首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Composite scaffolds of mesoporous bioactive glass (MBG)/polycaprolactone (PCL) and conventional bioactive glass (BG)/PCL were fabricated by a solvent casting-particulate leaching method, and the structure and properties of the composite scaffolds were characterized. The measurements of the water contact angles suggest that the incorporation of either MBG or BG into PCL can improve the hydrophilicity of the composites, and the former is more effective than the later. The bioactivity of the composite scaffold is evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the MBG/PCL composite scaffolds can induce a dense and continuous layer of apatite after soaking in SBF for 3 weeks, as compared with the scattered and discrete apatite particles on the BG/PCL composite scaffolds. Such improvements (improvements of the hydrophilicity and apatite forming ability) should be helpful for the extensive applications of PCL scaffold in tissue engineering.  相似文献   

2.
Li H  Chang J 《Biomaterials》2004,25(24):5473-5480
Composite scaffolds of polyhydroxybutyrate-polyhydroxyvalerate (PHBV) with bioactive wollastonite were fabricated by a compression moulding, thermal processing, and salt particulate leaching method. Structure and mechanical properties of the scaffolds were determined. The bioactivity of the composites was evaluated by soaking in a simulated body fluid (SBF), and the formation of the hydroxyapatite (HAp) layer was determined by Scanning Electron Microscope (SEM) and Energy-Dispersive Spectrometer (EDS). The results showed that the wollastonite/PHBV composites were bioactive as it induced the formation of HAp on the surface of the composite scaffolds after soaking in SBF for 14 days. In addition, the measurements of the water contact angles suggested that incorporation of wollastonite into PHBV could improve the hydrophilicity of the composites and the enhancement was dependent on the wollastonite content. Furthermore, the pH and ion concentration changes of SBF solutions with composite scaffolds showed that the composites released Ca and Si ions, which could neutralize the acidic by-products of the PHBV and stabilize the pH of the SBF solutions between 7.2 and 7.8 within a 3-week soaking period. All of these results suggest that the incorporation of wollastonite was a useful approach to obtain composite scaffolds with improved properties.  相似文献   

3.
Zhang K  Wang Y  Hillmyer MA  Francis LF 《Biomaterials》2004,25(13):2489-2500
Porous poly(L-lactide)/bioactive glass (PLLA/BG) composites were prepared by phase separation of polymer solutions containing bioactive glass particles (average particle size: 1.5 microm). The composite microstructures consist of a porous PLLA matrix with glass particles distributed homogeneously throughout. Large pores (>100 microm) are present in a network of smaller (<10 microm) interconnected pores. The porous microstructure of the composites was not significantly influenced by glass content (9 or 29 vol%), but silane pretreatment of the glass resulted in better glass incorporation in the matrix. Mechanical tests showed that an increase in glass content increased the elastic modulus of the composites, but decreased their tensile strength and break strain. Silane pretreatment enhanced the increase in modulus and prevented the decrease in tensile strength with increasing glass content. Composites soaked in simulated body fluid (SBF) at body temperature formed bone-like apatite inside and on their surfaces. The silane pretreatment of glass particles delayed the in vitro apatite formation. This bone-like apatite formation demonstrates the composites' potential for integration with bone.  相似文献   

4.
Bioabsorbable scaffolds for guided bone regeneration and generation   总被引:16,自引:0,他引:16  
Several different bioabsorbable scaffolds designed and manufactured for guided bone regeneration and generation have been developed. In order to enhance the bioactivity and potential osteoconductivity of the scaffolds, different bioabsorbable polymers, composites of polymer and bioactive glass, and textured surface structures of the manufactured devices and composites were investigated in in vitro studies and experimental animal models. Solid, self-reinforced polyglycolide (SR-PGA) rods and self-reinforced poly L-lactide (SR-PLLA) rods were successfully used as scaffolds for bone formation in muscle by free tibial periosteal grafts in animal experiments. In an experimental maxillary cleft model, a bioabsorbable composite membrane of epsilon-caprolactone and L-lactic acid 50/50 copolymer (PCL/LLA) film and mesh and poly 96L,4D-lactide (PLA96) mesh were found to be suitable materials for guiding bone regeneration in the cleft defect area. The idea of solid layer and porous layer combined together was also transferred to stiff composite of poly 70L,30DL-lactide (PLA70) plate and PLA96 mesh which structure is introduced. The osteoconductivity of several different biodegradable composites of polymers and bioactive glass (BG) was shown by apatite formation in vitro. Three composites studied were self-reinforced composite of PLA70 and bioactive glass (SR-(PLA70 + BG)), SR-PLA70 plate coated with BG spheres, and Polyactive with BG.  相似文献   

