首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K(+) channels (K(ATP) channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional K(ATP) channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis.  相似文献   

2.
The role of second messengers in the response of alloactivated T cells to growth factors (e.g., interleukin-2) is unknown. We have previously found that intracellular calcium may be an important T-cell alloactivation marker. To determine whether protein kinase C (PKC) is also involved in allosensitized T cell function, we studied the effects of the PKC agonists phorbol 12-myristate 13-acetate (PMA), mezerein (MEZ), and 1-oleoyl-2-acetylglycerol (OAG) and the PKC antagonists phloretin and D-sphingosine on the in vitro proliferation and migration of allosensitized cells from a C57BL/6 anti-DBA/2J mixed leukocyte culture (MLC). At 0.01-1.0 microgram/ml, PMA, a potent stimulant of PKC, exerted profound stimulatory effects on secondary MLC supernatant (2 degrees SN)-induced proliferation of allosensitized T cells (132-200% increase, P less than 0.01). Both MEZ and OAG are less potent activators of PKC than PMA but also stimulated T cell proliferation (132-152% of control, P less than 0.01). The PKC antagonists phloretin and D-sphingosine both inhibited proliferation by greater than 50% at 1.0-10.0 microM (P less than 0.01). Further experiments showed that these agents exert similar effects on in vitro T cell locomotion in a Boyden chamber assay. These data indicate that PKC activation may be an important component of allosensitized T cell proliferation and locomotion and may constitute a pathway by which T cell function may be modified in the allograft response.  相似文献   

3.
Studies in nonmuscle cells have demonstrated that Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) are upstream regulators of AMP-activated protein kinase (AMPK) and Akt. In skeletal muscle, activation of AMPK and Akt has been implicated in the regulation of glucose uptake. The objective of this study was to determine whether CaMKKalpha regulates skeletal muscle glucose uptake, and whether it is dependent on AMPK and/or Akt activation. Expression vectors containing constitutively active CaMKKalpha (caCaMKKalpha) or empty vector were transfected into mouse muscles by in vivo electroporation. After 2 weeks, caCaMKKalpha was robustly expressed and increased CaMKI (Thr(177/180)) phosphorylation, a known CaMKK substrate. In muscles from wild-type mice, caCaMKKalpha increased in vivo [(3)H]-2-deoxyglucose uptake 2.5-fold and AMPKalpha1 and -alpha2 activities 2.5-fold. However, in muscles from AMPKalpha2 inactive mice (AMPKalpha2i), caCaMKKalpha did not increase AMPKalpha1 or -alpha2 activities, but it did increase glucose uptake 2.5-fold, demonstrating that caCaMKKalpha stimulates glucose uptake independent of AMPK. Akt (Thr(308)) phosphorylation was not altered by CaMKKalpha, and caCaMKKalpha plus insulin stimulation did not increase the insulin-induced phosphorylation of Akt (Thr(308)). These results suggest that caCaMKKalpha stimulates glucose uptake via insulin-independent signaling mechanisms. To assess the role of CaMKK in contraction-stimulated glucose uptake, isolated muscles were treated with or without the CaMKK inhibitor STO-609 and then electrically stimulated to contract. Contraction increased glucose uptake 3.5-fold in muscles from both wild-type and AMPKalpha2i mice, but STO-609 significantly decreased glucose uptake (approximately 24%) only in AMPKalpha2i mice. Collectively, these results implicate CaMKKalpha in the regulation of skeletal muscle glucose uptake independent of AMPK and Akt activation.  相似文献   

