首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
PURPOSE: Alterations in the DNA mismatch repair (MMR) proteins have been associated with an increased resistance of many cancer cell lines to cisplatin. The aim of this work was to investigate whether defects in DNA MMR proteins are involved in the survival of human colorectal cancer cells in the presence of high concentrations of cisplatin and oxaliplatin, a diaminocyclohexane (DACH) platinum compound whose adducts are not recognized by the MMR system. METHODS: Six unselected human colon cancer cell lines (HT29, HCT15, HCT116, Caco2, SW480 and SW620) were treated with a single 3-h exposure to cisplatin or oxaliplatin at suprapharmacological concentrations, ranging from 50 to 200 microg/ml. The microsatellite stability and the expression of MMR proteins in the parental cell lines and in the drug-selected subpopulations were studied. RESULTS: Most cells underwent apoptosis in the days following the cisplatin or oxaliplatin treatment, but some colonies expanded 3 to 4 weeks after, suggesting the presence of innately resistant cells in the six parental cell lines. Microsatellite instability (MIN), which reflects genetic defects in the DNA MMR system, was detected only in the HCT116 parental cell line and its drug-selected counterparts, due to a known mutation in the hMLH1 gene. No acquired MIN was observed in the other cisplatin-selected sublines derived from the HT29, HCT15, Caco2, SW480 or SW620 parental cells. In the same way, Western blot analysis showed that expression of the DNA MMR proteins hMLH1, hPMS1, hPMS2, hMSH2 and hMSH6 did not differ between the parental and the drug-surviving cells. CONCLUSIONS: These results indicate that high-level resistance of human colon cancer cells to high doses of cisplatin and oxaliplatin does not seem to be related to acquired defects in the DNA MMR proteins.  相似文献   

2.
3.
PURPOSE: The molecular mechanisms by which aspirin and other nonsteroidal anti-inflammatory drugs exert chemopreventative effects in colon cancer are unclear and complex. Current investigations focus on the chemopreventive properties of nonsteroidal anti-inflammatory drugs, independent of their ability to inhibit cyclooxygenase (COX) activity, and presumably, identification of non-COX pathways will suggest new targets for clinical use. It was demonstrated recently that aspirin results in reduced microsatellite instability in colorectal cancer cells. We hypothesized that aspirin treatment might alter expression of DNA mismatch repair (MMR) proteins, representing another potential non-COX mechanism for its action. EXPERIMENTAL DESIGN: In this study, we have examined the effects of aspirin on the cellular growth rates, MMR protein levels, cell cycle analysis and apoptosis in MMR-deficient (HCT116) and MMR-proficient (HCT116+chr3 and SW480) human colon cancer cell lines. RESULTS: We found that treatment with aspirin inhibited the growth of these three cancer cell lines. In HCT116+chr3 cells, treatment with 1 mM of aspirin increased expression of the hMLH1 and hPMS2 proteins by 2.5-fold and 2-fold, respectively, and increased expression of the hMSH2 and hMSH6 proteins by 2-3-fold. For SW480 cells, treatment with 1 and 5 mM of aspirin increased expression of the hMLH1 and hPMS2 proteins by 2-4-fold and 3-5-fold, respectively, and increased expression of the hMSH2 and hMSH6 proteins by 3-7-fold. For all three of the cell lines, treatment with 1 and 2.5 mM of aspirin induced apoptosis at 48 and 72 h. Aspirin induced G(0)/G(1) cell cycle arrest in HCT116 cells. CONCLUSIONS: We conclude that aspirin acts through COX-independent mechanisms by resulting in an increase in MMR protein expression and subsequent apoptosis, which might serve as an additional means of growth inhibition in aspirin-treated human colon cancer cells.  相似文献   