5.
There is increasing interest in the development of new tissue engineering strategies to deliver cells and bioactive agents encapsulated in a biodegradable matrix through minimally invasive procedures. The present work proposes to combine chitosan-beta-glycerophosphate salt formulations with bioactive glass nanoparticles in order to conceive novel injectable thermo-responsive hydrogels for orthopaedic reconstructive and regenerative medicine applications. The initial rheological properties and the gelation points of the developed organic-inorganic in situ thermosetting systems were revealed to be adequate for intracorporal injection. In vitro bioactivity tests, using incubation protocols in simulated body fluid (SBF), allowed the observation of bone-like apatite formation in the hydrogel formulations containing bioactive nanoparticles. The density of the apatite formed increased with increasing bioactive glass content and soaking time in SBF. These results indicate that the stimuli-responsive hydrogels could potentially be used as temporary injectable scaffolds in bone tissue engineering applications.  相似文献   

6.
A well-defined mesoporous structure of wollastonite with high specific surface area was synthesized using surfactant P123 (triblock copolymer) as template, and its composite scaffolds with poly(?-caprolactone) (PCL) were fabricated by a simple method of solvent casting-particulate leaching. The measurements of the water contact angles suggest that the incorporation of either mesoporous wollastonite (m-WS) or conventional wollastonite (c-WS) into PCL could improve the hydrophilicity of the composites, and the former was more effective than the later. The bioactivity of the composite scaffold was evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the m-WS/PCL composite (m-WPC) scaffolds can induce a dense and continuous layer of apatite after soaking for 1 week, as compared with the scattered and discrete apatite particles on the c-WS/PCL composite (c-WPC) scaffolds. The m-WPC had a significantly enhanced apatite-forming bioactivity compared with the c-WPC owing to the high specific surface area and pore volume of m-WS. In addition, attachment and proliferation of MG63 cells on m-WPC scaffolds were significantly higher than that of c-WPC, revealing that m-WPC scaffolds had excellent biocompatibility. Such improved properties of m-WPC should be helpful for developing new biomaterials and may have potential use in hard tissue repair.  相似文献   

7.
Wu C  Zhang Y  Zhou Y  Fan W  Xiao Y 《Acta biomaterialia》2011,7(5):2229-2236
Mesoporous bioactive glass (MBG) is a new class of biomaterials with a well-ordered nanochannel structure, whose in vitro bioactivity is far superior than that of non-mesoporous bioactive glass (BG); the material's in vivo osteogenic properties are, however, yet to be assessed. Porous silk scaffolds have been used for bone tissue engineering, but this material's osteoconductivity is far from optimal. The aims of this study were to incorporate MBG into silk scaffolds in order to improve their osteoconductivity and then to compare the effect of MBG and BG on the in vivo osteogenesis of silk scaffolds. MBG/silk and BG/silk scaffolds with a highly porous structure were prepared by a freeze-drying method. The mechanical strength, in vitro apatite mineralization, silicon ion release and pH stability of the composite scaffolds were assessed. The scaffolds were implanted into calvarial defects in SCID mice and the degree of in vivo osteogenesis was evaluated by microcomputed tomography (μCT), hematoxylin and eosin (H&E) and immunohistochemistry (type I collagen) analyses. The results showed that MBG/silk scaffolds have better physiochemical properties (mechanical strength, in vitro apatite mineralization, Si ion release and pH stability) compared to BG/silk scaffolds. MBG and BG both improved the in vivo osteogenesis of silk scaffolds. μCT and H&E analyses showed that MBG/silk scaffolds induced a slightly higher rate of new bone formation in the defects than did BG/silk scaffolds and immunohistochemical analysis showed greater synthesis of type I collagen in MBG/silk scaffolds compared to BG/silk scaffolds.  相似文献   