4.
BACKGROUND: High glucose has been considered to play an important role in alteration of renal proximal tubule transporter's activity. This study examined the mechanism by which high glucose modulates alpha-methyl-D-glucopyranoside (alpha-MG) uptake in primary cultured rabbit renal proximal tubule cells (PTCs). METHODS: PTCs were incubated with 25 mmol/L glucose alone or combined with taurine, ascorbic acid, catalase, staurosporine, and bisindolylmaleimide I. Then alpha-MG uptake and lipid peroxide (LPO) formation were examined. RESULTS: Twenty-five mmol/L glucose from four hours, but not 25 mmol/L mannitol, inhibited alpha-MG uptake by 23% compared with 5 mmol/L glucose (control). In the study to examine the relationship of oxidative stress in the high-glucose-induced inhibition of alpha-MG uptake, 25 mmol/L glucose significantly increased LPO by 27% compared with control. However, 10 mmol/L glucose did not affect alpha-MG uptake and LPO formation. Taurine (2 mmol/L), ascorbic acid (1 mmol/L), endogenous antioxidants, or catalase (600 U/mL) significantly blocked 25 mmol/L glucose-induced increase of LPO formation and inhibition of alpha-MG uptake. In the experiment to examine the effects of protein kinase C on LPO formation, 12-O-tetradecanoylphorbol-13-acetate (TPA; 100 ng/mL) increased LPO formation, and staurosporine (10(-7) mol/L) and bisindolylmaleimide I (10(-6) mol/L) totally blocked 25 mmol/L glucose-induced increase of LPO formation and inhibition of alpha-MG uptake. In addition, taurine reduced TPA-induced increase of LPO formation and inhibition of alpha-MG uptake. CONCLUSION: High glucose induces, in part, the inhibition of alpha-MG uptake through LPO formation, and activation of protein kinase C may play a role in high-glucose-induced LPO formation in the primary cultured rabbit renal PTCs.  相似文献   

5.
Tumor necrosis factor (TNF) has been proposed as a primary inflammatory mediator of septic shock. In vitro and in vivo studies indicate that endotoxin- or lipopolysaccharide (LPS)-activated macrophages are a principle source of TNF; however, membrane signal transduction and intracellular pathways by which LPS triggers TNF production in macrophages are unclear. Recent evidence indicates that specific protein phosphorylation via activation of protein kinase C (PKC) is an early, critical step in the signaling of macrophage TNF production by phorbol esters. We hypothesize that PKC activation is also required in LPS-signaled Kupffer cell (KC) TNF production. Murine KCs were obtained by liver perfusion and digestion and then stimulated with LPS (Escherichia coli O111:B4) or LPS in the presence of H-7, a selective PKC inhibitor. Conditioned media was collected at 3 hr for assay of TNF utilizing the L929 cytolysis bioassay standardized to murine-rTNF-alpha. We found that H-7 inhibited significantly LPS signaled TNF release at a concentration of 10 microM, while H-8 (a cyclic nucleotide specific inhibitor) had no effect. The effect of H-7 was dose dependent and present at varying concentrations of LPS. Down regulation of PKC activity by preincubation of KCs with phorbol myristate acetate (PMA, a direct activator of PKC) also resulted in significantly reduced TNF release after LPS stimulation. The inhibitor H-7 (10 microM) also significantly inhibited LPS signaled prostaglandin E2 release in Kupffer cells. Total and specific intracellular protein phosphorylation was determined by trichloroacetic acid precipitation and SDS-polyacrylamide gel electrophoresis after labeling stimulated Kupffer cells with 32Pi. Total protein phosphorylation was not significantly altered by LPS stimulation; however, autoradiograms from PMA- and LPS-stimulated KCs demonstrate enhanced phosphorylation of a 40-kDa protein (2.7 +/- 0.9-fold) and a 33-kDa protein (3.1 +/- 1.0-fold) which were inhibited by H-7. We conclude that activation of PKC and protein phosphorylation are required steps in the signal transduction pathway of LPS-stimulated TNF production in Kupffer cells.  相似文献   