4.
E Oki  S Oda  Y Maehara  K Sugimachi 《Oncogene》1999,18(12):2143-2147
Mutations in DNA mismatch repair (MMR) genes in hereditary non-polyposis colon cancer (HNPCC) patients revealed the importance of MMR deficiency as a risk for carcinogenesis. Since diverse mutations occur in several MMR genes, the instability of repeat sequences dispersed in the genome, which are also governed by the MMR system, is a well used marker. However, the relationship between repeat sequence instability and MMR gene mutation in human cells has not been well defined mainly because precise systems to analyse repeat sequences have not been available. Using our newly developed system, we analysed alteration of dinucleotide repeats in human cell lines which harbour mutations in MMR genes. Among 24 subclones of DLD-1 cells (hMSH6-) only one had a dinucleotide repeat alteration in only one microsatellite locus, while LoVo cells (hMSH2-/hMSH6-) exhibited marked dinucleotide repeat instability (DRI). HCT116 cells, a hMLH1-mutant, showed an ultimate DRI phenotype. Interestingly, SW48 cells lacking hMLH1 expression also demonstrated DRI, albeit the extent of diversity being significantly lower than HCT116. These data suggest that the DRI phenotype in human cells is highly dependent on mutated MMR genes and on forms of mutation. The results of DRI analyses used to detect MMR-deficiency should be interpreted with caution.  相似文献   

5.
6.
7.
Previously we showed that a mismatch repair (MMR)-deficient cell line, HCT116 (hMLH1 mut), unlike a MMR wild-type cell line, SW480, was more resistant to the therapeutic methylating agent, temozolomide (TMZ), because the MMR complex fails to recognize TMZ-induced O6-methylguanine DNA adduct mispairings with thymine that arise after replication. TMZ also produces N7-methylguanine and N3-methyladenine adducts that are processed efficiently by the base excision repair (BER) system. After removal of the methylated base by methylpurine glycosylase, which creates the abasic or apurinic-apyrimidinic (AP) site, the phosphodiester bond is hydrolyzed immediately by AP endonuclease, initiating the repair of the AP site. Methoxyamine (MX) reacts with the abasic site and prevents AP endonuclease cleavage, disrupting DNA repair. MX potentiated the cytotoxic effect of TMZ with a dose modification factor (DMF) of 2.3+/-0.12 in SW480 and 3.1+/-0.16 in HCT116. When combined with O6-benzylguanine (BG), MX and TMZ dramatically increased TMZ cytotoxicity (65.8-fold) in SW480, whereas no additive effect was seen in HCT116. This suggests that N7-methylguanine and N3-methyladenine adducts are cytotoxic lesions in MMR-deficient and wild-type cells when BER is interrupted. Because poly(ADP-ribose) polymerase (PARP) aids in processing of DNA strand breaks induced during MMR and BER, we asked whether PARP inhibitors would also affect BER-mediated cell killing. We found that PARP inhibitors PD128763, 3-aminobenzimide, and 6-aminonicotinamide increased the sensitivity to TMZ in both HCT116 MMR-deficient cells and SW480 MMR wild-type cells. In HCT116 cells, PD128763 remarkably decreased resistance to TMZ, with a DMF of 4.7+/-0.2. However, the combination of PD128763, BG, and TMZ had no greater effect, indicating that persistent O6-methylguanine had no effect on cytotoxicity. In SW480, the DMF for TMZ cytotoxicity was 3.1+/-0.12 with addition of PD128763 and 36 with addition of PD128763 and BG. Synergy analysis by median effect plots indicated a high degree of synergy between TMZ and MX or PD128763. In contrast, 1,3-bis(2-chloroethyl)-1-nitrosourea combined with either MX or PD128763 showed little if any potentiation observed in the absence of BG in either cell line, suggesting that BER pathway has little impact on cytotoxic processing of 1,3-bis(2-chloroethyl)-1-nitrosourea-induced adducts. These studies indicate that targeting BER with MX or PARP inhibitors enhances the cytotoxicity of methylating agents, even in MMR-deficient cells.  相似文献   

