNA (siRNA) should be protective in hemorrhage-induced septic ALI. Initially, as a proof of principle, green fluorescent protein-siRNA was administered intratracheally into transgenic mice overexpressing green fluorescent protein. Twenty-four hours after siRNA delivery, lung sections revealed a significant decrease in green fluorescence. Intratracheally administered Cy-5-labeled Fas-siRNA localized primarily in pulmonary epithelial cells. Intratracheal instillation of siRNA did not induce lung inflammation via toll-like receptor or protein kinase PKR pathways as assessed by lung tissue interferon-alpha, tumor necrosis factor-alpha, and interleukin (IL)-6 levels. Mice subjected to hemorrhagic shock and sepsis received either Fas-, caspase-8-, or control-siRNA intratracheally 4 hours after hemorrhage. Fas- or caspase-8-siRNA significantly reduced lung tissue Fas or caspase-8 mRNA, respectively. Only Fas-siRNA markedly diminished lung tissue tumor necrosis factor-alpha, IL-6, IL-10, interferon-gamma, IL-12, and caspase-3 activity. Fas-siRNA also preserved alveolar architecture and reduced lung neutrophil infiltration and pulmonary epithelial apoptosis. These data indicate the pathophysiological significance of Fas activation in nonpulmonary/shock-induced ALI and the feasibility of intrapulmonary administration of anti-apoptotic siRNA in vivo.  相似文献   

7.
大黄对内毒素诱导急性肺损伤大鼠的保护作用   总被引:14,自引:0,他引:14  
探讨脂多糖(LPS)致急性肺损伤(ALI)的作用机制及大黄的保护作用。用Wistar大鼠复制LL的的动物模型,观察组织病理学变化,测定ALI生物学指标及NO和iNOs。结果显示:LPS组肺间质水肿,肺泡腔内可见大量细胞润滑和血浆蛋白渗出;肺管内皮细胞损伤。肺湿干重比,肺泡灌洗液中中性粒细胞比例,蛋白含量及肺泡通透指数,肺毛细管通透性均显著升高,NO和iNOs也显著升高。地塞米松和大黄组,上述指标均较LPS组显著。LPS致LI的机制主要是直接损伤肺泡上和血管内皮细胞,大黄及地塞米松对血管内皮和肺泡上皮具有保护作用,其机制可能是通过抑制NO和iNOs活性实现。  相似文献   

8.
Apoptosis mediated by Fas/Fas ligand (FasL) interaction has been implicated in human disease processes, including pulmonary disorders. However, the role of the Fas/FasL system in acute lung injury (ALI) and in the acute respiratory distress syndrome (ARDS) is poorly defined. Accordingly, we investigated both the soluble and cellular expression of the Fas/FasL system in patients with ALI or ARDS. The major findings are summarized as follows. First, the soluble expression of the Fas/FasL system was assessed in undiluted pulmonary edema fluid and simultaneous plasma. Pulmonary edema fluid obtained from patients with ALI or ARDS (n = 51) had significantly higher concentrations of both soluble Fas (27 ng/ml; median; P < 0.05) and soluble FasL (0.125 ng/ml; P < 0.05) compared to control patients with hydrostatic pulmonary edema (n = 40; soluble Fas, 12 ng/ml; soluble FasL, 0.080 ng/ml). In addition, the concentrations of both soluble Fas and soluble FasL were significantly higher in the pulmonary edema fluid of the patients with ALI or ARDS compared to simultaneous plasma samples (soluble Fas, 16 ng/ml; soluble FasL, 0.058 ng/ml; P < 0.05), indicating local release in the lung. Higher soluble Fas concentrations were associated with worse clinical outcomes. Second, cellular expression of the Fas/FasL system was assessed by semiquantitative immunofluorescence microscopy in lung tissue obtained at autopsy from a different set of patients. Both Fas and FasL were immunolocalized to a greater extent in the patients who died with ALI or ARDS (n = 10) than in the patients who died without pulmonary disease (n = 10). Both proteins were co-expressed by epithelial cells that lined the alveolar walls, as well as by inflammatory cells and sloughed epithelial cells that were located in the air spaces. Semiquantitative immunohistochemistry showed that markers of apoptosis (terminal dUTP nick-end labeling, caspase-3, Bax, and p53) were more prevalent in alveolar wall cells from the patients who died with ALI or ARDS compared to the patients who died without pulmonary disease. These findings indicate that alveolar epithelial injury in humans with ALI or ARDS is in part associated with local up-regulation of the Fas/FasL system and activation of the apoptotic cascade in the epithelial cells that line the alveolar air spaces.  相似文献   

