首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
1 In this study, we have investigated the vasodilator response to acetylcholine under diabetes conditions in isolated renal arteries of rabbits. We have also examined the contribution of endothelium-derived nitric oxide (EDNO) and endothelium-derived hyperpolarizing factor (EDHF) to the endothelium-dependent relaxation caused by acetylcholine in the renal arteries of alloxan-induced diabetic rabbits. 2 Acetylcholine (10(-10) - 10(-4) M) produced cumulative concentration-response curve in the renal arteries of both control and diabetic rabbits. The EC50 values and maximal responses to acetylcholine were not significantly different relative to diabetic conditions. In order to isolate the EDHF component of acetylcholine-induced vasodilator response, L-nitro-methyl arginine ester (L-NAME, 10(-4) M) and indomethacin (10(-6) M) were added to the Krebs' solution throughout the experiment. Under these conditions, acetylcholine induced vasodilatation in the isolated renal arteries from both control and diabetic rabbits. The vasodilator response to acetylcholine was not affected under diabetic conditions. 3 Sodium nitroprusside (SNP)-induced relaxation was increased in the diabetic rabbits compared with the control animals. 4 Tetrabutyl ammonium (TBA, 0.5 mM) produced a significant reduction in acetylcholine-induced vasodilatation in both preparations from control and diabetic animals, consistent with involvement of K+ channels in mediating this response. Glibenclamide (1 microM) attenuated acetylcholine-induced vasodilatation in preparations from control animals only, while iberiotoxin (0.05 microM) significantly reduced the vasodilator response to acetylcholine in preparations from both control and diabetic animals. 5 The role of EDNO in mediating acetylcholine-induced vasodilatation was examined. The vascular preparations were incubated with 20 mM K(+)-Krebs' solution to inhibit the EDHF contribution to acetylcholine-induced vasodilatation. Under this condition, acetylcholine induced a vasodilator response in both preparations from control and diabetic rats. Pretreatment with L-NAME (10(-4) M) attenuated acetylcholine-induced vasodilatation in both preparations, indicating an nitric oxide-mediated vasodilator response. 6 Our results indicated that acetylcholine-induced vasodilatation in the isolated renal arteries of alloxan-induced diabetic rabbits was not affected under diabetic conditions. Acetylcholine-induced vasodilatation is mediated by two vasodilator components; namely, EDHF and EDNO. The contribution of EDHF and EDNO to acetylcholine-induced vasodilatation was not affected under diabetic conditions and there was no indication of endothelial dysfunction associated with diabetes. EDHF component was found to act mainly through high conductance Ca(2+)-activated K+ channels under normal and diabetic conditions, while the adenosine triphosphate-dependent K+ channels were involved in mediating acetylcholine vasodilator response in the control preparations only.  相似文献   

2.
The influence of diabetes on regulatory mechanisms and specific receptors implicated in the response of isolated rabbit renal artery to endothelin-1 was examined. Endothelin-1 induced a concentration-dependent contraction that was less potent in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal or N(G)-nitro-L-arginine (L-NOARG) enhanced contractions to endothelin-1 either in control and diabetic arteries. Indomethacin inhibited endothelin-1-induced response in control arteries, but enhanced it in diabetic arteries. In contrast to that observed in rubbed and in L-NOARG treated arteries, in the presence of indomethacin the contractile action of endothelin-1 was higher in diabetic arteries than in control arteries. Nimesulide enhanced endothelin-1 contractions both in control and diabetic arteries. Cyclo-(D-Asp-Pro-D-Val-Leu-D-Trp) (BQ-123, endothelin ET(A) receptor antagonist), attenuated endothelin-1 vasoconstriction in control rabbits, while vasoconstriction resulted increased in diabetic rabbits. 2,6-Dimethylpiperidinecarbonyl-gamma-Methyl-Leu-N(in)-(Methoxycarbonyl)-D-Trp-D-Nle (BQ-788, endothelin ET(B) receptor antagonist), enhanced the contractile response in control rabbit arteries without modifying this response in diabetic rabbits. In summary, diabetes decreases the sensitivity of the rabbit renal artery to endothelin-1 by decreasing the ratio between vasoconstrictor and vasodilator prostanoids released after activation of endothelin ET(A) receptors.  相似文献   