8.
Patients who develop tumors with Lynch syndrome, which is caused by mutational inactivation of the DNA mismatch repair (MMR) system, have a relatively favorable prognosis compared to patients who develop sporadic tumors. Paradoxically, DNA MMR-deficient cells are resistant to many chemotherapeutic agents, and are capable of bypassing the G2/M checkpoint in vitro. Colon cancers that develop in the setting of Lynch syndrome show an abundant recruitment of immune cells into tumor tissues, which might be expected to increase oxyradical formation, and make the tumor cells more vulnerable to cell death. We examined the chemosensitivity and cell cycle response to oxidative stress in several MMR-deficient (HCT116, SW48, and DLD1) and -proficient (CaCo2, SW480, and HT29) colorectal cancer cell lines. H(2)O(2) induced a G2/M cell cycle arrest in both MMR deficient and proficient cell lines, however MMR-deficient cell lines were more sensitive to H(2)O(2) toxicity, and the response was more prolonged in MMR-deficient cells. Interestingly, human MutL-homologue (hMLH1-)defective HCT116 and hMLH1-restored HCT116+ch3 cell lines responded to H(2)O(2) with the same degree of G2/M arrest. The survival response of HCT116+ch3 was nearly identical to that of hMLH1-defective HCT116+ch2, although better than the response observed in HCT116 cells. In conclusion, greater cellular sensitivity and G2/M arrest in response to oxidative stress in MMR-deficient colorectal cancer cells could be one of the reasons for the more favorable prognosis seen in patients with Lynch syndrome. However, this sensitivity appears not to be a direct result of a deficient MMR function, but is more likely attributable to spectrum of target gene mutations that occurs in MMR-deficient tumors.  相似文献   

9.
Base excision repair (BER) is a fundamental cellular process used to reduce the cytotoxicity of alkylating agent chemotherapy. Heretofore, no therapeutic agents have targeted this DNA repair pathway. Methoxyamine (MX), which binds abasic sites, acting as an inhibitor of BER, was evaluated in combination with the methylating agent temozolomide (TMZ). Three human colon cancer cell lines were used, SW480 cells, which are wild-type for mismatch repair genes and have mutated p53, HCT116 cells, which are mutant in hMLH1 and wild-type for p53, and HCT15 cells, which are mutant in hMSH6 and mutant in p53 as well. Nude mice carrying these tumors received TMZ alone or in combination with MX or O(6)-benzylguanine (BG), an inhibitor of O(6)-alkylguanine DNA-alkyltransferase, daily i.p. for 5 consecutive days. At the highest tolerable dose of TMZ (120 mg/kg), a tumor growth delay of approximately 9.3 +/- 1.2 days was noted in SW480. Addition of BG resulted in a tumor growth delay of 25 +/- 2.4 days accompanied by significant weight loss (23%) and severe myelosuppression. In contrast, SW480 tumor-bearing mice treated with MX + TMZ had cessation of tumor growth for 50 +/- 13 days and very slow regrowth, yielding tumor growth delays of >70 +/- 14 days (P < 0.002) without additive systemic toxicity. HCT116 and HCT15 xenografts were completely resistant to treatment with TMZ alone or in combination with BG. However, treatment with MX + TMZ induced significant tumor growth delays (20 +/- 1.4 days in HCT116 and 14 +/- 3.1 days in HCT15 xenografts, P < 0.05). These studies demonstrate that a significant enhancement of the antitumor effect of TMZ by MX was observed in human colon cancer xenografts with mismatch repair proficiency and deficiency. DNA BER may be a useful pharmacological target through which tumor cells can be sensitized to alkylating therapeutic agents.  相似文献   