9.
目的 :检测NF κB在LPS诱导的急性肺损伤 (ALI)肺组织中的表达 ,以及N 乙酰半胱氨酸 (NAC)对ALI的抑制作用。方法 :采用免疫组化染色 (ABC法 )和Westernblot,检测NF κB在急性肺损伤大鼠气道和肺组织中的表达 ,以及NAC干预后活性NF κB表达的变化。结果 :正常对照组大鼠气道黏膜上皮和肺间质中 ,仅见少量散在的NF κB核阳性细胞 ;而LPS诱导ALI后 ,气道黏膜、肺间质、肺泡腔及血管内皮细胞中NF κB核阳性的细胞明显增多 (P <0 .0 1)。NF κB核阳性反应细胞主要为气道黏膜上皮细胞、浸润的炎症细胞、肺泡上皮细胞和血管内皮细胞。NAC治疗组NF κB核阳性细胞较LPS诱导的ALI组及对照组均明显减少 (P <0 .0 1)。Westernblot的结果显示 ,LPS诱导的ALI后不同时间点 ,NF κB的表达不同 ,于急性肺损伤 3h达高峰。各时间点NF κB的表达均较正常对照组高。结论 :LPS诱发的大鼠急性肺损伤的气道和肺组织内NF κB的表达增加 ,肺组织内的多数细胞参与了NF κB的激活。NAC可通过抑制NF κB的激活减轻急性肺损伤的炎症程度  相似文献   

10.
ARDS pathophysiology is characterized by complex mechanisms that involve cells of inflammation, lung tissue cells, cytokines, chemokines, as well as apoptosis activators and inhibitors. There are two important theories that link apoptosis with ARDS and suggest that epithelial cell apoptosis, as well as the accumulation of neutrophils in the lung, may contribute to a cascade of events and, finally, ARDS. The activation of the Fas/FasL pathway is an important mechanism of alveolar epithelial injury in the lungs of patients with ALI. In addition, neutrophilic inflammation in the alveolar spaces is characteristic of ALI in humans and in most animal models of ALI. The enhanced phagocytosis of apoptotic neutrophils could lead to resolution of inflammation and repair during ARDS. In this review, we will focus on elucidating the role of apoptosis in the pathophysiology of ARDS and the contribution of Fas-mediated inflammation in ARDS. Furthermore, we will give evidence that TNF-alpha, IL-1beta and IL-13 attenuate the pro-cell death effects of Fas/CD95 on A549 epithelial cells, at least partially, by the NF-kB and PI3-K pathways, suggesting that induction of the expression of antiapoptotic genes protects the epithelial cells from cell death.  相似文献   

11.
Morbidity and mortality have declined only modestly in patients with clinical acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), despite extensive research into the pathophysiology. Current treatment remains primarily supportive with lung-protective ventilation and a fluid conservative strategy. Pharmacologic therapies that reduce the severity of lung injury in preclinical models have not yet been translated to effective clinical treatment options. Consequently, further research in translational therapies is needed. Cell-based therapy with mesenchymal stem cells (MSCs) is one attractive new therapeutic approach. MSCs have the capacity to secrete multiple paracrine factors that can regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. This review will focus on recent studies, which support the potential therapeutic use of MSCs in ALI/ARDS, with an emphasis on the role of paracrine soluble factors.  相似文献   

12.
Acute lung injury (ALI) is a heterogeneous disease with the hallmarks of alveolar capillary membrane injury, increased pulmonary oedema and pulmonary inflammation. The most common direct aetiological factor for ALI is usually parenchymal lung infection or haemorrhage. Reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) are thought to play an important role in the pathophysiology of ALI. Glucose‐6‐phosphate dehydrogenase (G6PD) plays an important role both in production of ROS as well as their removal through the supply of NADPH. However, how G6PD modulation affects NOX2‐mediated ROS in the airway epithelial cells (AECs) during acute lung injury has not been explored previously. Therefore, we investigated the effect of G6PD inhibitor, 6‐aminonicotinamide on G6PD activity, NOX2 expression, ROS production and enzymatic anti‐oxidants in AECs in a mouse model of ALI induced by lipopolysaccharide (LPS). ALI led to increased G6PD activity in the AECs with concomitant elevation of NOX2, ROS, SOD1 and nitrotyrosine. G6PD inhibitor led to reduction of LPS‐induced airway inflammation, bronchoalveolar lavage fluid protein concentration as well as NOX2‐derived ROS and subsequent oxidative stress. Conversely, ALI led to decreased glutathione reductase activity in AECs, which was normalized by G6PD inhibitor. These data show that activation of G6PD is associated with enhancement of oxidative inflammation in during ALI. Therefore, inhibition of G6PD might be a beneficial strategy during ALI to limit oxidative damage and ameliorate airway inflammation.  相似文献   

