首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The properties of glial cells in lesioned nerves contribute quite substantially to success or failure of axon regeneration in the CNS. Goldfish retinal axons regenerate after optic nerve lesion (ONS) and express the L1-like cell adhesion protein E587 antigen on their surfaces. Goldfish oligodendrocytes in vitro also produce E587 antigen and promote growth of both fish and rat retinal axons. To determine whether glial cells in vivo synthesize E587 antigen, in situ hybridizations with E587 antisense cRNA probes and light- and electron microscopic E587 immunostainings were carried out. After lesion, the goldfish optic nerve/tract contained glial cells expressing E587 mRNA, which were few in number at 6 days after ONS, increased over the following week and declined in number thereafter. Also, E587-immunopositive elongated cells with ultrastructural characteristics of oligodendrocytes were found. Thus, glial cells synthesize E587 antigen in spatiotemporal correlation with retinal axon regeneration. To determine the functional contribution of E587 antigen, axon-oligodendrocyte interactions were monitored in co-culture assays in the presence of Fab fragments of a polyclonal E587 antiserum. E587 Fabs in axon-glia co-cultures prevented the normal tight adhesion of goldfish retinal growth cones to oligodendrocytes and blocked the preferential growth of fish and rat retinal axons on the oligodendrocyte surfaces. The ability of glia in the goldfish visual pathway to upregulate the expression of E587 antigen and the growth supportive effect of oligodendrocyte-associated E587 antigen in vitro suggests that this L1-like adhesion protein promotes retinal axon regeneration in the goldfish CNS. GLIA 23:257–270, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The E587 antigen (Ag) is a 200-Kd membrane glycoprotein originally identified by a monoclonal antibody on new and regenerating retinal ganglion cell axons in the adult goldfish. We report the isolation of cDNAs encoding the E587 Ag and identify it as a member of the L1 family of cell adhesion molecules (CAMs). The predicted amino acid sequence of E587 Ag shows an approximately equal identity (40%) to mouse L1, chick neuron-glia CAM, and chick neuron-glia-related CAM. Although the overall similarity is low, there is a high conservation of structural domains and specific sequence motifs. Wholemount in situ hybridizations were performed on goldfish between 34 hours and 3 days postfertilization (pf). A dramatic increase in E587 Ag mRNA was observed between 34 and 48 hours pf. The expression of E587 Ag mRNA in neurons shortly precedes axonogenesis. A marked decrease in expression occurs by 3 days pf, when the axonal scaffold has already been established. Wholemount immunohistochemistry on embryos demonstrates expression of E587 Ag on all major tracts. E587 Ag is absent from mature retinal ganglion cell axons, but its expression is induced by optic nerve transection. A corresponding induction of E587 Ag mRNA in retinal ganglion cells is shown by in situ hybridization. Furthermore, E587 Ag mRNA was detected in the optic nerve, which suggests that nonneuronal cells also express this molecule. E587 Ag was previously shown to promote retinal axon fasciculation and outgrowth in young fish and to mediate axon-glial interactions in vitro. The expression pattern and developmental regulation of E587 Ag in the central nervous system, its reexpression in retinal ganglion cells following optic nerve transection, and its relation to the L1 family indicate that E587 Ag functions as a cell recognition molecule important during axonal growth and regeneration. J. Comp. Neurol. 377:286–297, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Editorial     
Segments from adult fish and rat retinae were explanted on myelin-marker expressing oligodendrocytes derived from the regenerating goldfish optic nerve. Fish axons grew in high density and even rat retinal axons regenerated to considerable length on the surface of the fish oligodendrocytes, suggesting that this type of fish glia has axon-growth promoting surface components that exert their influence across species boundaries. One interesting surface component of the fish oligodendrocytes as demonstrated here is the E 587 antigen, which is related to the L1 family of cell adhesion molecules. In long term cocultures of oligodendrocytes and retinal axons, the fish glial cells were found to enwrap rat axons. This suggests that the oligodendrocytes of the regenerating goldfish optic nerve/tract may, despite striking differences, represent the equivalent to mammalian optic nerve oligodendrocytes. © 1993 Wiley-Liss, Inc.  相似文献   

