首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to identify the hepatic cytochromes P450 (CYPs) responsible for the enantioselective metabolism of ifosfamide (IFA). The 4-hydroxylation, N2- and N3-dechloroethylation of IFA enantiomers were monitored simultaneously in the same metabolic systems using GC/MS and pseudoracemate techniques. In human and rat liver microsomes, (R)-IFA was preferentially metabolized via 4-hydroxylation, whereas its antipode was biotransformed in favour of N-dechloroethylation. CYP3A4 was the major enzyme responsible for metabolism of IFA enantiomers in human liver. The study also revealed that CYP3A (human CYP3A4/5 and rat CYP3A1/2) and CYP2B (human CYP2B6 and rat CYP2B1/2) enantioselectively mediated the 4-hydroxylation, N2- and N3-dechloroethylation of IFA. CYP3A preferentially supported the formation of (R)-4-hydroxyIFA (HOIF), (R)-N2-dechloroethylIFA (N2D) and (R)-N3-dechloroethylIFA (N3D), whereas CYP2B preferentially mediated the generation of (S)-HOIF, (S)-N2D and (S)-N3D. The enantioselective metabolism of IFA by CYP3A4 and CYP2B1 was confirmed in cDNA transfected V79 cells.  相似文献   

2.
The aim was to identify the hepatic cytochromes P450 (CYPs) responsible for the enantioselective metabolism of ifosfamide (IFA). The 4-hydroxylation, N2- and N3-dechloroethylation of IFA enantiomers were monitored simultaneously in the same metabolic systems using GC/MS and pseudoracemate techniques. In human and rat liver microsomes, (R)-IFA was preferentially metabolized via 4-hydroxylation, whereas its antipode was biotransformed in favour of N-dechloroethylation. CYP3A4 was the major enzyme responsible for metabolism of IFA enantiomers in human liver. The study also revealed that CYP3A (human CYP3A4/5 and rat CYP3A1/2) and CYP2B (human CYP2B6 and rat CYP2B1/2) enantioselectively mediated the 4-hydroxylation, N2- and N3-dechloroethylation of IFA. CYP3A preferentially supported the formation of (R)-4-hydroxyIFA (HOIF), (R)-N2-dechloroethylIFA (N2D) and (R)-N3-dechloroethylIFA (N3D), whereas CYP2B preferentially mediated the generation of (S)-HOIF, (S)-N2D and (S)-N3D. The enantioselective metabolism of IFA by CYP3A4 and CYP2B1 was confirmed in cDNA transfected V79 cells.  相似文献   

3.
Fifteen xanthates with carbon chains of different lengths or substitutions, including the antiviral compound D609 (O-tricyclo[5.2. 1.0(2,6)]dec-9-yl-dithiocarbonate), were tested for their ability to inactivate cytochromes P-450 (P-450s) 2B1 and 2B6. All of the xanthates tested were found to inactivate P-450 2B1 in a time- and concentration-dependent manner. The rates of inactivation at 30 degrees C ranged from 0.22 min-1 to 0.02 min-1. The concentrations required for half-maximal inactivation were between 2.4 and 69 microM. A general trend in the inactivation kinetics could be observed with an increasing chain length of the xanthates. Longer carbon chains resulted in slower rates of inactivation with longer half-times of inactivation and higher partition ratios. For P-450 2B1, the most effective inactivators were xanthates with substitutions of intermediate length. The best inactivator for P-450 2B1 was the C8 xanthate, with an inactivation potency (KI) of 2.4 microM, a rate of inactivation of 0.07 min-1, and a partition ratio of 4. Four xanthates were further examined for their effect on the 7-ethoxy-4-(trifluoromethyl)coumarin activity of P-450 2B6. The C8 xanthate was again the most effective inactivator, with a KI of 1 microM. Although the KI values were generally lower than those found with P-450 2B1, the rates of inactivation for P-450 2B6 with the various xanthates were 3- to 5-fold slower. In addition, the isozyme selectivity of xanthates was tested with P-450s 2E1, 1A1, 3A2, 3A4, 2C9, and 2D6. P-450 2E1 was inactivated by xanthates at concentrations 15- to 100-fold higher than those required to inactivate either P-450 2B1 or 2B6. P-450 1A1 was not inactivated by xanthates. However, all of the xanthates tested were able to inhibit the enzymatic activity of P-450 1A1 to a different extent, depending on the length of the xanthate carbon chain. Virtually no inactivation of P-450s 2D6 or 2C9 was seen, except that C8 and D609 were inhibitory at high concentrations (0.2-0.6 mM). None of the xanthates studied had any effect on the activities of P-450s 3A2 or 3A4.  相似文献   