8.
Bionanocomposites based on ceramic nanoparticles and a biodegradable porous matrix represent a promising strategy for bone repair applications. The preparation and bioactive properties of bionanocomposites based on hydroxyapatite (nHA) and bioactive glass (nBG) nanoparticles were presented. nHA and nBG were synthesized with nanometric particle size using sol-gel/precipitation methods. Composite scaffolds were prepared by incorporating nHA and nBG into a porous alginate (ALG) matrix at different particle loads. The ability of the bionanocomposites to induce the crystallization of the apatite phase from simulated body fluid (SBF) was systematically evaluated using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. Both nHA/ALG and nBG/ALG composites were shown to notably accelerate the process of crystallization and growth of the apatite phase on the scaffold surfaces. For short immersion times in SBF, nBG (25%)-based nanocomposites induced a higher degree of apatite crystallization than nHA (25%)-based nanocomposites, probably due to the more reactive nature of the BG particles. Through a reinforcement effect, the nanoparticles also improve the mechanical properties and stability in SBF of the polymer scaffold matrix. In addition, in vitro biocompatibility tests demonstrated that osteoblast cells are viable and adhere well on the surface of the bionanocomposites. These results indicate that nHA- and nBG-based bionanocomposites present potential properties for bone repair applications, particularly oriented to accelerate the bone mineralization process.  相似文献   

9.
Porous hydroxyapatite (HA) scaffolds have been intensively studied and developed for bone tissue engineering, but their mechanical properties remain to be improved. The aim of this study is to prepare HA-based composite scaffolds that have a unique macroporous structure and special struts of a polymer/ceramic interpenetrating composite and a bioactive coating. A novel combination of a polyurethane (PU) foam method and a hydrogen peroxide (H(2)O( 2)) foaming method is used to fabricate the macroporous HA scaffolds. Micropores are present in the resulting porous HA ceramics after the unusual sintering of a common calcium phosphate cement and are infiltrated with the poly(D,L-lactic-co-glycolic acid) (PLGA) polymer. The internal surfaces of the macropores are further coated with a PLGA-bioactive glass composite coating. The porous composite scaffolds are characterized in terms of microstructure, mechanical properties, and bioactivity. It is found that the HA scaffolds fabricated by the combined method show high porosities of 61-65% and proper macropore sizes of 200-600 microm. The PLGA infiltration improved the compressive strengths of the scaffolds from 1.5-1.8 to 4.0-5.8 MPa. Furthermore, the bioactive glass-PLGA coating rendered a good bioactivity to the composites, evidenced by the formation of an apatite layer on the sample surfaces immersed in the simulated body fluid (SBF) for 5 days. The porous HA-based composites obtained from this study have suitable porous structures, proper mechanical properties, and a high bioactivity, and thus finds potential application as scaffolds for bone tissue engineering.  相似文献   

10.
Composite materials have been prepared from bioactive glass powders in the SiO(2)-CaO-P(2)O(5) system, a biodegradable polymer [poly(L-lactic acid) (PLA)], a biostable polymer [polymethylmethacrylate (PMMA)], and an antibiotic [gentamicin]. The purpose of such composites is to obtain implantable materials that are able to lead to bone growth and also can, at the most critical inflammation-infection step, release an antibiotic. X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, and FTIR analyses after different soaking periods in SBF demonstrated the growth of an apatite-like layer on the composite surface. Therefore the bioactive glass-polymer-antibiotic combination used in this work does not inhibit the glass bioactivity. The release of gentamicin after a soaking of the materials in SBF was followed by UV-visible spectroscopy. A fast initial release during the first 10 h of soaking, followed by a controlled release of the drug was observed.  相似文献   