4.
In light of the striking differences between oligodendrocytes of the optic nerve/tract of adult goldfish and their mammalian counterparts, a further characterization of goldfish oligodendrocytes was performed. A comparison with Schwann cells was included because fish optic nerve/tract-derived oligodendrocytes bear remarkable similarities to this type of glial cell. Fish optic nerve/tract-derived oligodendrocytes that had differentiated into 04 and 6D2-positive cells and thus expressed early myelin marker molecules were found to incorporate BrdU and to divide in vitro over a period of weeks. For the induction of more advanced markers of myelinogenesis such as the CNS-specific myelin protein 36K, oligodendrocytes required extensive contact with axons. Other agents, such as fetal calf or carp serum, substrate components, or forscolin failed, however, to induce 36K expression. 04/6D2-positive oligodendrocytes could be distinguished from fish 6D2-positive Schwann cells derived from cranial nerves by their antigenic pheno-type: Schwann cells but not oligodendrocytes exhibited the low affinity NGF receptor. While both cell types carry the cell adhesion molecules NCAM, E 587 antigen, and the L2/HNK-1 epitope, only Schwann cells possess a further adhesion molecule, Neurolin. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The injury related expression of two axon-growth promoting cell adhesion molecules (CAMs), NCAM-180 which is developmentally downregulated and L1 which is regionally restricted, were compared in optic fibers in the adult mouse. The neuron-specific isoform of NCAM (NCAM-180) is present at very low levels in unlesioned adult optic axons. At 7 days after nerve crush, immunoreactivity was strongly and uniformly increased in optic axons within the nerve and throughout retina. Reactivity in surviving axons had returned to control levels at 4 weeks. To induce regrowth of adult retinal ganglion cell axons retinal explants were placed in culture. Strong NCAM-180 staining was observed on these regenerating optic axons. The neuronal cell adhesion molecule L1 is restricted to retina and to the unmyelinated segment of the optic nerve near the optic nerve head in unlesioned adult animals. Following nerve crush, L1 immunoreactivity was retained within retina and proximal nerve and novel staining was detected in the more distal segment of the optic nerve up to the lesion site where it persisted for at least eight months. The capacity of optic fibers to show increased NCAM-180 immunoreactivity and maintain L1 expression after a lesion may explain why these fibers exhibit relatively good potential for regeneration.  相似文献   

6.
The localization of the cell adhesion molecules L1, neural cell adhesion molecule (N-CAM), and myelin-associated glycoprotein (MAG) was studied immunohistologically at the light and electron microscopic levels and immunochemically in the developing and adult mouse optic nerve and retina. The neural adhesion molecule L1 is strongly expressed on the shafts of fasciculating unmyelinated axons at all ages studied from embryonic day 15 through adulthood. Growth cones of retinal ganglion cell axons were weakly L1-positive or L1-negative when contacting glial cells. Unmyelinated axons were not only L1-positive when contacting each other but also when contacting glia, whereas contacts between glial cells were L1-negative at all developmental unmyelinated retinal nerve fiber layer or in the unmyelinated optic nerve head became L1-negative when enwrapped by myelin in the optic nerve proper. At all stages of development N-CAM showed profuse labeling on fasciculating axons, growth cones, and their contact sites with glial cells as well as contacts between glial cells. In contrast to L1, axons remained N-CAM-positive when becoming myelinated. Sometimes, N-CAM was found in compact myelin. However, N-CAM was absent from glial surfaces contacting basement membranes at the interface to meninges, blood vessels, and the vitreous body of the eye. MAG was first detectable intracellularly in oligodendrocytes associated with the endoplasmic reticulum and Golgi apparatus before it became apparent at the cell surface. There it was present on oligodendrocytes prior and during the first stages of ensheathment of axons, both on cell body and processes. After formation of compact myelin MAG remained strongly expressed periaxonally and was only weakly detectable in noncompacted myelin including inner mesaxon and paranodal loops. None of the adhesion molecules was detectable on extracellular matrix, in the meninges, or on endothelial cells. Immunochemical analysis of antigen expression at different developmental stages was in agreement with the immunohistological data. We infer from these observations that L1 is involved in stabilization not only of axon-axon, but also axon-glia contacts, while the more dynamic structure of the growth cone generally expresses less L1. A differential expression of L1 along the course of an axon--being present on its unmyelinated, but absent on its myelinated part--further supports the notion that L1 may be involved in the stabilization of axonal fascicles but not of axon-myelin contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
Encounters of regenerating goldfish retinal axons with oligodendrocytes and CNS myelin of mammals and fish were monitored in in vitro assays. Upon contact with highly branched rat oligodendrocytes, goldfish axons collapsed or grew around but never crossed these cells. However, in the presence of the antibody IN-1 against the oligodendrocyte-associated growth-inhibitory proteins, axons did grow over highly branched oligodencrocytes. In contrast to the mammalian oligodendrocytes, goldfish optic nerve/tract-derived oligodendrocytelike cells allowed the growth of axons across their surface and even along their processes. The fish growth cones avoided entering the region of rat CNS myelin applied to polylysine/laminin-coated coverslips or failed to elongate on this substrate. They were, however, able to pass over CNS myelin of fish. When exposed to rat CNS myelin as the sole substrate, axonal outgrowth from fish retinal explants was inhibited almost entirely. However, outgrowth on fish CNS myelin was substantial, but many more axons extended on fish or rat brain membranes that were depleted of myelin. Thus, goldfish retinal axons are sensitive to the axon-growth-inhibiting cell-surface molecules of mammalian oligodendrocytes as well as CNS myelin. Fish optic nerve oligodendrocytelike cells and fish CNS myelin lack these inhibitory properties and are growth permissive. These in vitro experiments suggest that the success of axonal regeneration in the fish optic nerve is causally related to the presence of growth-permissive properties and to the absence of growth inhibitors on fish optic nerve/tract oligodendrocytelike cells.  相似文献   