4.
Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism.   总被引:3,自引:0,他引:3  
Zopiclone is a widely prescribed, nonbenzodiazepine hypnotic that is extensively metabolized by the liver in humans. The aim of the present study was to identify the human cytochrome P-450 (CYP) isoforms involved in zopiclone metabolism in vitro. Zopiclone metabolism was studied with different human liver microsomes and a panel of heterologously expressed human CYPs (CYP1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4). In human liver microsomes, zopiclone was metabolized into N-desmethyl-zopiclone (ND-Z) and N-oxide-zopiclone (NO-Z) with the following K(m) and V(m) of 78 +/- 5 and 84 +/- 19 microM, 45 +/- 1 and 54 +/- 5 pmol/min/mg for ND-Z and NO-Z generation, respectively. Ketoconazole (CYP3A inhibitor) inhibited approximately 40% of the generation of both metabolites, sulfaphenazole (CYP2C inhibitor) inhibited the formation of ND-Z, whereas alpha-naphtoflavone (CYP1A), quinidine (CYP2D6), and chlorzoxazone (CYP2E1) did not affect zopiclone metabolism. The generation of ND-Z and NO-Z were highly correlated to testosterone 6beta-hydroxylation (CYP3A activity, r = 0.95 and 0.92, respectively; p =.0001), and ND-Z was highly correlated to CYP2C8 activity (paclitaxel 6alpha-hydroxylase; r = 0.76, p =.004). Recombinant CYP2C8 had the highest enzymatic activity toward zopiclone metabolism into both its metabolites, followed by CYP2C9 and 3A4. CYP3A4 is the major enzyme involved in zopiclone metabolism in vitro, and CYP2C8 contributes significantly to ND-Z formation.  相似文献   

5.
The ability of human liver microsomal preparations (HLM1, 2, 3, and 5), microsomes from human lymphoblasts expressing different cytochrome P-450 (CYP450) isoforms, and CYP3A4 cDNA-transfected V79 Chinese hamster cells to metabolize territrem A (TRA) was studied. The only metabolite generated by any of these preparations was 6beta-hydroxymethyl-6beta-demethylterritrem A (MA(1)). MA(1) formation was observed with all four human liver microsomal samples. Of the eight microsomal preparations from human lymphoblasts expressing different cytochrome P-450 enzymes (1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4) examined, only those expressing CYP2C9, CYP2D6, or CYP3A4 metabolized TRA, with that expressing CYP3A4 being the most active. No TRA metabolites were formed by control V79MZ cells, but MA(1) was formed by CYP3A4 cDNA-transfected V79 Chinese hamster cells. In order to investigate which CYP450 isoforms were involved in MA(1) formation in the human liver microsomal preparations, the effects of six isoform-specific chemical inhibitors (furafylline, sulfaphenazole, omeprazole, quinidine, ketaconazole, and diethyldithiocarbamate) and anti-3A4, anti-2C9, and anti-2D6 antibodies on TRA metabolism by HLM2 and HLM5 were examined. MA(1) formation was markedly inhibited by ketaconazole, with quinidine and sulfaphenazole having less of an effect. Anti-CYP3A4 antibody markedly inhibited MA(1) formation, while antibodies against CYP2C9 or CYP2D6 had little effect. The amount of MA(1) formed using different HLM preparations was related to the 6beta-testosterone hydroxylase activity and CYP3A4 protein content of the preparations. These results suggest that CYP3A4 is the major enzyme involved in TRA metabolism by human liver microsomes, with CYP2C9 and CYP2D6 playing a minor role.  相似文献   