6.
Since inositol (Ins) depletion appears to be an important mechanism of cell injury in diabetic glomerulopathy, we studied Ins transport in cultured rat mesangial cells during hyperglycemia. High glucose stimulated [3H]-Ins uptake by 50 to 90% within 24 hours in a dose dependent manner. This effect was characterized by an increase in the Vmax of a Na(+)-dependent Ins transporter (10.3 +/- 0.2 vs. 16.4 +/- 0.4 pmol/mg/min, P less than 0.005). Since high glucose also induced activation of protein kinase C (PKC) in permeabilized mesangial cells, we examined the potential role of this enzyme in the stimulation of Ins transport by glucose. Both PKC inhibition with H7 and staurosporine, and down regulation of PKC by prolonged PMA (1.6 microM) treatment inhibited the stimulatory effect of glucose on Ins transport. In conclusion, high glucose stimulates Na(+)-dependent Ins transport in mesangial cells by a mechanism mediated by PKC. This process may represent an important adaptive response of mesangial cells to hyperglycemia.  相似文献   

7.
BACKGROUND: After evaluating various growth factors, cytokines, and extracellular matrix (ECM) proteins, we found that the most potent agonists of smooth muscle cell (SMC) fibronectin (Fn) production were transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF). To determine the possible signaling pathways involved in the production of this matrix protein, we investigated the role of the intracellular proteins, protein kinase C (PKC) and mitogen-activated protein kinase (MAP-K), in TGF-beta- and EGF-induced human vascular SMC Fn production. MATERIALS AND METHODS: After stimulation of human SMCs with TGF-beta (10 ng/ml) and EGF (100 ng/ml), Fn in the cell medium was assayed by immunoblotting using a specific antibody. PKC was activated by brief stimulation of SMC with phorbol 12,13-dibutyrate (PDBu) and inhibited by downregulation with PDBu or the inhibitor, GF109203X. MAP-K was inhibited with PD098059. RESULTS: PKC activation increased basal and synergistically enhanced TGF-beta- and EGF-induced Fn production. However, inhibition of PKC by downregulation and GF109203X did not diminish Fn production by TGF-beta and EGF. Surprisingly, these two methods of inhibition slightly increased basal and agonist-induced Fn production. The MAP-K kinase inhibitor, PD098059, produced an almost complete inhibition of EGF and a partial inhibition of TGF-beta-induced Fn production. CONCLUSIONS: Activation of PKC stimulates Fn production; however, neither TGF-beta nor EGF produce Fn through a PKC-dependent pathway. EGF and TGF-beta both stimulate Fn production at least in part through the intracellular signaling protein MAP-K. Understanding the signaling pathways involved in extracellular matrix protein production will allow the design of specific inhibitors of intimal hyperplasia.  相似文献   

8.
9.
Enhanced actions or levels of endothelin-1 (ET-1), a potent vasoconstrictor, have been associated with decreased blood flow in the retina and peripheral nerves of diabetic animals and may be related to the development of pathologies in these tissues. Hyperglycemia has been postulated to increase ET-1 secretion in endothelial cells. We have characterized the mechanism by which elevation of glucose is increasing ET-1 mRNA expression in capillary bovine retinal endothelial cells (BREC) and bovine retinal pericytes (BRPC). Elevation of glucose, but not mannitol, from 5.5 to 25 mmol/l for 3 days increased membranous protein kinase C (PKC) activities and ET-1 mRNA in parallel levels by 2-fold in BREC and BRPC. These effects were reversed by decreasing glucose levels to 5.5 mmol/l for an additional 2 days. Glucose-induced ET-1 overexpression was inhibited by a general PKC inhibitor, GF109203X, and a mitogen-activated protein kinase kinase inhibitor, PD98059, but not by wortmannin, a phosphatidylinositol 3-kinase inhibitor. By immunoblot analysis, PKC-beta2 and -delta isoforms in BREC were significantly increased relative to other isoforms in the membranous fractions when glucose level was increased. Overexpression of PKC-beta1 and -delta isoforms but not PKC-zeta isoform by adenovirus vectors containing the respective cDNA enhanced in parallel PKC activities, proteins, and basal and glucose-induced ET-1 mRNA expression by at least 2-fold. These results showed that enhanced ET-1 expression induced by hyperglycemia in diabetes is partly due to activation of PKC-beta and -delta isoforms, suggesting that inhibition of these PKC isoforms may prevent early changes in diabetic retinopathy and neuropathy.  相似文献   