3.
The influence of alloxan-induced diabetes on the reactivity of rabbit basilar artery to endothelin-1 was examined. Endothelin-1 induced concentration-dependent contraction of basilar arteries that was higher in diabetic than in control rabbits. Endothelium removal produced a higher enhancement of the endothelin-1-induced contraction in control than in diabetic rabbits. N(G)-nitro-L-arginine (L-NOArg) enhanced the maximal contraction induced by endothelin-1 in control rabbits and potentiated this response in diabetic rabbits. Endothelin ETA receptor antagonist, cyclo(D-Asp-Pro-D-Val-Leu-D-Trp) (BQ-123), inhibited endothelin-1-induced contraction in both rabbit groups. Endothelin ETB receptor antagonist, 2,6-Dimethylpiperidinecarbonyl-gamma-Methyl-Leu-Nin-(Methoxycarbonyl)-D-Trp-D-Nle (BQ-788), enhanced endothelin-1-induced contraction in control rabbits and decreased the potency of endothelin-1 in diabetic rabbits. Sodium nitroprusside-induced relaxation of basilar arteries was lower in diabetic than in control rabbits. These results suggest that mechanisms underlying rabbit basilar artery hyperreactivity to endothelin-1 include decreased endothelial modulation of endothelin-1-induced contraction, with impaired endothelial endothelin ETB receptor activity; decreased sensitivity to nitric oxide (NO) in vascular smooth muscle; and enhanced participation of muscular endothelin ETA and ETB receptors.  相似文献   

4.
Atrial natriuretic peptide (ANP) plays an important role in the pathophysiology of the vascular complications in diabetes. The working hypothesis was that diabetes might modify the vascular actions of ANP in isolated rabbit carotid arteries and the mechanisms involved in these actions. ANP (10?12–10?7 M) induced a relaxation of precontracted carotid arteries, which was lower in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal increased the ANP-induced relaxation. Isatin inhibited the relaxation to ANP both in arteries with and without endothelium. Carotid arteries from diabetic rabbits showed a decreased natriuretic peptide receptor (NPR)-A expression and an enhanced NPR-C expression. Inhibition of NO-synthesis did not modify ANP-induced relaxation in control rabbits but inhibited it in diabetic rabbits. In arteries with endothelium indomethacin enhanced the relaxation to ANP in control rabbits but did not modify it in diabetic rabbits. In endothelium-denuded arteries indomethacin inhibited the relaxation to ANP in both groups of animals. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and diabetic rabbits. Tetraethylammonium inhibited the relaxation to ANP, and this inhibition was higher in diabetic than in control rabbits. These results suggest that diabetes produces hyporeactivity of the rabbit carotid artery to ANP by a mechanism that at least includes a reduced expression of NPR-A, an enhanced expression of NPR-C and a reduced participation of K+-channels. Furthermore, diabetes enhances endothelial NO release and diminishes the ratio thromboxane A2/prostacyclin. This increase of vasodilators could result from compensatory mechanisms counteracting the arterial hyporeactivity to ANP.  相似文献   

5.
We examined endothelium-dependent and -independent hyperpolarizations and endothelium-dependent relaxation responses in carotid arteries isolated from streptozotocin-induced diabetic rats and age-matched controls. The resting membrane potentials were not significantly different between control and diabetic carotid arteries. The endothelium-dependent hyperpolarization induced by acetylcholine, which was inhibited by TEA but not by glibenclamide or by treatment with either a high concentration of glucose or pertussis toxin, was significantly weaker in diabetic arteries than in the controls. The relaxation responses to acetylcholine in carotid artery rings were significantly decreased in streptozotocin-diabetic rats. Treatment with NG-nitro-L-arginine (L-NOARG) inhibited the acetylcholine-induced maximal relaxation by 80% and 30% in control and streptozotocin-diabetic rats, respectively, and the simultaneous application of L-NOARG and indomethacin had a more potent inhibitory effect on this relaxation in both groups. The release of 6-keto-prostaglandin F1alpha and that of thromboxane A2 in response to methoxamine or methoxamine plus acetylcholine were both markedly decreased in diabetic rats. The cromakalim-induced hyperpolarization of the carotid artery, which was completely prevented by glibenclamide, was also significantly weaker in diabetic arteries than in the controls. These results suggest that changes in (1) various K+ channels on smooth muscle, (2) the biosynthesis of cyclooxygenase products and (3) endothelium-dependent relaxation may be important factors in the development of diabetic complications in the carotid artery.  相似文献   