6.
Previous studies have shown that the structurally related oral anticoagulants warfarin and phenprocoumon are regioselectively hydroxylated in the 6- and 8-positions by hepatic microsomes obtained from 3-methylcholanthrene (3-MC) or beta-naphthoflavone (BNF) pretreated rats. Stereoselectivity for hydroxylation is also observed and favors (R)-warfarin but (S)-phenprocoumon. The possibility that the stereoselectivity of warfarin hydroxylation is a function of the solution conformation of the drug was tested with conformationally restricted analogues. In these experiments the analogues were incubated with microsomes obtained from BNF-pretreated rats and any stereoselectivity associated with 6- and 8-hydroxylation was determined. The R enantiomer of cyclocoumarol, the cyclic ketal analogue of warfarin, was found to be selectively hydroxylated, in contrast to the S enantiomer of warfarin 4-methyl ether, the ring-opened analogue. The latter compound is known to have a preferred solution conformation similar to that of phenprocoumon. The results suggest that at the active site of BNF-induced cytochrome P-450 (R)-warfarin is metabolized in its cyclic hemiketal tautomer, a form which spatially mimics the preferred solution conformation of (S)-phenprocoumon.  相似文献   

7.
Troglitazone, a new oral antidiabetic drug, is reported to be mostly metabolized to its conjugates and not to be oxidized by cytochrome P-450 (P-450) enzymes. Of fourteen cDNA-expressed human P-450 enzymes examined, CYP1A1, CYP2C8, CYP2C19, and CYP3A4 were active in catalyzing formation of a quinone-type metabolite at a concentration of 10 microM troglitazone, whereas CYP3A4 had the highest catalytic activity at 100 microM substrate. In human liver microsomes, rates of the quinone-type metabolite formation (at 100 microM) were correlated well with rates of testosterone 6beta-hydroxylation (r = 0.98), but those at 10 microM troglitazone were not correlated with any of several marker activities of P-450 enzymes. Quercetin efficiently inhibited quinone-type metabolite formation (at 10 microM troglitazone) in human samples that contained relatively high levels of CYP2C, whereas ketoconazole affected these activities in liver microsomes in which CYP3A4 levels were relatively high. Anti-CYP2C antibodies strongly inhibited quinone-type metabolite formation (at 10 microM troglitazone) in CYP2C-rich human liver microsomes (by approximately 85%); the intensity of this effect depended on the human samples and their P-450 status. The results suggest that in human liver both CYP2C8 and CYP3A4 have major roles in quinone-type metabolite formation and that the hepatic contents of these two P-450 forms determine which P-450 enzymes play major roles in individual humans. CYP3A4 may be expected to play a role in formation of quinone-type metabolite from troglitazone even at a low concentration in humans.  相似文献   

8.
Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes.   总被引:12,自引:0,他引:12  
This study demonstrates the stereoselective metabolism of the optical isomers of omeprazole in human liver microsomes. The intrinsic clearance (CL(int)) of the formation of the hydroxy metabolite from S-omeprazole was 10-fold lower than that from R-omeprazole. However, the CL(int) value for the sulfone and 5-O-desmethyl metabolites from S-omeprazole was higher than that from R-omeprazole. The sum of the CL(int) of the formation of all three metabolites was 14.6 and 42.5 microl/min/mg protein for S- and R-omeprazole, respectively. This indicates that S-omeprazole is cleared more slowly than R-omeprazole in vivo. The stereoselective metabolism of the optical isomers is mediated primarily by cytochrome P450 (CYP) 2C19, as indicated by studies using cDNA-expressed enzymes. This is the result of a considerably higher CL(int) of the 5-hydroxy metabolite formation for R- than for S-omeprazole. For S-omeprazole, CYP2C19 is more important for 5-O-desmethyl formation than for 5-hydroxylation. Predictions of the CL(int) using data from cDNA-expressed enzymes suggest that CYP2C19 is responsible for 40 and 87% of the total CL(int) of S- and R-omeprazole, respectively, in human liver microsomes. According to experiments using cDNA-expressed enzymes, the sulfoxidation of both optical isomers is metabolized by a single isoform, CYP3A4. The CL(int) of the sulfone formation by CYP3A4 is 10-fold higher for S-omeprazole than for R-omeprazole, which may contribute to their stereoselective disposition. The results of this study show that both CYP2C19 and CYP3A4 exhibit a stereoselective metabolism of omeprazole. CYP2C19 favors 5-hydroxylation of the pyridine group of R-omeprazole, whereas the same enzyme mainly 5-O-demethylates S-omeprazole in the benzimidazole group. Sulfoxidation mediated by CYP3A4 highly favors the S-form.  相似文献   