10.
Liu L  Schwartz S  Davis BM  Gerson SL 《Cancer research》2002,62(11):3070-3076
The ability of O(6)-benzylguanine (BG) to inactivate alkyltransferase (AGT) to potentiate the antitumor efficacy of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is being tested in clinical trials. As of now, there are no examples of acquired resistance to BG+BCNU in the clinical setting. However, we hypothesized that genetically unstable tumors might develop resistance to the combination after repeated drug-exposures to achieve therapeutic efficacy. To evaluate this possibility, we treated three colon cancer cell lines that are either proficient in mismatch repair (MMR) [SW480 (MMR wild type)] or deficient in MMR [HCT116 (hMLH1 mutant) and HCT15 (hMSH6 mutant)] with three cycles of BG+BCNU. After drug-treatments, HCT116 and HCT15 were completely resistant to BG-potentiated cytotoxicity of BCNU. In these two cell lines, the acquired BG resistance resulted from two de novo and different mutations at amino acid 165 in AGT: 165-lysine (K) to glutamic acid (E) (K165E in HCT116), and 165-lysine to asparagine (N) (K165N in HCT15). Both K165-mutated AGTs had markedly decreased enzymatic activity because of unstable AGT protein but were remarkably resistant to BG inactivation. FISH analysis showed that only one copy of MGMT gene exists in HCT116 cells, and the status of promoter methylation of MGMT in HCT15 showed that one allele of the MGMT promoter has an aberrant methylation. Thus, the MGMT gene expressing AGT either from one copy (HCT116) or from unmethylated allele (HCT15) was mutated because of the exposure to BG+BCNU in these two MMR-deficient cell lines. Conversely, MMR-proficient SW480 cells, treated with three cycles of BG+BCNU, maintained wt AGT and the sensitivity to BG-potentiated BCNU-cytotoxicity. To confirm that K165-mutated AGT proteins were responsible for resistance to BG+BCNU, we transfected K165E and K165N MGMT cDNAs into Chinese hampster ovary (CHO) cells. Transfected CHO cells had low AGT activity but increased IC(50) for either BCNU or temozolomide (TMZ), compared with parental CHO cells. BG did not potentiate the cytotoxicity of these two alkylating agents at concentrations up to 200 microM; in contrast, BG, at 25 microM, sensitized CHO-AGT (transfected with wt MGMT cDNA) cells to BCNU or TMZ-cytotoxicity by 3-4 fold. These results suggest that K165 AGT mutants arising in MMR-deficient tumor cells after treatment with chemotherapeutic agents are both resistant to BG-inactivation and are active in the repair of alkylated DNA adducts.  相似文献   

11.
We have reported that transfer of chromosome 3 (Chr3) containing a single wild-type copy of the hMLH1 gene into HCT116 colon cancer cells, a cell line deficient in DNA mismatch repair (MMR) activity attributable to inactivating hMLH1 mutations, corrects all of the aspects of the MMR repair-deficient phenotype. We inhibited the expression of the wild-type hMLH1 gene using antisense RNA in HCT116+Chr3 cells to determine if this would result in reversion to the MMR-deficient phenotype. Despite profound inhibition of hMLH1 expression, DNA MMR activity and alkylation sensitivity were not impaired in the antisense-transfected HCT116+Chr3 cells. Additionally, arrest of the cell cycle at the G2 phase with alkylation damage occurs in these cells, a phenotype associated with MMR proficiency. These results indicate that even with a reduction in the expression of hMLH1 protein below the limits of detection by Western blotting, DNA MMR activity remained fully functional (by direct DNA MMR activity assay). We would speculate that hMLH1 is expressed in substantially greater abundance than would be minimally necessary for DNA MMR and that minor reductions in the expression of this protein would not be sufficient to permit DNA MMR dysfunction. Alternatively, Chr3 may contain a second hMLH1 homologue that might overlap with the function of hMLH1.  相似文献   