6.
The influence of diabetes on the response of isolated rabbit renal arteries to 5-hydroxytryptamine (5-HT) was examined. 5-HT induced a concentration-related contraction that was higher in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal did not significantly modify 5-HT contractions in arteries from control rabbits but enhanced the response to 5-HT in arteries from diabetic rabbits. Incubation with N(G)-nitro-L-arginine (L-NA) enhanced contractions to 5-HT in arteries from control and diabetic rabbits. In arteries with endothelium, this L-NA enhancement was lower in diabetic rabbits than in control rabbits. In arteries without endothelium, incubation with L-NA enhanced the maximal contractions to 5-HT in control rabbits but did not in diabetic rabbits. Indomethacin inhibited 5-HT-induced contraction of arteries from control rabbits and enhanced the maximal contraction to 5-HT of arteries from diabetic rabbits. In summary, diabetes enhances contractile response of rabbit renal artery to 5-HT. In control animals, this response is regulated by both endothelial and non-endothelial (neuronal) nitric oxide (NO) and by a vasoconstrictor prostanoid. Diabetes impairs the release of non-endothelial NO and the vasoconstrictor prostanoid.  相似文献   

7.
Kidney disease is a frequent complication in diabetes, and significant differences have been reported between male and female patients. Our working hypothesis was that diabetes might modify the vascular actions of testosterone in isolated rabbit renal arteries and the mechanisms involved in these actions. Testosterone (10?8 to 10?4 M) induced relaxation of precontracted arteries, without significant differences between control and diabetic rabbits. Both in control and diabetic rabbits endothelium removal inhibited testosterone relaxant action. In arteries with endothelium, incubation with indomethacin (10?5 M), NG-nitro-l-arginine (10?5 M) or tetraethylammonium (10?5 M) did not modify relaxations to testosterone neither in control nor in diabetic rabbits. In endothelium-denuded arteries indomethacin enhanced the relaxant action of testosterone, both in control and diabetic rabbits. In arteries from diabetic rabbits, eNOS, iNOS and COX-1 expression and testosterone-induced release of thromboxane A2 and prostacyclin were not significantly different from those observed in control rabbits. However, COX-2 expression was significantly lower in diabetic rabbits that in control rabbits. In nominally Ca2+-free medium, cumulative addition of CaCl2 (10?5 to 3 × 10?2 M) contracted previously depolarized arteries. Testosterone (10?4 M) inhibited CaCl2 contractions of the renal artery both in control and diabetic rabbits. These results show that testosterone relaxes the renal artery both in control and diabetic rabbits. This relaxation is modulated by muscular thromboxane A2, it is partially mediated by endothelial prostacyclin, and it involves the blocking of extracellular Ca2+ entry. Diabetes does not modify the mechanisms involved in the relaxant action of testosterone in the rabbit renal artery.  相似文献   

8.
The influence of diabetes on endothelial mechanisms implicated in the response of isolated rabbit carotid arteries to 5-hydroxytryptamine (5-HT) was studied. 5-HT induced a concentration-dependent contraction that was potentiated in arteries from diabetic rabbits with respect to that in arteries from control rabbits. Endothelium removal potentiated 5-HT contractions in arteries from both control and diabetic rabbits but increased the maximum effect only in arteries from diabetic rabbits. Incubation of arterial segments with N(G)-nitro-L-arginine (L-NA) enhanced the contractile response to 5-HT. This L-NA enhancement was greater in arteries from diabetic rabbits than in arteries from control rabbits. Aminoguanidine did not modify the 5-HT contraction in arteries from control and diabetic rabbits. Indomethacin inhibited the 5-HT-induced response, and this inhibition was higher in arteries from control rabbits than in arteries from diabetic rabbits. In summary, diabetes enhances the sensitivity of the rabbit carotid artery to 5-HT. In control animals, the endothelium modulated the arterial response to 5-HT by the release of both nitric oxide (NO) and a vasoconstrictor prostanoid. Diabetes enhances endothelial constitutive NO activity and impairs the production of the endothelial vasoconstrictor.  相似文献   