9.
Glial domains and nerve fiber patterns in the fish retinotectal pathway   总被引:1,自引:0,他引:1  
Optic nerve fibers run parallel from the retina as far as the optic tract in fish, then suddenly criss-cross into a new pattern matching the tectal map. This change coincides with a unique demarcation between two astroglial territories in the retinotectal pathway, located where the optic chiasm occurs in other vertebrates, which we defined using antibodies directed against intermediate filaments (IF). We found that astroglia in optic nerve territory express an Mr 56,000 IF polypeptide, band 3, which we identify as the fish equivalent of vimentin in mammals. These astrocytic cells lack glial fibrillary acidic protein (GFAP; cf. Dahl and Bignami, 1973). Conversely, glia in brain territory, that is, in the optic tract and elsewhere in the CNS, lack the fish vimentin, but express GFAP. By electron microscopy, we obtained evidence that new retinal axons extend swiftly through the growing optic nerve, where they are tightly shepherded into a narrow track by newly differentiating glial cells, positive for the fish vimentin. In the GFAP-positive glial territory of the optic tract, by contrast, growing axons are slowed down and probably branch. We suggest that this allows them to fasciculate accurately with older fibers and thereby propagate a tectotopic pattern established by pioneer axons in the embryo.  相似文献   

10.
TAG-1, a glycosylphosphatidyl inositol (GPI)-anchored protein of the immunoglobulin (Ig) superfamily, exhibits an unusual spatiotemporal expression pattern in the fish visual pathway. Using in situ hybridization and new antibodies (Abs) against fish TAG-1 we show that TAG-1 mRNA and anti-TAG-1 staining is restricted to nasal retinal ganglion cells (RGCs) in 24- to 72-h-old zebrafish embryos and in the adult, continuously growing goldfish retina. Anti-TAG-1 Abs selectively label nasal RGC axons in the nerve, optic tract, and tectum. Axotomized RGCs reexpress TAG-1, which occurs as late as 12 days after optic nerve lesion, when regenerating RGC axons arrive in the tectum, suggesting TAG-1 reexpression is target contact-dependent. Accordingly, TAG-1 reexpression ceases upon interruption of the regenerating projection by a second lesion. The topographic restriction of TAG-1 expression and its target dependency during regeneration suggests that TAG-1 might play a role in the retinotopic organization and restoration of the retinotectal pathway.  相似文献   