11.
Bioactivity in glass/PMMA composites used as drug delivery system   总被引:2,自引:0,他引:2  
Gentamicin sulfate has been incorporated in composites prepared from a SiO2-CaO-P2O5 bioactive glass and polymethylmethacrylate. Data showed that these materials could be used as drug delivery system, keeping the bioactive behavior of the glass. The composites supply high doses of the antibiotic during the first hours when they are soaked in simulated body fluid (SBF). Thereafter, a slower drug release is produced, supplying 'maintenance' doses until the end of the experiment. The gentamicin release rate is related with the ionic Ca2+ and H3O+ exchange between composite and SBF. The porous structure of the composites allows the growth of hydroxycarbonate apatite on the surface and into the pores.  相似文献   

12.
We have developed poly(L: -lactide-co-glycolide) (PLGA) based composites using sol-gel derived bioactive glasses (S-BG), previously described by our group, as composite components. Two different composite types were manufactured that contained either S2-high content silica S-BG, or A2-high content lime S-BG. The composites were evaluated in the form of sheets and 3D scaffolds. Sheets containing 12, 21, and 33?vol.% of each bioactive glass were characterized for mechanical properties, wettability, hydrolytic degradation, and surface bioactivity. Sheets containing A2 S-BG rapidly formed a hydroxyapatite surface layer after incubation in simulated body fluid. The incorporation of either S-BG increased the tensile strength and Young's modulus of the composites and tailored their degradation rates compared to starting compounds. Sheets and 3D scaffolds were evaluated for their ability to support growth of human bone marrow cells (BMC) and MG-63 cells, respectively. Cells were grown in non-differentiating, osteogenic or osteoclast-inducing conditions. Osteogenesis was induced with either recombinant human BMP-2 or dexamethasone, and osteoclast formation with M-CSF. BMC viability was lower at higher S-BG content, though specific ALP/cell was significantly higher on PLGA/A2-33 composites. Composites containing S2 S-BG enhanced calcification of extracellular matrix by BMC, whereas incorporation of A2 S-BG in the composites promoted osteoclast formation from BMC. MG-63 osteoblast-like cells seeded in porous scaffolds containing S2 maintained viability and secreted collagen and calcium throughout the scaffolds. Overall, the presented data show functional versatility of the composites studied and indicate their potential to design a wide variety of implant materials differing in physico-chemical properties and biological applications. We propose these sol-gel derived bioactive glass-PLGA composites may prove excellent potential orthopedic and dental biomaterials supporting bone formation and remodeling.  相似文献   

13.
Bioactive and bioresorbable composite materials were fabricated using macroporous poly(DL-lactide) (PDLLA) foams coated with and impregnated by bioactive glass (Bioglass) particles. Stable and homogeneous Bioglass coatings on the surface of PDLLA foams as well as infiltration of Bioglass particles throughout the porous network were achieved using a slurry-dipping technique in conjunction with pre-treatment of the foams in ethanol. The quality of the bioactive glass coatings was reproducible in terms of thickness and microstructure. Additionally, electrophoretic deposition was investigated as an alternative method for the fabrication of PDLLA foam/Bioglass composite materials. In vitro studies in simulated body fluid (SBF) were performed to study the formation of hydroxyapatite (HA) on the surface of PDLLA/Bioglass composites. SEM analysis showed that the HA layer thickness rapidly increased with increasing time in SBF. The high bioactivity of the PDLLA foam/Bioglass composites indicates the potential of the materials for use as bioactive, resorbable scaffolds in bone tissue engineering.  相似文献   