9.
In this study, we have investigated the vasodilator response to acetylcholine under diabetic conditions in isolated renal arteries of Wistar rats. The effect of nitric oxide synthase (NOS) inhibition on acetylcholine-induced vasodilator response was investigated. We have also examined the effects of two endothelium-dependent agonists which induce receptor-dependent and receptor-independent vasodilator responses.Acetylcholine (10(-10) to 10(-4)M) produced a cumulative concentration-response curve in the renal arteries of both control and diabetic rats. The EC(50) values and maximal responses to acetylcholine were reduced relative to diabetic conditions. The vasodilator response to sodium nitroprusside (SNP) (10(-10) to 10(-5)M) was also investigated. SNP produced a cumulative concentration-dependent vasodilator response, which was not affected under diabetic conditions.To confirm the nitric oxide component of acetylcholine-induced vasodilator response, L-nitro-methyl arginine ester (L-NAME) (10(-4)M) was added to the Krebs' solution. The maximal vasodilator response to acetylcholine was reduced in the presence of L-NAME (10(-4)M) in both control and diabetic renal preparations, with greater attenuation in the diabetic conditions.In order to examine the possible contribution of receptor dysfunction in diabetes, the vasodilator response to ADP (receptor-dependent agonist) and the calcium ionophore A23187 (receptor-independent agonist) were investigated. ADP (10(-10) to 10(-5)M) produced a concentration-dependent vasodilator response in preparations from both control and diabetic rats. The maximal vasodilator response to ADP was significantly reduced in the renal arteries from diabetic animals. However, A23187 (10(-10) to 10(-5)M); the receptor-independent agonist, produced a concentration-dependent vasodilator response in both control and diabetic rat preparations. There was no significant change in the EC(50) values or maximal vasodilator responses to A23187 under diabetic conditions.In conclusion, our results indicated that acetylcholine-induced vasodilatation in the isolated renal arteries of streptozotocin (STZ)-induced diabetic rats was attenuated under diabetic conditions. The reduction in acetylcholine-induced vasodilatation may be attributed to acetylcholine receptor dysfunction. This is based on the results from this study in which the vasodilator response to the receptor-independent agonist A23187 were maintained, while that of the receptor-dependent agonist ADP was attenuated under diabetic conditions.  相似文献   

10.
We compared the mechanisms of vasorelaxation of acetylcholine and of substance P with reference to K(+) channels, and analyzed pharmacologically the nature of endothelium-derived substance(s) other than NO and prostanoids in monkey and dog coronary arteries. Coronary arteries were isolated from monkeys and dogs, and the isometric tension of the artery strips was measured. In canine coronary artery strips treated with indomethacin plus N(G)-nitro- L-arginine ( L-NA) and partially contracted with prostaglandin F(2alpha), acetylcholine induced concentration-related relaxation, which was abolished by removal of the endothelium. The relaxation was markedly suppressed but not abolished in the strips exposed to high K(+) media. Charybdotoxin plus apamin potently inhibited the relaxation to the similar extent to that by high K(+) media, whereas glibenclamide or iberiotoxin had no effect. The relaxation was markedly inhibited by quinacrine, a phospholipase A(2) inhibitor, and ketoconazole, a selective cytochrome P450 (CYP) 3A inhibitor, but not by sulfaphenazole, a selective CYP 2C inhibitor. In contrast to acetylcholine, endothelium-dependent and indomethacin-plus- L-NA-resistant relaxation induced by substance P was not inhibited by high K(+) media, charybdotoxin plus apamin, or ketoconazole. Quinacrine and AA861, a 5-lipoxygenase inhibitor, inhibited the relaxation induced by substance P. In monkey coronary artery, acetylcholine-induced relaxation resistant to indomethacin plus L-NA was abolished by endothelial denudation and by treatment with high K(+) media, charybdotoxin plus apamin, progesterone and ketoconazole, but was not affected by iberiotoxin or sulfaphenazole. Substance P did not relax monkey coronary arteries. It is concluded that endothelium-dependent, nitric oxide- and prostanoid-independent relaxation induced by acetylcholine in monkey and dog coronary arteries are mediated by charybdotoxin plus apamin-sensitive but iberiotoxin-insensitive Ca(2+)-activated K(+) channel opening substance(s), which may be CYP3A-derived arachidonic acid metabolite(s). Contrasting to the response to acetylcholine, endothelium-dependent, indomethacin-plus- L-NA-resistant relaxation induced by substance P in dog coronary artery is not associated with K(+) channel opening, and may be mediated by 5-lipoxygenase product(s).  相似文献   