10.
蛋白激酶C激活在高糖诱导肾系膜细胞中的作用   总被引:6,自引:4,他引:6  
目的:探讨高糖对系膜细胞蛋白激酶C(PKC)活性的影响及PKC在系膜细胞增殖、细胞外基质积聚中的作用。方法:采用大鼠系膜细胞进行体外培养,高糖作为激动剂,佛波酯(PMA)作为PKC抑制剂,甘露醇作为渗透压对照,用液闪仪测定PKC活性,^3H-TdR渗入法检测细胞增殖,ELISA法测定培养上清中纤维连接蛋白(FN)含量。结果:高糖可增加系膜细胞颗粒部分PKC活性、抑制细胞增殖、促进FN分泌,且与渗透压无关。抑制PKC后,可阻止高糖诱导的FN分泌。结论:高糖可激活系膜细胞PKC,促进细胞外基质积聚和糖尿病肾症的发生。  相似文献   

11.
12.
BACKGROUND: The activation of protein kinase C (PKC) and transforming growth factor-beta (TGF-beta) in glomerular mesangial cells has been linked to mesangial matrix expansion in diabetic nephropathy. The role of these mediators in affecting the changes associated with diabetes in the biology of glomerular endothelial cells (GEnCs), which synthesize components of the glomerular basement membrane, is not known. We postulated that the PKC and TGF-beta systems promote the increased endothelial cell synthesis of glomerular basement membrane that is evoked by Amadori-modified glycated albumin, which is present in elevated concentrations in diabetes. METHODS: We examined the effects of PKC inhibition on collagen IV and TGF-beta1 production by mouse GEnCs incubated with glycated albumin and the influence of glycated albumin on PKC activity, TGF-beta 1 production, and proliferation by these cells. RESULTS: In physiologic (5.5 mmol/L) glucose concentrations, glycated albumin caused an increase in type IV collagen production that was totally prevented by a general PKC inhibitor GF 109203X (GFX), but only partly prevented by a neutralizing anti-TGF-beta antibody. Glycated albumin increased the steady-state level of TGF-beta 1 mRNA and stimulated the production of TGF-beta 1 protein, which was also prevented by the PKC inhibitor GFX. Of note, glycated albumin significantly stimulated PKC activity, as measured by the phosphorylation of a PKC-specific substrate. Cell proliferation, measured by [(3)H]-thymidine incorporation and cell counting, was decreased in the presence of glycated albumin. This effect was completely prevented by GFX and partially reversed by anti-TGF-beta antibody. Exogenous TGF-beta 1 inhibited cell proliferation to a degree similar to that of glycated albumin. CONCLUSIONS: PKC signaling and consequent TGF-beta 1 activation participate in the glycated albumin-induced stimulation of basement membrane collagen production by GEnC. By reducing the proliferative capacity, which is likely mediated by PKC and partly by TGF-beta, glycated albumin impedes the ability of the glomerular capillary endothelium to act as a first line of defense against deleterious circulating factors in the diabetic state.  相似文献   

13.
L Saccà  P E Cryer  R S Sherwin 《Diabetes》1979,28(6):533-536
Continuous, low dose, insulin infusion in conscious dogs produced moderate hypoglycemia but only a transient fall in glucose production that rose towards preinfusion levels 20 to 30 min before any detectable increase in plasma counterregulatory hormones. Addition of epinephrine or glucagon to the insulin infusion prevented the fall in glucose production throughout the experiment but only partially diminished the hypoglycemic response. When hypoglycemia was prevented by a variable glucose infusion, neither epinephrine nor glucagon was able to counteract the suppressive effect of insulin on glucose output. These findings suggest that a fall in blood glucose per se may reverse insulin-induced inhibition of glucose production independent of a rise in counterregulatory hormones and that the insulin antagonist effect of counter-regulatory hormones is modulated, at least in part, by blood glucose concentration.  相似文献   