14.
Kim SS  Park MS  Gwak SJ  Choi CY  Kim BS 《Tissue engineering》2006,12(10):2997-3006
Although biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes, the osteogenic potential of these scaffolds needs to be further enhanced for efficient bone tissue engineering. In this study, bonelike apatite was efficiently coated onto the scaffold surface by using polymer/ceramic composite scaffolds instead of polymer scaffolds and by using an accelerated biomimetic process to enhance the osteogenic potential of the scaffold. The creation of bonelike, apatite-coated polymer scaffold was achieved by incubating the scaffolds in simulated body fluid (SBF). The apatite growth on porous poly(D,L-lactic-co-glycolic acid)/nanohydroxyapatite (PLGA/ HA) composite scaffolds was significantly faster than on porous PLGA scaffolds. In addition, the distribution of coated apatite was more uniform on PLGA/HA scaffolds than on PLGA scaffolds. After a 5-day incubation period, the mass of apatite coated onto PLGA/HA scaffolds incubated in 5 x SBF was 2.3-fold higher than PLGA/HA scaffolds incubated in 1 x SBF. Furthermore, when the scaffolds were incubated in 5 x SBF for 5 days, the mass of apatite coated onto PLGA/HA scaffolds was 4.5-fold higher than PLGA scaffolds. These results indicate that the biomimetic apatite coating can be accelerated by using a polymer/ceramic composite scaffold and concentrated SBF. When seeded with osteoblasts, the apatite-coated PLGA/HA scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization in vitro compared to the apatite-coated PLGA scaffolds. Therefore, the apatite-coated PLGA/HA scaffolds may provide enhanced osteogenic potential when used as scaffold for bone tissue engineering.  相似文献   

15.
In vitro and in vivo bioactivity studies were performed to assess the biocompatibility of CaO-P2O5 glass-reinforced hydroxyapatite (GR-HA) composites. The ability to form an apatite layer by soaking in simulated body fluid (SBF) was examined and surfaces were characterized using FTIR reflection and thin-film X-ray diffraction analyses. Qualitative histology, histomorphometric measurements, and push-out testing were performed in a rabbit model for characterizing bone/implant bonding. Under the in vitro conditions using SBF, an apatite layer could not be formed on GR-HA composites within 8 weeks. Results of push-out testing showed bonding between the composites and bone, ranging from 130-145 N after 2 weeks of implantation. After the longest implantation period, 16 weeks, the GR-HA composite prepared with the higher content of CaO-P2O5 glass showed the highest bonding force, 606 +/- 45 N, compared to 459 +/- 30 N for sintered HA. Development of immature bone and modifications in the turnover of a more mature bone on the surface of GR-HA composites were similar to those on sintered HA.  相似文献   

16.
Composite films of bioactive mesoporous calcium silicate (MCS)/silk fibroin (SF) and conventional calcium silicate (CS)/SF were fabricated by the solvent casting method, and the structures and properties of the composite films were characterized. Results of field emission scanning electron microscope (FESEM) indicated that MCS or CS was uniformly dispersed in the SF films. The measurements of the water contact angles suggested that the incorporation of either MCS or CS into SF could improve the hydrophilicity of the composite films, and the former was more effective than the later. The bioactivity of the composite films was evaluated by soaking in a simulated body fluid (SBF), and the formation of a hydroxycarbonate apatite (HCA) layer was determined by XRD and FT-IR. The results showed that the MCS/SF composite films have significantly enhanced apatite-forming bioactivity compared with the CS/SF composite films owing to the highly specific surface area and pore volume of MCS. In vitro cell attachment and proliferation tests showed that the MCS/SF composite film was a good matrix for the growth of MG63 cells. Consequently, the MCS/SF composite film possessed excellent physicochemical and biological properties, indicating its potential application for bone tissue engineering by designing 3D scaffolds according to its corresponding composition.  相似文献   