11.
Cadherins are a family of molecules mediating Ca2+-dependent cell-cell adhesion in various tissues. N - and R-cadherin are expressed in the chick embryonic CNS and differ in their expression pattern during development. Here we focus on the differential expression of N - and R-cadherin in the early optic nerve. N-cadherin is expressed by the retinal neurites growing through the optic nerve. R-cadherin is expressed by the early optic nerve glia, which derives from the optic stalk neuroepithelium and corresponds to an immature form of the type-1 astrocyte described in rat optic nerve. The close contact between the plasma membranes of the retinal neurites and the optic nerve glia is believed to be important in guiding retinal axons through the optic nerve. Using neuroblastoma cell lines transfected with R-cadherin, we demonstrate that the N-cadherin-positive retinal axons can use R-cadherin as a substrate for axon elongation. These results suggest that the R-cadherin expressed by the early optic nerve glia might provide a molecular substrate for the growth of N-cadherin-positive retinal axons through the optic nerve. © 1993 Wiley-Liss, Inc.  相似文献   

12.
We have examined the age-related reordering of optic axons as they pass through the chiasmatic region in fetal ferrets. Proportions of young and old optic axons were determined from electron micrographs taken sequentially through the prechiasmatic nerve, chiasm, and tract. This “chronotopic” reordering of axons was shown to emerge gradually, beginning rostral to the fusion of the two optic nerves, but continuing to develop caudal to the chiasmatic midline. Segregation of young from old optic axons was most pronounced within the optic tract. We then compared the emergence of this fiber reorganization to the distribution of cell adhesion and extracellular matrix molecules and to the glial architecture within the pathway. Using immunohistochemistry, the distributions of the cell adhesion molecules L1, NCAM, and TAG-1 and the extracellular matrix molecules laminin-1 and chondroitin sulfate proteoglycans (CSPGs) were determined. Among these, only the distribution of CSPGs was observed to change in a manner that complemented the segregation of young from old optic axons. CSPGs were densest in the deeper parts of the optic tract, coincident with radial glial fibers that turn to course within the region of the oldest optic axons. Both the glial architecture and the CSPG distribution form as a consequence of the invasion of the first optic axons, shown by the developmental sequence of each, and by the fact that these glial and molecular features fail to form in the absence of optic axons. The data suggest a model in which the gradient of CSPGs across the depth of the tract contributes to the formation of the chronotopic fiber reordering by providing a relatively unfavorable environment for subsequent axonal growth. The CSPGs may do so by interfering with adhesion molecules on optic axons that normally promote elongation. J. Comp. Neurol. 380:355–372, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Forty-two monoclonal antibodies (mAbs) generated against nicotinic acetylcholine receptors (AChRs) from electric organ were tested for their ability to cross-react in the optic tectum of the frog Rana pipiens. Twenty-eight of the mAbs tested (67%) bound to the optic neuropil of the tectum as revealed by immunoperoxidase cytochemistry. The pattern of peroxidase stain for cross-reacting mAbs corresponded in position to a subset of the retinotectal projections. Electron microscopic examination revealed that peroxidase reaction product was associated with the surface of vesicle-containing profiles but not with synaptic sites. Removal of one retina resulted in the loss of immunoreactivity in the contralateral tectum. AChR-like immunoreactivity was also associated with the optic tract and optic nerve and with retinal ganglion cells. These results indicate that some classes of retinal ganglion cells bear AChR-like molecules on their surface. The existence of these molecules on ganglion cell axons and terminals seems the most likely explanation for the AChR-like immunoreactivity present in the tectum.  相似文献   

14.
The chick G4 molecule is a cell surface glycoprotein which is a member of the L1/NILE/NgCAM/8D9 group of neural cell adhesion molecules. Polyclonal antisera against G4 have been shown to decrease sympathetic neurite outgrowth on sympathetic axons and to de-bundle retinal axons growing on a tectal membrane substrate. We have extended the specificity of these results by showing that a panel of monoclonal antibodies against G4 is also effective in reducing sympathetic neurite outgrowth on sympathetic axons. Furthermore, purified G4 adsorbed onto an inert substrate promotes extensive neurite outgrowth. Monoclonal antibodies to G4 completely inhibit the activity of purified G4. These data show that G4 is a cell surface neurite outgrowth promoting molecule, a function which was first suggested by antibody perturbation experiments and now is confirmed directly.  相似文献   