9.
Monospecific antipeptide antibody to cytochrome P-450 2B6.   总被引:4,自引:0,他引:4  
To study cytochrome P-450 (CYP) 2B6 contribution to methoxychlor metabolism within human liver microsomes and to initiate an investigation of CYP2B6 protein expression, we developed a polyclonal antibody targeted to a 20-residue peptide within that protein. The antibody was found to be highly sensitive and monospecific for CYP2B6 on immunoblots. Although many immunological studies have described the absence or low expression of CYP2B6 in human livers, in the present investigation, we have found this not to be the case. We immunoquantified CYP2B6 apoprotein expression in a panel of 28 livers and found concentrations ranging from 2 to 82 pmol/mg protein, with a mean value of 25 pmol/mg protein. Five livers ( approximately 18%) displayed relatively high levels of CYP2B6 (>40 pmol/mg protein). There were no sex-related differences, although the highest level was observed in a 1-week postpartum donor given several medications. A marked diminution in variability was found in individuals aged 56 or older (n = 12), but there were no age-related trends in mean CYP2B6 content. We suggest that CYP2B6 represents a significant portion of total CYP in human liver. The exquisite sensitivity of this antibody (fmol quantities are detected easily on immunoblots) may explain our detection of CYP2B6 in 100% of livers versus its detection in a limited number of livers by certain other investigators. The antibody also was found to immunoinhibit CYP2B6-catalyzed N-demethylation of (S)-mephenytoin in human liver microsomes by 68 to 79%. The utility of this antibody for determining human liver microsomal CYP2B6 contribution to the ortho-hydroxylation of methoxychlor was demonstrated.  相似文献   

10.
Single-dose methoxsalen effects on human cytochrome P-450 2A6 activity.   总被引:4,自引:0,他引:4  
Methoxsalen (8-methoxypsoralen) is an effective and selective mechanism-based inhibitor of human hepatic cytochrome P-450 (CYP)2A6 in vitro, and may have utility as a clinical probe for CYP2A6-catalyzed xenobiotic metabolism in humans in vivo. This investigation explored single-dose oral methoxsalen effects on human CYP2A6 activity in vivo, assessed by coumarin 7-hydroxylation. Eleven volunteers received 50 mg of oral coumarin on two occasions in a randomized crossover, 90 min after oral methoxsalen or nothing (controls). Plasma and urine 7-hydroxycoumarin and plasma methoxsalen concentrations were determined by HPLC. Methoxsalen pretreatment diminished area under the curve of plasma 7-hydroxycoumarin versus time by 24% (2.40 +/- 0.48 versus 3.20 +/- 0.55 microg. h. ml(-1); P <.001), and also decreased plasma 7-hydroxycoumarin C(max) (0.80 +/- 0.26 versus 1.4 +/- 0.5 microg/ml; P <.05); however, 7-hydroxycoumarin concentrations were only diminished 0.75 to 2 h after coumarin administration, but not thereafter. Methoxsalen diminished urine 7-hydroxycoumarin excretion in 0- to 1- and 1- to 2-h samples, but not thereafter, and total excretion was unchanged. Considerable individual variability in methoxsalen plasma concentrations was observed. There were significant correlations between the decrease in plasma 7-hydroxycoumarin C(max) and plasma methoxsalen C(max), but not between the decrease in plasma 7-hydroxycoumarin area under the curve and methoxsalen disposition. These results show that single-dose oral methoxsalen, in conventional doses, was a moderately effective inhibitor of human CYP2A6 activity in vivo, however, the duration of inhibition was limited. Interindividual variability in the extent of CYP2A6 inhibition appeared attributable to variability in the absorption and first-pass clearance of methoxsalen. Alternative doses, timing, and/or routes of methoxsalen administration are required for greater, longer, and more reproducible CYP2A6 inhibition than that provided by single-dose methoxsalen.  相似文献   