11.
1. We have examined the effects of inhibition of nitric oxide synthase, cyclo-oxygenase and lipoxygenase on the responses of renal arcuate arteries of Wistar rats, with and without endothelium, to noradrenaline, potassium chloride, endothelin-1, acetylcholine and sodium nitroprusside. 2. Noradrenaline, potassium chloride and endothelin-1 caused concentration-dependent contraction of the vessels. Indomethacin (14 microM) attenuated the contractile response to noradrenaline and to potassium chloride. The inhibitory effect of indomethacin persisted following endothelial removal. 3. Acetylcholine produced concentration-dependent relaxation of the vessels which was potentiated by indomethacin (14 microM). 4. NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) did not affect the contractile response to either noradrenaline or potassium chloride but abolished relaxation to acetylcholine. In addition, L-NAME abolished the affects of indomethacin on acetylcholine-induced relaxation and noradrenaline- and potassium chloride-induced contraction. 5. BWC755C attenuated noradrenaline and potassium chloride-induced contraction. This effect persisted in the presence of indomethacin. 6. In vessels pretreated with CHAPS, BW755C inhibited both noradrenaline and potassium chloride-induced contraction. In these vessels BW755C had no additional inhibitory effect to indomethacin on noradrenaline- and potassium-induced contraction. 7. Inhibition of nitric oxide synthase with L-NAME (100 microM) attenuated the effect of BW755C on noradrenaline- and potassium-induced contraction. 8. BW755C alone did not affect endothelium-dependent relaxation as assessed by the response to acetylcholine. However, in the presence of indomethacin, BW755C inhibited acetylcholine-induced relaxation. 9. BW755C did not affect endothelium-independent relaxation as assessed by the response to sodium nitroprusside in vessels with or without endothelium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cardiovascular disease is the major cause of morbidity and mortality in diabetic patients, which in turn is also associated with low levels of serum testosterone. The working hypothesis was that diabetes might modify the mechanisms involved in the vascular actions of testosterone in isolated rabbit carotid arteries. Testosterone (10?8–3 × 10?4 M) induced a concentration-dependent relaxation of precontracted carotid arteries, which was higher in diabetic than in control rabbits. In control rabbits neither endothelium removal nor the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine (l-NOArg, 10?5 M) modified the relaxant action of testosterone, and the cyclooxygenase (COX) inhibitor indomethacin (10?5 M) enhanced this relaxation. In contrast, in diabetic rabbits endothelium removal, l-NOArg (10?5 M) or indomethacin (10?5 M) inhibited the testosterone induced relaxation. In arteries from diabetic rabbits, eNOS, iNOS and COX-2 expression and testosterone induced release of prostacyclin resulted enhanced in comparison with arteries from control rabbits. Testosterone (10?4 M) strongly inhibited CaCl2 (10?5–3 × 10?2 M) concentration-related contractions of the carotid artery both in control and diabetic rabbits. These results suggest that testosterone relaxes the rabbit carotid artery by blocking the extracellular calcium entry. Diabetes enhances the vasodilator response of the rabbit carotid artery to testosterone by a mechanism that at least includes an increased modulatory activity of the endothelial nitric oxide and an augmented release of COX-2 vasodilator, prostacyclin rather than the absence of COX-1 vasoconstrictor, thromboxane A2. The hypotestosteronemia observed in diabetic rabbits could be a consequence of the increased expression of iNOS and could contribute to the hyperreactivity of the rabbit carotid artery to testosterone.  相似文献   

13.
1. Endothelium-dependent relaxation in response to acetylcholine (ACh) and the calcium ionophore A 23187 was examined in aorta, coronary, basilar and renal arteries isolated from Watanabe heritable hyperlipidaemic (WHHL) rabbits of 2, 6 and 12 months of age, with normolipidaemic heterozygous WHHL rabbits as controls. 2. In the rings of WHHL rabbit aortae and coronary arteries preconstricted with vasoconstrictors, endothelium-dependent relaxation in response to ACh was attenuated with age compared to the heterozygous WHHL rabbits. A significant negative correlation was found between the total cholesterol content and the relaxation response to ACh in the aortae or coronary arteries from 6 and 12 month old WHHL rabbits. 3. In the rings of basilar arteries, endothelium-dependent relaxations to ACh were not modified with age. Similarly, in the rings of renal arteries, the relaxation response to ACh was not changed with age, but in the 6 and 12 month preparations, after the age of 6 months, a contraction following the relaxation appeared at higher concentrations of ACh (10?7 to 10?6 mol/L). The contraction was endothelium-dependent and inhibited by indomethacin. 4. A 23187-induced endothelium-dependent relaxations were also markedly attenuated in the aorta and significantly in the coronary artery with age. 5. Endothelium-independent relaxation to sodium nitroprusside was not changed in all arteries from WHHL rabbits of different ages. 6. These findings indicate that in the aorta and coronary artery of the WHHL rabbit, the endothelium-dependent relaxation to ACh and A 23187 becomes impaired with increasing age (i.e., with the progression of cholesterol deposition in the arterial wall) but is preserved in the basilar and renal artery.  相似文献   