13.
目的:从细胞凋亡的角度探讨肢体缺血再灌注(LIR)后急性肺损伤(ALI)的发病机制及牛磺酸的影响。方法:复制大鼠肢体缺血再灌注(LIR)损伤动物模型,采用TUNEL法、电泳法、半定量逆转录聚合酶链反应(SqRT-PCR)及免疫组织化学等技术观察LIR后肺损伤发生过程中,肺泡上皮及血管内皮细胞凋亡变化以及Fas/FasL系统蛋白质和mRNA表达的改变。结果:大鼠LIR后,肺泡上皮细胞和肺血管内皮细胞凋亡明显增加;肺组织Fas/FasLmRNA和蛋白质表达明显上调,DNA断链率、组织钙含量和活性氧(ROS)升高,且与肺泡上皮及血管内皮细胞凋亡的增加相一致。结论:肺泡上皮及血管内皮细胞凋亡以及Fas/FasL系统表达明显上调可能参与LIR后ALI的发生;牛磺酸可减少肺组织细胞凋亡,但并非通过影响Fas/FasL基因表达而实现其保护效应。  相似文献   

14.
Toxicity of pneumolysin to pulmonary alveolar epithelial cells.   总被引:4,自引:8,他引:4       下载免费PDF全文
Mortality during the first several days of pneumococcal pneumonia has not decreased appreciably over the past 30 years, despite the widespread use of antibiotics. Disruption of the alveolar epithelial barrier is likely an initial step in the pathogenesis of pneumococcal pneumonia. We report that soluble factors from Streptococcus pneumoniae can directly injure isolated rat alveolar epithelial cells. Using biochemical and immunological techniques, we identified pneumolysin as a major soluble S. pneumoniae toxin for alveolar epithelial cells. Alveolar epithelial cells at 24 or 72 h after isolation were equally sensitive to injury by purified pneumolysin. Purified pneumolysin substantially increased alveolar permeability in an isolated perfused rat lung model. Electron microscopy revealed that instilled pneumolysin caused widespread lung injury, primarily to type I alveolar epithelial cells. Pneumolysin toxicity to alveolar epithelial cells may be important in the pathogenesis of acute lung injury during pneumococcal pneumonia and may facilitate pneumococcal bacteremia.  相似文献   

15.
Increased lung vascular permeability is an important contributor to respiratory failure in acute lung injury (ALI). We found that a function-blocking antibody against the integrin alphavbeta5 prevented development of lung vascular permeability in two different models of ALI: ischemia-reperfusion in rats (mediated by vascular endothelial growth factor [VEGF]) and ventilation-induced lung injury (VILI) in mice (mediated, at least in part, by transforming growth factor-beta [TGF-beta]). Knockout mice homozygous for a null mutation of the integrin beta5 subunit were also protected from lung vascular permeability in VILI. In pulmonary endothelial cells, both the genetic absence and blocking of alphavbeta5 prevented increases in monolayer permeability induced by VEGF, TGF-beta, and thrombin. Furthermore, actin stress fiber formation induced by each of these agonists was attenuated by blocking alphavbeta5, suggesting that alphavbeta5 regulates induced pulmonary endothelial permeability by facilitating interactions with the actin cytoskeleton. These results identify integrin alphavbeta5 as a central regulator of increased pulmonary vascular permeability and a potentially attractive therapeutic target in ALI.  相似文献   

16.
Loss of alveolar barrier function is important in the development of pulmonary edema, but quantitation of its integrity has been difficult in the intact lung. We report a new non-radioactive method to assess paracellular and transcellular permeability of alveolar barrier in buffer-perfused rabbit lungs. Changes in alveolar barrier parameters were then correlated with different types of lung edema formation. The paracellular and transcellular barrier function was quantified by calculating the apparent epithelial permeability-surface area products (PS) for a fluorescent hydrophilic solute, FITC-dextran (FD-4), and a hydrophobic solute, rhodamine B, respectively. In control lungs, the apparent epithelial PS for FD-4 and rhodamine B were 0.7+/-0.05 x 10(-4) and 40.0+/-4.1 x 10(-4) ml/sec, respectively. The apparent epithelial PS of FD-4 could be increased 25-fold by inhibition of epithelial anion exchange with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) without affecting the PS of rhodamine B. The apparent epithelial PS of FD-4 could be increased 6- and 1.7-fold by disrupting microtubules with nocodazole and colchicine respectively, but microtubule agents decreased PS for rhodamine B. A pattern similar was produced when ATP production in the lung was inhibited by 2-deoxyglucose or when oxidative injury was induced by ischemia-reperfusion. Neither DIDS nor nocodazole altered endothelial permeability to albumin. DIDS, but not nocodazole, increased transcapillary liquid filtration and calculated interstitial compliance of the lung during hydrostatic challenge. We conclude that epithelial permeability in the intact lung can be assessed using fluorescent solutes, and that increased permeation of hydrophilic solutes may enhance lung edema formation.  相似文献   