11.
Halofantrine (HF) is used in the treatment of uncomplicated multidrug-resistant Plasmodium falciparum malaria. Severe cardiotoxicity has been reported to be correlated with high plasma concentrations of HF but not with that of its metabolite N-debutylhalofantrine. The aim of this study was to investigate the effects of other antimalarial drugs and of ketoconazole, a typical cytochrome P-450 3A4 inhibitor, on HF metabolism by human liver microsomes. Antimalarial drug inhibitory effects were ranked as follows: primaquine > proguanil > mefloquine > quinine > quinidine > artemether > amodiaquine. Artemisine, doxycycline, sulfadoxine, and pyrimethamine showed little or no inhibition of HF metabolism. Mefloquine, quinine, quinidine, and ketoconazole used at maximal plasma concentrations inhibited N-debutylhalofantrine formation noncompetitively with Ki values of 70 microM, 49 microM, 62 microM, and 0.05 microM resulting in 7%, 49%, 26%, and 99% inhibition, respectively, in HF metabolism. In conclusion, we showed that quinine and quinidine coadministered with HF might inhibit its metabolism resulting in the potentiation of HF-induced cardiotoxicity in patients. This requires a close monitoring of ECG. For the same reasons, the concomitant administration of HF and ketoconazole must be avoided. By contrast, none of the other antimalarials studied inhibited HF metabolism and, by extrapolation, cytochrome P-450 3A4 activity.  相似文献   

12.
The stereoselective metabolism of lansoprazole enantiomers was evaluated by incubation of human liver microsomes and cDNA-expressed cytochrome p450 (p450) enzymes to understand and predict their stereoselective disposition in humans in vivo. The intrinsic clearances (Clint) of the formation of both hydroxy and sulfone metabolites from S-lansoprazole were 4.9- and 2.4-fold higher than those from the R-form, respectively. The sums of formation Clint of both metabolites were 13.5 and 57.3 microl/min/mg protein for R- and S-lansoprazole, respectively, suggesting that S-lansoprazole would be cleared more rapidly than the R-form. The p450 isoform selective inhibition study in liver microsomes, and the incubation study of cDNA-expressed enzymes, demonstrated that the stereoselective sulfoxidation is mediated by CYP3A4 and that the hydroxylation is mediated by CYP2C9 and CYP3A4 as well as by CYP2C19. Total Clint values of hydroxy and sulfone metabolite formation catalyzed by all these p450 enzymes were consistently higher for S-lansoprazole than for the R-form. The CYP3A4 produced the greatest difference of Clint between S- and R-enantiomers, mainly due to a difference of sulfoxidation metabolism (Clint 76.5 versus 10.8 microl/min/nmol of p450, respectively), whereas CYP2C19-catalyzed hydroxylation resulted in a minor difference of Clint between S- and R-enantiomers (179.6 versus 143.3 microl/min/nmol of p450, respectively). However, the affinity of CYP2C19 on hydroxylation was 5.7-fold higher for S-enantiomer than for the R-form (Km 2.3 versus 13.1 microM), suggesting that the role of CYP2C19 on stereoselective hydroxylation would be more prominent at concentrations around the usual therapeutic level. These findings suggest that both CYP2C19 and CYP3A4 are major enzymes contributing to the stereoselective disposition of lansoprazole, but stereoselective hydroxylation of lansoprazole enantiomers is mainly influenced by CYP2C19, especially at the usual therapeutic doses.  相似文献   