14.
15.
The extrapancreatic effects of sulfonylurea drugs include increased glucose uptake by certain peripheral tissues. To study this effect, we used BC3H1 myocytes, which are reported to respond to these drugs. Within 30 min, tolbutamide and glyburide increased [3H]-2-deoxyglucose uptake in a dose-dependent manner. The inactive analogue carboxytolbutamide had no effect on glucose transport. Because increases in glucose transport may be mediated by activation of the diacylglycerol-protein kinase C signaling system, we examined the effects of these drugs on lipid metabolism and protein kinase C activity. Unlike insulin, tolbutamide and glyburide failed to increase [3H]glycerol labeling of diacylglycerol or labeling of phospholipids by 32P. After 30 min of treatment with tolbutamide or glyburide, however, membrane-associated and cytosolic protein kinase C activity were each increased. When cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 48 h to deplete certain isoforms of protein kinase C, glyburide, tolbutamide, and acute TPA treatment failed to increase glucose uptake, suggesting that TPA and sulfonylureas operate through activation of a common pathway. The effect of glyburide was additive to TPA in stimulating glucose uptake at low but not high TPA concentrations. As with insulin and TPA, extracellular Ca2+ was not essential for sulfonylurea-stimulated glucose uptake. Staurosporine, a protein kinase C inhibitor, blocked glyburide-, tolbutamide-, and insulin-stimulated glucose uptake. In intact cells, glyburide stimulated the phosphorylation of both 80,000-Mr and 40,000-Mr proteins, which are markers for protein kinase C activation. Addition of sulfonylureas directly to the protein kinase C assay system in vitro provoked dioleinlike effects, in that sensitivity of the enzyme to Ca2+ was increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Venous ulcer fibroblasts have been demonstrated to have low growth rates in response to platelet-derived growth factor (PDGF). Mitogen-activated protein kinase (MAPK) is an important signal transduction mechanism that regulates growth, differentiation, and apoptosis in eukaryotic cells. PDGF binds PDGF receptors that activate a multitiered signaling cascade involving MAPK. We hypothesize that the growth regulation in venous ulcer fibroblasts is dependent on the MAPK extracellular signal-regulated kinase (ERK) pathway in the presence of PDGF. Fibroblasts (fb) were isolated from 8 patients with venous ulcers (w-fb) and the normal skin (n-fb) of the ipsilateral thigh via punch biopsies. Fb were plated at 1,500 cells/dish and treated with PDGF-AB (10 ng/mL) for 15 days. Growth rates were determined. Immunoblot analysis of MAPK ERK for n-fb and w-fb were analyzed. To determine if PDGF-stimulated w-fb and n-fb utilized the MAPK ERK pathway in a dependent manner, the upstream kinase MAPK kinase 1 (MEK 1) was inhibited by PD 98059. In addition, fb were treated with chronic venous ulcer wound fluid (WF) to study its effect on MAPK ERK. In the presence of PDGF, growth rates were substantially lower in w-fb than in n-fb, and MAPK was activated in 6/8 w-fb and in only 2/8 n-fb. Fibroblasts expressing MAPK had significantly reduced cell proliferation compared to fibroblasts not expressing MAPK (p = 0.023). PD 98059 significantly inhibited w-fb and n-fb cell proliferation from basal level, which was reversible with addition of PDGF. In neonatal fibroblasts WF demonstrated inhibition of MAPK ERK over time and addition of PD98059 was not additive. This study suggests that the MAPK ERK pathway is important for cell proliferation in venous ulcer fibroblasts. In the presence of PDGF, fibroblasts with decreased growth rate express MAPK, and proliferation is further abrogated with addition of MEK 1 inhibitor, suggesting the importance of the MAPK ERK pathway regulating w-fb and n-fb proliferation. Although the majority of w-fb activated the MAPK ERK pathway in the presence of PDGF, proliferation was significantly attenuated, indicating that other MAPK inhibitory pathways are competing. Venous ulcer wound fluid directly inhibits the MAPK ERK pathway, suggesting that the venous ulcer wound environment has negative trophic factors that effect fibroblasts proliferation and ulcer healing.  相似文献   