14.
1. The possibility that the endothelium-derived hyperpolarising factor (EDHF) in the rat hepatic artery is a cytochrome P450 mono-oxygenase metabolite of arachidonic acid was examined in the present study. In this preparation, acetylcholine elicits EDHF-mediated relaxations in the presence of the nitric oxide (NO) synthase and cyclo-oxygenase inhibitors N omega-nitro-L-arginine (L-NOARG) and indomethacin, respectively. 2. 17-Octadecynoic acid (17-ODYA, 50 microM), a suicide-substrate inhibitor of the cytochrome P450 mono-oxygenases responsible for the production of 5,6-, 8,9-, 11,12- and 14,15-epoxyeicosatrienoic acids (EETs), had no effect on acetylcholine-induced relaxations in the presence of L-NOARG (0.3 mM) plus indomethacin (10 microM). Furthermore, 5,6-, 8,9-, 11,12- and 14,15- EETs failed to relax arteries without endothelium in the presence of L-NOARG plus indomethacin. 3. Proadifen and clotrimazole, which are inhibitors of several isoforms of cytochrome P450 mono-oxygenases, inhibited acetylcholine-induced relaxations in the presence of L-NOARG plus indomethacin. The concentration of acetylcholine which caused half-maximal relaxation was about 3 and 30 times higher in the presence than in the absence of clotrimazole (3 microM) and proadifen (10 microM), respectively. The maximal relaxation was reduced by proadifen but not by clotrimazole. Proadifen (10 microM) also inhibited acetylcholine-induced hyperpolarization in the presence of L-NOARG plus indomethacin. 4. In the presence of 30 mM K+ plus indomethacin (10 microM), acetylcholine induced an L-NOARG-sensitive relaxation mediated via release of NO. Under these conditions, proadifen (10 microM) shifted the acetylcholine concentration-response curve 6 fold to the right without affecting the maximal relaxation. Clotrimazole (3 microM) was without effect on these responses. The relaxant actions of the NO donor, 3-morpholino-sydnonimine, were unaffected by proadifen (10 microM). 5. The relaxant effects of the opener of ATP-sensitive potassium channels, levcromakalim, were abolished by proadifen (10 microM) and strongly attenuated by clotrimazole (3 microM). Proadifen (10 microM) also abolished the hyperpolarization induced by levcromakalim (1 microM). 6. The lack of effect of 17-ODYA on relaxations mediated by EDHF, together with the failure of extracellularly-applied EETs to produce relaxation, collectively suggest that EDHF is not an EET in the rat hepatic artery. It seems likely that inhibition of ion channels in the smooth muscle rather than reduced EDHF formation in the endothelium offers a better explanation for the actions of the cytochrome P450 inhibitors proadifen and clotrimazole.  相似文献   