13.
Isoform-selective metabolism of mianserin by cytochrome P-450 2D.   总被引:2,自引:0,他引:2  
The involvement of cytochrome P-450 (CYP) 2D isoforms in the metabolism of mianserin and the stereoselectivity of their catalytic activities were investigated by using five CYP2D isoforms (CYP2D1, 2D2, 2D3, 2D4, and 2D6). Using RS-mianserin as a substrate, we found that five CYP2D isoforms had similar levels of 8-hydroxylation activity. However, N-demethylation activity differed among the isoforms; CYP2D3 and 2D4 efficiently demethylated RS-mianserin compared with the other three isoforms. N-Oxidation activity was specific to CYP2D1 although its level was relatively low. Another metabolite, assigned as 8-hydroxy-N-desmethylmianserin by liquid chromatography/mass spectrometry analysis, was formed by CYP2D4 and 2D6. The metabolism exhibited stereoselectivity. CYP2D1 and 2D4 selectively 8-hydroxylated the R(-)-enantiomer, and CYP2D6 predominately N-demethylated R(-)-enantiomer. N-Oxidation by CYP2D1 was specific to R(-)-enantiomer. In conclusion, CYP2D isoforms are involved in several metabolic pathways of mianserin acting in an isoform-specific manner. Stereoselectivity of the catalytic activities was clearly observed in the reactions of CYP2D1, 2D4, and 2D6.  相似文献   

14.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo(e)dioxathiepin-3-oxide) is a broad-spectrum chlorinated cyclodiene insecticide. This study was performed to elucidate the stereoselective metabolism of endosulfan in human liver microsomes and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of endosulfan. Human liver microsomal incubation of endosulfan in the presence of NADPH resulted in the formation of the toxic metabolite, endosulfan sulfate. The intrinsic clearances (CL(int)) of endosulfan sulfate from beta-endosulfan were 3.5-fold higher than those from alpha-endosulfan, suggesting that beta-endosulfan would be cleared more rapidly than alpha-endosulfan. Correlation analysis between the known P450 enzyme activities and the rate of the formation of endosulfan sulfate in the 14 human liver microsomes showed that alpha-endosulfan metabolism is significantly correlated with CYP2B6-mediated bupropion hydroxylation and CYP3A-mediated midazolam hydroxylation, and that beta-endosulfan metabolism is correlated with CYP3A activity. The P450 isoform-selective inhibition study in human liver microsomes and the incubation study of cDNA-expressed enzymes also demonstrated that the stereoselective sulfonation of alpha-endosulfan is mediated by CYP2B6, CYP3A4, and CYP3A5, and that that of beta-endosulfan is transformed by CYP3A4 and CYP3A5. The total CL(int) values of endosulfan sulfate formation catalyzed by CYP3A4 and CYP3A5 were consistently higher for beta-endosulfan than for the alpha-form (CL(int) of 0.67 versus 10.46 microl/min/pmol P450, respectively). CYP2B6 enantioselectively metabolizes alpha-endosulfan, but not beta-endosulfan. These findings suggest that the CYP2B6 and CYP3A enzymes are major enzymes contributing to the stereoselective disposition of endosulfan.  相似文献   

15.
Cytochrome P-450 (P-450) 2A6 was purified by chromatography of human liver microsomes. The final preparation was electrophoretically homogeneous and contained 16 nmol of P-450/mg of protein. The amino-terminal amino acid sequence of the protein (first 13 residues) matched that of the reported cDNA exactly. The UV-visible spectrum indicated that the isolated hemoprotein was in the low-spin form. The protein was recognized by rabbit antibodies raised against rat P-450 2A1, and a rabbit antiserum against the P-450 2A6 preparation was also prepared. With these antibodies, it was estimated that P-450 2A6 accounted for a maximum of 1% of the total P-450 present in the human liver microsomes; the level varied greater than 100-fold among the 20 samples examined. Purified P-450 2A6 catalyzed coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation at rates similar to those measured in the human liver sample used to prepare P-450 2A6, and these two microsomal activities were strongly inhibited by the antibodies. The purified P-450 2A6 enzyme also catalyzed low levels of 4,4'-methylene-bis(2-chloroaniline) (MOCA) N-oxidation and activation of aflatoxin B1, 6-aminochrysene, 2-amino-3-methylimidazo[4,5-f]quinoline, and 2-amino-3,5-dimethylimidazo [4,5-f]quinoline to genotoxic products; the antibody inhibited the activity of purified P-450 2A6 towards aflatoxin B1 and 6-aminochrysene but did not inhibit these reactions in human liver microsomes (MOCA N-oxidation was inhibited approximately 20%). Human P-450 2A6 did not catalyze testosterone 7 alpha-hydroxylation, a characteristic activity of the related rat P-450 2A1 protein. These results emphasize the need to characterize individual P-450 enzymes in order to understand their functions in the context of more complex systems.  相似文献   