12.
Loss of DNA mismatch repair (MMR) occurs in 10-15% of sporadic colorectal cancer, is usually caused by hMLH1 hypermethylation, and has been shown to confer resistance to various chemotherapeutic reagents, including 5-fluorouracil (5-FU). We tested the hypothesis that demethylation of the hMLH1 promoter in hypermethylated colorectal cancer cells would restore MMR proficiency and drug sensitivity to 5-FU. We used the MMR-deficient cell lines SW48, HCT116, HCT116+chr2 and the -proficient cell line HCT116+chr3. After treatment with the demethylating agent 5-Aza-2'-deoxycytidine (5 aza-dC), hMLH1 mRNA and protein expression were determined by RT-PCR and immunoblots. The methylation status for hMLH1 was investigated by methylation-specific PCR. Cells were subsequently treated with 5-FU and the growth characteristics ascertained by clonogenic assays. hMLH1 hypermethylation was reverted in SW48 cells 24 hr after treatment with 5 aza-dC and was accompanied by hMLH1 mRNA and protein reexpression. While 5 aza-dC alone did not affect the growth of SW48 cells, all other cell lines responded with a pronounced growth inhibition. 5-FU treatment strongly reduced the colony formation of HCT116+chr3 cells. These effects were significantly less in the MMR-deficient cells. Combined treatment of SW48 cells resulted in a similar growth pattern as seen in 5-FU only treated HCT116+chr3 cells. We demonstrate that in vitro resistance to 5-FU can be overcome by reexpression of hMLH1 protein through 5 aza-dC-induced demethylation in hypermethylated cell lines. Induction of the expression of methylated tumor suppressor or MMR genes could have a significant impact on the development of future chemotherapy strategies.  相似文献   

13.
Deficiency in DNA mismatch repair (MMR) is found in some hereditary (hereditary nonpolyposis colorectal cancer) and sporadic colon cancers as well as other common solid cancers. MMR deficiency has recently been shown to impart cellular resistance to multiple chemical agents, many of which are commonly used in cancer chemotherapy. It is therefore of interest to find an approach that selectively targets cells that have lost the ability to perform MMR. In this study, we examine the response of MMR-proficient (hMLH1+) and MMR-deficient (hMLH1-) colon carcinoma cell lines to the halogenated thymidine (dThd) analogues iododeoxyuridine (IdUrd) and bromodeoxyuridine (BrdUrd) before and after irradiation. These dThd analogues are used clinically as experimental sensitizing agents in radioresistant human cancers, and there is a direct correlation between the levels of dThd analogue DNA incorporation and tumor radiosensitization. In contrast to the well-characterized, marked increase in cytotoxicity (> 1 log cell kill) found with 6-thioguanine exposures in HCT116/3-6 (hMLH1+) cells compared to HCT116 (hMLH1-) cells, we found only modest cytotoxicity (10-20% cell kill) in both cell lines when treated with IdUrd or BrdUrd for 1 population doubling. Upon further analysis, the levels of halogenated dThd analogues in DNA were significantly lower (two to three times lower) in HCT116/3-6 cells than in HCT116 cells, and similar results were found in Mlh1+/+ spontaneously immortalized murine embryonic fibroblasts and fibroblasts from Mlh1 knockout mice. As a result of the higher levels of the dThd analogue in DNA, there was an increase in radiation sensitivity in HCT116 cells but not in HCT116/3-6 cells after pretreatment with IdUrd or BrdUrd when compared to treatment with radiation alone. Additionally, we found no differences in the cellular metabolic pathways for dThd analogue DNA incorporation because the enzyme activities of dThd kinase and thymidylate synthase, as well as the levels of triphosphate pools, were similar in HCT116 and HCT116/3-6 cells. These data suggest that the hMLH1 protein may participate in the recognition and subsequent removal of halogenated dThd analogues from DNA. Consequently, whereas MMR-deficient cells and tumor xenografts have shown intrinsic resistance to a large number of chemotherapeutic agents, the 5-halogenated dThd analogues appear to selectively target such cells for potential enhanced radiation sensitivity.  相似文献   