15.
Summary 4 Groups of 2 month-old male Wistar rats were treated with a) cyclosporin A (CyA) 30 mg/kg/day alone, b) CyA plus cicletanine (Cic) 60 mg/kg/day, c) vehicle (vegetable oil) 1 ml/100 g rat/day and d) no treatment for 8 weeks. The reactivity of isolated papillary muscle to isoprenaline and Ca 2+ was not altered in any of the treated groups. Endothelium-dependent relaxation induced by acetylcholine was inhibited in aorta ring segments from CyA treated rats as compared to that of control and CyA+Cic-treated rats. The relaxation induced by acetylcholine in rat aortas was similar in all groups in the presence of 10 M indomethacin. Noradrenaline sensitivity of aortic segments was not affected by any treatments applied. The Ca2+-concentration response curves of aorta segments from CyA-treated and CyA+Cic-treated rats were shifted to the right as compared to control rats. In interlobar renal arteries the endothelium-dependent relaxation induced by acetylcholine was not affected by any form of treatment. In renal arteries 10 M indomethacin increased the maximal relaxation induced by acetylcholine about 50%. In these vessels noradrenaline sensitivity in CyA and CyA+Cic treated rats was higher than in controls. Cocaine, 3 M, shifted the noradrenaline concentration response curve to the left about 0.4 log units in all renal vessel groups, thus renal vascular smooth muscle sensitivity to noradrenaline was significantly greater in vessels from rats receiving CyA than in vessels from control rats. Administration of CyA induced only slight renal morphological changes. Cic was without effect on CyA induced morphological abnormalities. The results indicate that Cic is able to reverse the inhibitory effect of CyA on endothelium-dependent relaxations in aorta but does not affect the increased noradrenaline sensitivity of renal arteries associated with CyA treatment and was without effect on CyA induced changes in renal morphology. Treatment with CyA alone or in combination with Cic had no effect on the contractile force of the papillary muscle, indicating that CyA only affects function of vascular but not cardiac tissue. Send offprint requests to E. Mikkelsen at the above address  相似文献   

16.
The influence of diabetes on regulatory mechanisms and specific receptors implicated in the contractile response of isolated rabbit carotid arteries to endothelin-1 was examined. Endothelin-1 induced a concentration-dependent contraction that was greater in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal or N(G)-nitro-L-arginine enhanced contractions in response to endothelin-1 only in control arteries, without modifying the endothelin-1 response in diabetic arteries. Indomethacin, furegrelate (thromboxane A(2) inhibitor), or cyclo-(D-Asp-Pro-D-Val-Leu-D-Trp) (BQ-123; endothelin ET(A) receptor antagonist) inhibited the contractions in response to endothelin-1, the inhibition being greater in diabetic arteries than in control arteries. 2,6-Dimethylpiperidinecarbonyl-gamma-methyl-Leu-N(in)-(methoxycarbonyl)-D-Trp-D-Nle (BQ-788; endothelin ET(B) receptor antagonist) enhanced the contraction elicited by endothelin-1 in control arteries and displaced to the right the contractile curve for endothelin-1 in diabetic arteries. In summary, diabetes induces hyperreactivity of the rabbit carotid artery to endothelin-1 by a mechanism that at least includes: (1) enhanced activity of muscular endothelin ET(A) receptors; (2) impairment of endothelin ET(B) receptor-mediated nitric oxide (NO) release; and (3) enhancement of the production of thromboxane A(2).  相似文献   

17.
The mechanical responses to acetylcholine (ACh), sodium nitroprusside and phenylephrine (PE) were determined in normal and diabetic dog renal arterial strips with and without endothelium. Experimental diabetes increased the sensitivity, IC50 = (2.9 +/- 0.4) X 10(-8) mol/l in normal and (9.6 +/- 1.5) X 10(-9) mol/l in diabetic (p less than 0.01, n = 6) to ACh of endothelium intact renal arterial strips without influencing the maximum relaxation induced by this agonist. In all intact vessels PE produced contractions of equal magnitude. Removal of the endothelium completely abolished the relaxant ability of ACh, and caused a slight increase in the contractile response of both diabetic and normal strips to PE. The maximum contractile force generated by the denuded diabetic vessels in response to PE was significantly (p less than 0.01) greater than the maximum tension produced by the denuded nondiabetic arteries. The sensitivity of the tissues to PE was, however, not modified by either diabetes or endothelium removal. The direct relaxant sodium nitroprusside elicited a similar degree of relaxation in the two groups of arteries. Cyclooxygenase blockade had no effect on either the relaxation or contractile responses of any of the preparations. These findings suggest that short-term diabetes makes dog renal arteries supersensitive to ACh and hyperreactive to PE.  相似文献   