16.
The anticancer alkylating agents cyclophosphamide (CPA) and ifosfamide (IFA) are prodrugs that undergo extensive P450-catalyzed metabolism to yield both active (4-hydroxylated) and therapeutically inactive but neurotoxic (N-dechloroethylated) metabolites. Whereas the human liver microsomal P450 catalysts of CPA and IFA 4-hydroxylation are well characterized, the P450 enzyme catalysts of the alternative N-dechloroethylation pathway are poorly defined. Analysis of a panel of fifteen human P450 cDNAs in the baculovirus expression system ('Supersomes') demonstrated that CYP3A4 exhibited the highest N-dechloroethylation activity toward both CPA and IFA, whereas CYP2B6 displayed high N-dechloroethylation activity toward IFA, but not CPA. The contributions of each human P450 to overall liver microsomal N-dechloroethylation were calculated using a recently described relative substrate-activity factor method, and were found to be in excellent agreement with the results of inhibition studies using the CYP3A inhibitor troleandomycin and an inhibitory monoclonal antibody to CYP2B6. With CPA as substrate, CYP3A4 was shown to catalyze >/=95% of liver microsomal N-dechloroethylation, whereas with IFA as substrate, CYP3A4 catalyzed an average of approximately 70% of liver microsomal N-dechloroethylation (range = 40-90%), with the balance of this activity catalyzed by CYP2B6 (range = 10-70%, dependent on the CYP2B6 content of the liver). Because CYP2B6 can make a significant contribution to human liver microsomal IFA N-dechloroethylation, but only a minor contribution to IFA 4-hydroxylation, the selective inhibition of hepatic CYP2B6 activity in individuals with a high hepatic CYP2B6 content may provide a useful approach to minimize the formation of therapeutically inactive but toxic N-dechloroethylated IFA metabolites.  相似文献   

17.
1. Polyclonal antibodies raised against rabbit liver cytochrome P-450 isozymes form 4 and 6 have been used to probe human liver microsomes for analogous proteins using the Western blot technique.

2. Anti-Form 4 IgG recognized a protein in human liver microsomes from six subjects of identical molecular weight to purified rabbit liver cytochrome P-450 Form 4.

3. The equivalent content of cytochrome P-450 Form 4 in the same microsomes ranged from 1˙1 to 9˙1 pmol per mg protein.

4. Anti-Form 6 IgG recognized a protein in human liver microsomes from the same six subjects of slightly higher molecular weight than purified rabbit cytochrome P-450 Form 6.

5. The equivalent content of cytochrome P-450 Form 6 in the above microsomes ranged from 1˙6 to 3˙8 pmol per mg protein.

6. No significant correlations were observed between equivalent cytochrome P-450 Forms 4 and 6 content and 2-acetylaminofluorene N-hydroxylase, aminopyrine N-demethylase, benzyprene and aniline hydroxylase activities in liver microsomes from the six subjects tested.  相似文献   

18.
中国人肝微粒体细胞色素P450 2A6的体外代谢特征   总被引:2,自引:0,他引:2  
目的:观察人肝微粒体CYP2A6动力学特征.方法:采用生化分析法,体外研究化学异物对CYP2A6酶活性的影响.测定香豆素7-羟化酶的动力学参数.同时分析CYP2A6与Ⅱ相酶UGT之间的相关性.结果:CYP2A6活性差异8.8倍,K_m和V_(max)分别为0.25-1.56μmol·L~(-1)、1.41-8.70μmol·min~(-1)·g~(-1).匹鲁卡品、二乙基二硫代氨基甲酸盐、利福平明显抑制CYP2A6活性,IC_(50)值分别为 5.31μmol·L~(-1)、156.35μmol·L~(-1)和38.81μmol·L~(-1).α-萘黄酮、磺胺苯吡唑、醋竹桃霉素、酮康唑、泼尼松龙和阿奇霉素对香豆素7-羟化反应几乎无影响.CYP2A6与UGT_2之间存在显著相关性(r=0.9453,P<0.05).结论:中国人细胞色素P4502A6酶活性及动力学参数存在个体差异,CYP2A6与UGT_2之间有显著相关.除匹鲁卡品有CYP2A6选择性抑制作用外,利福平和二乙基二硫代氨基甲酸盐也明显抑制CYP2A6活性.  相似文献   