17.
The effect of bioactive glass on the mechanical properties of hydroxyapatite-Ca polyacrylate composites was studied. Powder mixtures of tetracalcium phosphate (TetCP), poly(acrylic-co-itaconic) and bioactive glass (up to 50% by weight) were hot pressed for 30 min at 300 degrees C and 40 kpsi. Tensile strengths, elastic moduli, and microstructures of the composites produced were investigated. Results showed the mechanical properties of these composites were enhanced by the addition of bioactive glass. The highest values of tensile strength and elastic modulus were achieved with the addition of 10% bioactive glass. Composites were immersed in SBF for up to 10 days, then in 1.5 simulated body fluid (SBF) for a week. The changes in the concentrations of Ca, P, and Si ions of these solutions were measured. The microstructures of these composites after SBF immersion were also evaluated. Concentrations of Ca, P, and Si increased with the time of immersion in SBF owing to the formation of an apatite layer on their surfaces as found by SEM with energy-dispersive spectroscopy attachment.  相似文献   

18.
Hydroxyapatite/poly(ethylene glutarate) (HAp/PEG) biomaterial composites were prepared by ring-opening polymerization (ROP) of cyclic oligo(ethylene glutarate) (C-PEG) in porous HAp scaffolds. The HAp/C-PEG precomposites were prepared by immersing the porous HAp scaffolds in the mixture solution of C-PEG and dibutyl tinoxide catalyst overnight and polymerizing at 200 degrees C for 24, 48, and 72 h under vacuum. The successful ROP of C-PEG in the porous HAp scaffolds was corroborated by the signals of hydroxyl end-group of PEG shown in the (1)H NMR spectrum of the ROP-products extracted from the composites. PEG in the composites was present as a thin layer coating on the HAp grains and was evenly distributed throughout the samples. The PEG content was about 13-16 wt % and decreased with increasing polymerization time. Its molecular weight (M(w), weight average) measured by gel permeation chromatography was in the range of 4300-6800 g/mol. Compressive strength of the HAp/PEG composites was significantly increased from 3 MPa of the porous HAp scaffold to 11-15 MPa, depending on the PEG content in the composites. In vitro bioactivity of the HAp/PEG composites was studied by soaking in simulated body fluid (SBF) at 36.5 degrees C for 7-28 days. After prolonged soaking, the HAp nanocrystals precipitated from the SBF solution and formed as a layer of globular aggregates, coated on the composite surfaces. This result suggested that the HAp/PEG composite was a bioactive material.  相似文献   

19.
A previous study demonstrated that the incorporation of bioactive glass (BG) into poly (lactic-co-glycolic acid) (PLGA) can promote the osteoblastic differentiation of marrow stromal cells (MSCs) on PLGA by promoting the formation of a calcium-phosphate-rich layer on its surface. To further understand the mechanisms underlying the osteogenic effect of PLGA-BG composite scaffolds, whether solution-mediated factors derived from composite scaffolds/hybrids can promote osteogenesis of marrow stromal cells was tested. The dissolution product from PLGA-30%BG scaffold stimulated osteogenesis of MSCs, as was confirmed by increased mRNA expression of osteoblastic markers such as osteocalcin (OCN), alkaline phosphatase (ALP), and bone sialoprotein (BSP). The three-dimensional structure of the scaffolds may contribute to the production of cell-derived factors that promoted distant MSC differentiation. Thus PLGA-BG composites demonstrate significant potential as a bone-replacement material.  相似文献   

20.
Liu A  Hong Z  Zhuang X  Chen X  Cui Y  Liu Y  Jing X 《Acta biomaterialia》2008,4(4):1005-1015
Novel bioactive glass (BG) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca=29:13:58 weight ratio) of about 40nm diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M(n)=9700Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility. When the filler loading reached around 4 wt.%, the tensile strength of the composite increased from 56.7 to 69.2MPa for the pure PLLA, and the impact strength energy increased from 15.8 to 18.0 kJ m(-2). The morphology of the tensile fracture surface of the composite showed surface-grafted bioactive glass particles (g-BG) to be dispersed homogeneously in the PLLA matrix. An in vitro bioactivity test showed that, compared to pure PLLA scaffold, the BG/PLLA nanocomposite demonstrated a greater capability to induce the formation of an apatite layer on the scaffold surface. The results of marrow stromal cell culture revealed that the composites containing either BG or g-BG particles have much better biocompatibility compared to pure PLLA material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号