15.
We have directly compared the abilities of astrocytes from newborn and adult rats to support or inhibit the growth of regenerating axons in vitro. Astrocytes prepared from newborn rats were able to promote retinal ganglion cell (RGC) axon growth from embryonic and adult rat and from adult fish retinal explants. Retinal axons from E16 rat retinae grew significantly faster on astrocytes from neonatal rats than those from E18 or adult rat retinae with growth rates comparable to RGC axons from adult fish retinae. RGC regeneration from adult rat retinae was almost completely inhibited on adult rat optic nerve astrocytes. Only axons from adult fish retinae were able to extend onto monolayers from these reactive astrocytes, although their growth rates were significantly reduced. We conclude that the failure of mammalian RGC axons to regrow within the lesioned optic nerve environment is, at least in part, due to nonpermissive aspects of adult “reactive” optic nerve astrocytes. However, the cell intrinsic growth potential of RGCs also appears to influence their ability to extend axons on cellular substrates.  相似文献   

16.
Many studies have demonstrated the involvement of the EphA family of receptor tyrosine kinases and their ligands, ephrin-A2 and -A5, in the development of the temporonasal axis of the retinotectal/collicular map, but the role of these molecules in optic nerve regeneration has not been well studied. Noting that the characteristic gradients of the EphA/ephrin-A family that are expressed topographically in the retina and tectum of embryonic chicks and mice tend to disappear after birth, we took as our starting point an analysis of EphA and ephrin-A expression in leopard frogs (Rana pipiens and utricularia), species capable of regenerating the retinotectal map as adults. For the EphA family to be involved in the regeneration, one would expect these topographic gradients to persist in the adult or, if downregulated after metamorphosis, to be reexpressed after optic nerve injury. Using EphA3 receptor and ephrin-A5 ligand alkaline phosphatase in situ affinity probes (RAP and LAP, respectively) in whole-mount applications, we report that reciprocally complementary gradients of RAP and LAP binding persist in the optic tract and optic tectum of postmetamorphic frogs, including mature adults. EphA expression in temporal retinal axons in the optic tract was significantly reduced after nerve section but returned during regeneration. However, ephrin-A expression in the tectal parenchyma was not significantly elevated by either eye removal, with degeneration of optic axons, or during regeneration of the retinotectal projection. Thus, the present study has demonstrated a persisting expression of EphA/ephrin-A family members in the retinal axons and tectal parenchyma that may help guide regenerating fibers, but we can offer no evidence for an upregulation of ephrin-A expression in conjunction with optic nerve injury.  相似文献   

17.
Microtubule associated proteins are a heterogeneous group of proteins that have been implicated in regulating microtubule stability. They play an important role in the organisation of the neuronal cytoskeleton during neurite outgrowth, plasticity and regeneration. The fish visual system presents a considerable degree of plasticity. Thus, the retina grows continually throughout life and the optic nerve regenerates after crush. In the present study, we compared the distribution of the microtubule associated protein 1B in its phosphorylated form (MAP1B-phos) in the normal adult fish visual system with that observed during optic nerve regeneration after adult optic nerve crush using a specific monoclonal antibody mAb-150. Expression of MAP1B-phos was observed in some ganglion cell somata and in developing, growing axons within the control optic nerve. Few immunoreactive terminals were seen in the control optic tectum. After optic nerve crush, we found additional MAP1B-phos expression in regenerating axons throughout the visual system. Our results demonstrate that MAP1B-phos is present in growing and regenerating axons of fish retinal ganglion cells, which suggests that the phosphorylated form of MAP1B may play an important role in developmental and regeneration processes within the fish central nervous system.  相似文献   