18.
Activation of the diacylglycerol-protein kinase C (DAG-PKC) cascade by excess glucose has been implicated in vascular complications of diabetes. Its involvement in diabetic embryopathy has not been established. We examined DAG production and PKC activities in embryos and decidua of streptozotocin (STZ)-diabetic or transiently hyperglycemic mice during neural tube formation. STZ diabetes significantly increased DAG and total PKC activity in decidua (1.5- and 1.4-fold, respectively) and embryos (1.7- and 1.3-fold, respectively) on day 9.5. Membrane-associated PKC alpha, betaII, delta, and zeta were increased in decidua by 1.25- to 2.8-fold. Maternal hyperglycemia induced by glucose injection on day 7.5, the day before the onset of neural tube formation, also increased DAG, PKC activity, and PKC isoforms (1.1-, 1.6-, and 1.5-fold, respectively) in the embryo on day 9.5. Notably, membrane-associated PKC activity was increased 24-fold in embryos of diabetic mice with structural defects. These data indicate that hyperglycemia just before organogenesis activates the DAG-PKC cascade and is correlated with congenital defects.  相似文献   

19.
BACKGROUND: Vascular smooth muscle cell (VSMC) migration, fundamental in the pathophysiology of atherogenesis and restenosis, is a coordinated process governed by the formation and disassembly of focal adhesions. Previous studies have demonstrated that VSMC migration is regulated via a signaling network involving protein kinase C delta (PKCdelta). In these studies, we test the hypothesis that PKCdelta regulates VSMC migration through modulation of cell adhesion. MATERIALS AND METHODS: Using primary VSMCs isolated from PKCdelta wild type (+/+) and knock-out (-/-) mice, the effects of PKCdelta on VSMC migration and adhesion were assessed by chemotaxis and cell adhesion. RESULTS: In evaluating cell migration, we found a decrease in platelet-derived growth factor-BB (PDGF-BB; 5 ng/mL x 6 h) stimulated migration of PKCdelta-/-VSMCs as compared to PKCdelta+/+VSMCs, by 59.4 +/- 5.9% (P < 0.01). A similar reduction in migration of PKCdelta-/-VSMCs (66.5 +/- 5.7%, P < 0.01) was also observed on collagen-coated (COL) membranes. Next, we examined cell attachment, a critical step of migration. PKCdelta-/-VSMCs exhibited significantly reduced adherence by 50.3 +/- 1.8% (P < 0.01). A similar defect of PKCdelta-/-VSMCs was also observed on the COL surface, 30.7 +/- 2.3% (P < 0.01). Interestingly, PDGF-BB did not stimulate attachment of VSMCs of either genotype. Consistent with these results, Rottlerin (2 microM), a selective inhibitor of PKCdelta, blocked migration and attachment of VSMCs by 56.8 +/- 3.4% (P < 0.01) and 37.7 +/- 1.9% (P < 0.01), respectively. CONCLUSIONS: Taken together, our data indicate that PKCdelta activation is necessary for VSMC adhesion, which could, at least in part, contribute to the regulatory function of this kinase in cell migration thus pathogenesis of vascular lesions.  相似文献   

20.
Nephrin mRNA regulation by protein kinase C.   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号