14.
We studied the cytotoxic effects of various DNA replication inhibitors on MMR-deficient and -proficient colon carcinoma cell lines. DNA polymerase (pol) inhibitors including aphidicolin and gemcitabine, and hydroxyurea were more toxic (1.7 to 2.8-fold) to hMLH1-deficient HCT116 than to hMLH1-proficient HCT116+ch3. Similarly, pol inhibitors were more toxic to hMSH2-deficient LoVo than to hMSH2-proficient LoVo+ch2. In contrast, DNA topoisomerase I inhibitors, such as CPT-11, SN-38, and topotecan, were more toxic to MMR-proficient cells. Our results suggest that MMR-deficient colon carcinoma cells are hypersensitive to inhibitors of the pol reaction.  相似文献   

15.
Mutations in the human mismatch repair (MMR) genes are associated with hereditary non-polyposis colorectal cancer as well as other sporadic cancers. MMR gene mutations have been implicated in the resistance of human tumours to cisplatin and several tumour-derived MMR-deficient cells show cisplatin resistance in vitro. In addition, hypoxia, a common feature of the tumour microenvironment, has been shown to influence tumour responses to conventional cancer treatments. We have examined the role of the mMSH2 MMR protein on repair of cisplatin-damaged DNA and cisplatin sensitivity in mMSH2-deficient murine fibroblasts and mMSH2-proficient controls under conditions of normoxia and hypoxia. Sensitivity to cisplatin was measured using the MTT assay and clonogenic survival. Repair of cisplatin-damaged DNA was measured using a host cell reactivation (HCR) assay employing a non-replicating recombinant virus expressing the β-galactosidase reporter gene. Sensitivity to cisplatin was significantly less and HCR of the cisplatin-damaged reporter gene was significantly greater in SV40-transformed mMSH2-deficient cells (MS5-7) compared to mMSH2-proficient controls (BC1-6) under both normoxic and hypoxic conditions. In contrast, sensitivity to cisplatin was significantly greater and HCR was similar in primary mMSH2-deficient compared to mMSH2-proficient murine fibroblasts under both normoxic and hypoxic conditions. Sensitivity to cisplatin was also significantly greater and HCR was similar in primary mMSH2-deficient compared to mMSH2-proficient murine fibroblasts transfected with a control plasmid under both normoxic and hypoxic conditions. In contrast, sensitivity to cisplatin was less and HCR was similar in primary mMSH2-deficient compared to mMSH2-proficient murine fibroblasts transfected with a plasmid expressing SV40 large T antigen under both normoxic and hypoxic conditions. These results suggest that loss of MMR alone does not result in increased resistance to cisplatin in murine fibroblasts and that additional concomitant alterations in cells expressing the SV40 large T antigen are responsible for cisplatin resistance through a modulation of DNA repair capacity and/or apoptosis.  相似文献   

16.
17.
PURPOSE: 5-iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a pyrimidinone nucleoside prodrug of 5-iododeoxyuridine (IUdR) under investigation as an orally administered radiosensitizer. We previously reported that the mismatch repair (MMR) proteins (both hMSH2 and hMLH1) impact on the extent (percentage) of IUdR-DNA incorporation and subsequent in vitro IUdR-mediated radiosensitization in human tumor cell lines. In this study, we used oral IPdR to assess in vivo radiosensitization in MMR-proficient (MMR+) and -deficient (MMR-) human colon cancer xenografts. EXPERIMENTAL DESIGN: We tested whether oral IPdR treatment (1 g/kg/d for 14 days) can result in differential IUdR incorporation in tumor cell DNA and subsequent radiosensitization after a short course (every day for 4 days) of fractionated radiation therapy, by using athymic nude mice with an isogenic pair of human colon cancer xenografts, HCT116 (MMR-, hMLH1-) and HCT116/3-6 (MMR+, hMLH1+). A tumor regrowth assay was used to assess radiosensitization. Systemic toxicity was assessed by daily body weights and by percentage of IUdR-DNA incorporation in normal bone marrow and intestine. RESULTS: After a 14-day once-daily IPdR treatment by gastric gavage, significantly higher IUdR-DNA incorporation was found in HCT116 (MMR-) tumor xenografts compared with HCT116/3-6 (MMR+) tumor xenografts. Using a tumor regrowth assay after the 14-day drug treatment and a 4-day radiation therapy course (days 11-14 of IPdR), we found substantial radiosensitization in both HCT116 and HCT116/3-6 tumor xenografts. However, the sensitizer enhancement ratio (SER) was substantially higher in HCT116 (MMR-) tumor xenografts (1.48 at 2 Gy per fraction, 1.41 at 4 Gy per fraction), compared with HCT116/3-6 (MMR+) tumor xenografts (1.21 at 2 Gy per fraction, 1.20 at 4 Gy per fraction). No substantial systemic toxicity was found in the treatment groups. CONCLUSIONS: These results suggest that IPdR-mediated radiosensitization can be an effective in vivo approach to treat "drug-resistant" MMR-deficient tumors as well as MMR-proficient tumors.  相似文献   