18.
Previous studies have demonstrated that heparan sulfate (HS) proteoglycans (PGs) regulate neurite outgrowth through binding to a variety of cell surface molecules, extracellular matrix proteins, and growth factors. The present study investigated the possible involvement of HS-PGs in retinal axon growth by examining its expression in the retinofugal pathway of mouse embryos by using a monoclonal antibody against the HS epitope. Immunoreactive HS was first detected in all regions of the retina at embryonic day (E) 11. The staining was gradually lost in the central regions and restricted to the retinal periphery at later developmental stages (E12--E16). Prominent staining for HS was consistently found in the retinal fiber layer and at the optic disk, indicating a possible supportive role of HS-PGs in axon growth in the retina. At the ventral diencephalon, immunostaining for HS was first detected at E12, before arrival of any retinal axons. The staining matched closely the neurons that are immunopositive for the stage-specific embryonic antigen 1 (SSEA-1). At E13 to E16, when axons are actively exploring their paths across the chiasm, immunoreactivity for HS was particularly intense at the midline. This characteristic expression pattern suggests a role for HS-PGs in defining the path of early axons in the chiasm and in regulating development of axon divergence at the midline. Furthermore, HS immunoreactivity is substantially reduced at regions flanking both sides of the midline, which coincides spatially to the position of actin-rich growth cones from subpial surface to the deep regions of the optic axon layer at the chiasm. Moreover, at the threshold of the optic tract, immunoreactive HS was localized to deep parts of the fiber layer. These findings indicate that changes in age-related fiber order in the optic chiasm and optic tract of mouse embryos are possibly regulated by a spatially restricted expression of HS-PGs.  相似文献   

19.
The pattern in which optic axons invade the tectum and begin synaptogenesis was studied in the chick. The anterogradely transported marker, horseradish peroxidase, was injected into one eye of embryos between 5 and 16 days of development (E5 to E16). This labeled the optic axons in the brain. The first retinal axons arrived in the most superficial lamina of the tectum on E6. They entered the tectum at the rostroventral margin. During the next 6 days of development the axons grew over the tectal surface. First they filled the rostral tectum, the oldest portion of the tectum, and then they spread to the caudal pole. Shortly after the first axons entered the tectum on E6, labeled retinal axons were found penetrating from the surface into deeper tectal layers. In any given area of the tectum, optic axons were seen penetrating deeper layers shortly after arriving in that area. Electron microscopic examination showed that at least some of the labeled axons in rostral tectum formed synapses with tectal cells by E7. These results show two things which contrast with results from previous studies. First, there is no delay between the time the retinal axons enter the tectum and the time they penetrate into synaptic layers of the tectum. Second, the first retinotectal connections are formed in rostral tectum and not central tectum. Retrograde tracing showed the first optic axons that arrived in the tectum were from ganglion cells in central retina. Previous studies have shown that the ganglion cells of central retina project to the central tectum in the mature chick. This opens the possibility that the optic axons from central retina, which connect to rostral tectum in the young embryo, shift their connections to central tectum during subsequent development. As they enter the tectum the growth cones of retinal axons appear to be associated with the external limiting membrane. During the time that connections would begin to shift in the tectum a second population of axons appears at the bottom of stratum opticum, some with characteristics of growth cones. This late-appearing population may represent axons shifting their connections. These results have implications for theories on how the retinotopic pattern of retinotectal connections develops.  相似文献   

20.
To identify molecular components involved in directed axonal outgrowth and in neural pattern formation, hybridoma technology was employed using the visual system of the chicken as a model system. Using cell surface protein fractions as immunogens, we obtained the monoclonal antibody mAb C4, which binds to a 135 kDa cell surface glycoprotein of the high-mannose or complex type. Within the retina, the C4 antigen is found exclusively in the optic fiber layer. Immuno-double labeling of retinal whole mounts with a glial marker and mAb C4 suggests that the C4 antigen is restricted to ganglion cell axons but not found on Müller glial endfeet. Biochemical and histological data reveal similarities between the C4-antigen and G4/NgCAM. Addition of mAb C4 to retina explants cultured on a striped carpet of tectal cell membranes leads to defasciculation of outgrowing axons, suggesting that the C4 antigen serves as an axon cell adhesion molecule (Ax-CAM). Axon elongation on neighboring axons can be also inhibited by the application of mAb C4 to embryonic retina whole mounts in vitro. The aberrant axon growth into incorrect retina layers observed under these conditions suggests that the C4 antigen functions as a guiding cue for the generation of the retinal optic fiber layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号