19.
Dihydralazine is known to induce immunoallergic hepatitis. Since anti-liver microsome (anti-LM) autoantibodies found in the serum of the patients react with P450 1A2, it is suggested that dihydralazine is biotransformed into a reactive metabolite, which covalently binds to cytochrome P450 1A2 and triggers an immunological response as a neoantigen. We investigated inactivation of P450 enzymes, including P450 1A2, during the metabolism of dihydralazine to evaluate the selectivity of P450 1A2 as a catalyst and a target of dihydralazine. Human liver microsomes or microsomes from lymphoblastoid cells expressing P450 enzymes were preincubated with dihydralazine in the presence of NADPH, followed by an assay of several monooxygenase activities. Preincubation of human liver microsomes with dihydralazine in the presence of NADPH resulted in decreases in phenacetin O-deethylase activity (an indicator of P450 1A2 activity) and testosterone 6beta-hydroxylase activity (P450 3A4), but not in diclofenac 4'-hydroxylase activity (P450 2C9), an indication of inactivation of P450s 1A2 and 3A4 during the dihydralazine metabolism. The inactivation of both of the P450s followed pseudo-first-order kinetics and was saturable with increasing dihydralazine concentrations. Similar time-dependent decreases in the activities were obtained in the case for use in microsomes expressing P450 1A2 and P450 3A4 instead of the human liver microsomes. The data presented here demonstrated that dihydralazine was metabolically activated not only by P450 1A2 but also by P450 3A4, and the chemically reactive metabolite bound to and inactivated the enzyme themselves, suggesting that dihydralazine is a mechanism-based inactivator of P450s 1A2 and 3A4. The data support the postulated covalent binding of a reactive metabolite of dihydralazine to P450 1A2 as a step in the formation of anti-LM antibodies in dihydralazine hepatitis, but it is not the unique factor for determining the specificity of the autoantibodies.  相似文献   

20.
Recently, it was shown that diclofenac was metabolized in rats to reactive benzoquinone imines via cytochrome P450-catalyzed oxidation. These metabolites also were detected in human hepatocyte cultures in the form of glutathione (GSH) adducts. This report describes the results of further studies aimed at characterizing the human hepatic P450-mediated bioactivation of diclofenac. The reactive metabolites formed in vitro were trapped by GSH and analyzed by LC/MS/MS. Thus, three GSH adducts, namely, 5-hydroxy-4-(glutathion-S-yl)diclofenac (M1), 4'-hydroxy-3'-(glutathion-S-yl)diclofenac (M2), and 5-hydroxy-6-(glutathion-S-yl)diclofenac (M3), were identified in incubations of diclofenac with human liver microsomes in the presence of NADPH and GSH. The formation of the adducts was taken to reflect the intermediacy of the corresponding putative benzoquinone imines. While M2 was the dominant metabolite over a substrate concentration range of 10-50 microM, M1 and M3 became equally important products at >/=100 microM diclofenac. The formation of M2 was inhibited by sulfaphenazole or an anti-P450 2C9 antibody (5-10% of control values). The formation of M1 and M3 was inhibited by troleandomycin, ketoconazole, or an anti-P450 3A4 antibody (30-50% of control values). In studies in which recombinant P450 isoforms were used, M2 was generated only by P450 2C9-catalyzed reaction, while M1 and M3 were produced by P450 3A4-catalyzed reaction. Good correlations were established between the extent of formation of M2 and P450 2C9 activities (r = 0.93, n = 10) and between the extent of formation of M1 and M3 and P450 3A4 activities (r = 0.98, n = 10) in human liver microsomal incubations. Taken together, the data suggest that the biotransformation of diclofenac to M2 is P450 2C9-dependent, whereas metabolism of the drug to M1 and M3 involves mainly P450 3A4. Although P450s 2C9 and 3A4 both catalyze the bioactivation of diclofenac, P450 2C9 is capable of producing the benzoquinone imine intermediate at lower drug concentrations which may be more clinically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号