18.
In addition to recognizing and repairing mismatched bases in DNA, the mismatch repair (MMR) system also detects cisplatin DNA adducts and loss of MMR results in resistance to cisplatin. A comparison was made of the ability of MMR-proficient and -deficient cells to remove cisplatin adducts from their genome and to reactivate a transiently transfected plasmid that had previously been inactivated by cisplatin to express the firefly luciferase enzyme. MMR deficiency due to loss of hMLH1 function did not change the extent of platinum (Pt) accumulation or kinetics of removal from total cellular DNA. However, MMR-deficient cells, lacking either hMLH1 or hMSH2, generated twofold more luciferase activity from a cisplatin-damaged reporter plasmid than their MMR-proficient counterparts. Thus, detection of the cisplatin adducts by the MMR system reduced the efficiency of reactivation of the damaged luciferase gene compared to cells lacking this detector. The twofold reduction in reactivation efficiency was of the same order of magnitude as the difference in cisplatin sensitivity between the MMR-proficient and -deficient cells. We conclude that although MMR-proficient and -deficient cells remove Pt from their genome at equal rates, the loss of a functional MMR system facilitates the reactivation of a cisplatin-damaged reporter gene.  相似文献   

19.
DNA mismatch repair (MMR) mechanism contributes to the maintenance of genomic stability. Loss of MMR function predisposes to a mutator cell phenotype, microsatellite instability (MSI) and cancer, especially hereditary non-polyposis colorectal cancer (HNPCC). To date, five MMR genes, hMSH2, hMSH6, hMLH1, hPMS2, and hMLH3 are associated with HNPCC. Although, hMLH3 is suggested to be causative in HNPCC, its relevance to MMR needs to be confirmed to reliably assess significance of the inherited sequence variations in it. Recently, a human heterodimer hMLH1/hMLH3 (hMutLgamma) was shown to be able to assist hMLH1/hPMS2 (hMutLalpha) in the repair of mismatches in vitro. To repair mismatches in vivo, hMLH3 ought to localize in the nucleus. Our immunofluorescence analyses indicated that when all the three MutL homologues are natively expressed in human cells, endogenous hMLH1 and hPMS2 localize in the nucleus, whereas hMLH3 stays in the cytoplasm. Absence of hPMS2 and co-expression of hMLH3 with hMLH1 results in its partial nuclear localization. Our results are clinically relevant since they show that in the nuclear localization hMLH3 is dependent on hMLH1 and competitive with hPMS2. The continuous nuclear localization of hMLH1 and hPMS2 suggests that in vivo, hPMS2 (hMutLalpha) has a major activity in MMR. In absence of hPMS2, hMLH3 (hMutLgamma) is located in the nucleus, suggesting a conditional activity in MMR and supporting its role as a low-risk gene in HNPCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号