18.
The present study was undertaken to investigate vascular function in hypercholesterolemic rabbits and also to characterize the effects of pioglitazone on it. Rabbits were fed normal, 0.5% cholesterol chow, or 0.5% cholesterol chow plus 300 ppm pioglitazone for 5 or 10 weeks. The tension of isolated renal artery rings was measured isometrically, and morphometric analysis was performed. The cholesterol chow diet administered for 5 weeks did not affect acetylcholine-induced relaxation in the renal artery but that for 10 weeks decreased it. The N(G)-nitro-L-arginine (L-NOARG)- and indomethacin-resistant endothelium-dependent relaxation induced by acetylcholine in the renal artery was enhanced in rabbits receiving the cholesterol chow for 5 or 10 weeks, as compared to rabbits receiving the control diet, and the percentage of plaque area formation was increased in the renal artery by the cholesterol chow for 10 weeks. Pioglitazone normalized them without lowering serum lipid levels. The resistant parts of acetylcholine-induced relaxation was significantly inhibited when the renal artery was treated with charybdotoxin, an inhibitor of large and intermediate conductance Ca(2+)-activated K(+) channels, or N,N-diethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF 525a), a cytochrome P-450 monooxygenase inhibitor. Results indicate that hypercholesterolemia enhances endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in the rabbit renal artery and pioglitazon normalizes it without lowering serum lipid levels, and suggest that the maintenance of endothelial function by pioglitazon is related to the mechanisms for its anti-atheromatous activity.  相似文献   

19.
Modifications by atherosclerosis of endothelium-dependent and -independent relaxations were evaluated in carotid arteries isolated from Watanabe heritable hyperlipidemic (WHHL; age 20-29 months) and age-matched Japanese white (JW) rabbits. Marked, patchy atherosclerotic lesions were observed in all WHHL rabbit arteries. Endothelium-dependent relaxations induced by acetylcholine, partly depressed by N(G)-nitro-L-arginine (L-NA), were significantly inhibited in the WHHL rabbit arteries with atherosclerosis, compared with those in the arteries without atherosclerotic lesions from JW and WHHL rabbits. No difference was observed in the relaxation caused by superoxide dismutase in these arteries. Conversely, endothelium-dependent relaxations by substance P were greater in the arteries with and without atherosclerosis from WHHL rabbits than in the arteries from JW rabbits. Endothelium-independent relaxations elicited by sodium nitroprusside and 2,2-(hydroxynitrosohydrazino)bis-ethanamine (NOC18) did not differ in the arteries from JW and WHHL rabbits. The responses to acetylcholine and substance P of JW rabbit arteries with the endothelium were not attenuated by treatment with pertussis toxin. L-NA-resistant, endothelium-dependent relaxations by substance P were almost abolished by charybdotoxin, and atherosclerosis did not alter the response. It is concluded that endothelial functions, evaluated by substance P, in rabbit carotid arteries are not impaired by atherosclerosis and by long exposure to hyperlipidemia in vivo. Dysfunction of muscarinic receptors may be involved in the depressed response to acetylcholine. As far as the arteries used in the present study are concerned, responses mediated possibly by endothelium-derived hyperpolarizing factor (EDHF) are unlikely to be modulated by atherosclerosis.  相似文献   

20.
1. The mechanism of impairment of the endothelium-dependent relaxation in response to acetylcholine (ACh) in aortas from Watanabe heritable hyperlipidaemic (WHHL) rabbits was investigated using a modified sandwich (layered) technique. Intact aortas from WHHL rabbits or Japanese white (JW) rabbits as the control were used as donor strips of endothelium-derived relaxing factor (EDFU?) and endothelium-denuded aortas from JW rabbits were used as detector strips. The EDRF released from a donor strip could be directly detected as the relaxation response in a detector strip. 2. The endothelium-dependent relaxations in all rabbit arteries were almost abolished by treatment with NG-nitro-l-arginine methyl ester (an inhibitor of nitric oxide synthase). 3. The ACh-induced endothelium-dependent relaxations in the donor strips were impaired in WHHL rabbits in comparison with relaxations in JW and heterozygous WHHL rabbits. Similarly, the relaxation in the detector strips induced by EDRF released from donor strips was reduced in WHHL rabbits. There was a good negative correlation between the aortic total cholesterol content in the donor strips and the degree of relaxation in the detector strips from WHHL rabbits. 4. The reduced relaxation in the detector strips when using donor strips with high cholesterol accumulation or atheromatous plaque was not affected by superoxide dismutase plus catalase (scavengers of superoxide anions), indomethacin (an inhibitor of cyclo-oxygenase), ONO-3708 (an antagonist of endoperoxide/ thromboxane receptor) and 97–139 (an antagonist of endothelin ETA receptor). 5. These results suggest that the mechanism of impaired endothelium-dependent relaxations in atherosclerotic WHHL rabbit aortas may be due to the reduced amount of EDRF, probably nitric oxide, from the endothelium and not due to its inactivation by oxygen-derived free radicals or masking by increased production of endothelium-derived contracting factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号