17.
《Mucosal immunology》2017,10(4):1043-1055
Influenza virus causes a respiratory disease in humans that can progress to lung injury with fatal outcome. The interleukin (IL)-36 cytokines are newly described IL-1 family cytokines that promote inflammatory responses via binding to the IL-36 receptor (IL-36R). The mechanism of expression and the role of IL-36 cytokines are poorly understood. Here, we investigated the role of IL-36 cytokines in modulating the innate inflammatory response during influenza virus-induced pneumonia in mice. The intranasal administration of influenza virus upregulated IL-36α mRNA and protein production in the lungs. In vitro, influenza virus-mediated IL-36α but not IL-36γ is induced and secreted from alveolar epithelial cells (AECs) through both a caspase-1 and caspase-3/7 dependent pathway. IL-36α was detected in microparticles shed from AECs and promoted the production of pro-inflammatory cytokines and chemokines in respiratory cells. IL-36R-deficient mice were protected from influenza virus-induced lung injury and mortality. Decreased mortality was associated with significantly reduced early accumulation of neutrophils and monocytes/macrophages, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines, and permeability of the alveolar–epithelial barrier in despite impaired viral clearance. Taken together, these data indicate that IL-36 ligands exacerbate lung injury during influenza virus infection.  相似文献   

18.
High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. Rats underwent intraperitoneal injection of LPS to mimic sepsis-induced ALI. Propofol bolus (1, 5, or 10 mg/kg) was infused continuously 30 min after LPS administration, followed by infusion at 5 mg/(kg?·?h) through the left femoral vein cannula. LPS increased wet to dry weight ratio and myeloperoxidase activity in lung tissues and caused the elevation of total protein and cells, neutrophils, macrophages, and neutrophils in bronchoalveolar lavage fluid (BALF). Moreover, HMGB1 and other cytokine levels were increased in BALF and lung tissues and pathological changes of lung tissues were excessively aggravated in rats after LPS administration. Propofol inhibited all the above effects. It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.  相似文献   

19.
20.
Sphingomyelin (SM), a major sphingolipid in the lipid raft microdomains of the cell membrane, is synthesized by plasma membrane-bound sphingomyelin synthase 2 (SMS2). SMS2 is required for the maintenance of plasma membrane microdomain fluidity and receptor-mediated responses to inflammation in macrophages. However, the exact mechanism of SMS2 activation in endothelial barrier disruption and lung injury is not fully understood. To define the role of SMS activation in lung injury, we hypothesized that the inhibition of SM synthesis may provide protection against acute lung injury (ALI) by preserving endothelial barrier function. Using SMS2-silencing RNA (siRNA) treatment in human pulmonary endothelial cells (HPAECs) and tricyclodecan-9-yl-xanthogenate (D609), a competitive inhibitor of SMS, and phosphatidylcholine-specific phospholipase C in a murine model of bacterial LPS injury, we studied the role of sphingomyelin synthesis in ALI. Results show that pretreating mice with D609 significantly attenuated LPS-induced lung injury, as measured by a significant decrease in wet to dry ratio, bronchoalveolar lavage fluid cell and protein counts, and myeloperoxidase activity in lung tissue. Similarly, LPS-induced endothelial barrier disruption was significantly reduced in HPAECs pretreated with D609 or SMS2 siRNA, as demonstrated by an increase in paracellular integrity on an FITC-dextran assay, by the inhibition of LPS-induced stress fibers, and by the formation of cortical actin rings and lamellipodia at the periphery. These results indicate that D609 attenuates LPS-mediated endothelial barrier dysfunction and lung injury in mice through inhibition of SMS, suggesting a novel and essential role of SMS inhibition in modulating endothelial barrier integrity via actin cytoskeletal activation, with a potential therapeutic role in ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号