首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Providing surrogate endpoints in clinical trials, medical imaging has become increasingly important in human-centered research. Nowadays, electronic data capture systems (EDCS) are used but binary image data is integrated insufficiently. There exists no structured way, neither to manage digital imaging and communications in medicine (DICOM) data in EDCS nor to interconnect EDCS with picture archiving and communication systems (PACS). Manual detours in the trial workflow yield errors, delays, and costs. In this paper, requirements for a DICOM-based system interconnection of EDCS and research PACS are analysed. Several workflow architectures are compared. Optimized for multi-center trials, we propose an entirely web-based solution integrating EDCS, PACS, and DICOM viewer, which has been implemented using the open source projects OpenClinica, DCM4CHEE, and Weasis, respectively. The EDCS forms the primary access point. EDCS to PACS interchange is integrated seamlessly on the data and the context levels. DICOM data is viewed directly from the electronic case report form (eCRF), while PACS-based management is hidden from the user. Data privacy is ensured by automatic de-identification and re-labelling with study identifiers. Our concept is evaluated on a variety of 13 DICOM modalities and transfer syntaxes. We have implemented the system in an ongoing investigator-initiated trial (IIT), where five centers have recruited 24 patients so far, performing decentralized computed tomography (CT) screening. Using our system, the chief radiologist is reading DICOM data directly from the eCRF. Errors and workflow processing time are reduced. Furthermore, an imaging database is built that may support future research.  相似文献   

2.
作为临床医学影像和对象管理的开源资源,dcm4che提供了D ICOM标准和HL7标准接口。dcm4che严格遵循IHE规范,是医疗信息集成中理想且强大的开发工具,但目前相关研究较少。本文在介绍IHE规范及医疗信息集成的基础上,介绍了dcm4che开源工具包在医疗信息系统中的功能特性和初步应用,其中包括dcm4che提供的各种接口及功能模块,重点介绍了dcm4che对D ICOM、HL7标准的完美支持,并利用部分应用实例阐述了严格遵循IHE规范的dcm4che开源工具包在医疗信息集成中的可用性、高效性和可移植性。本项工作为将来在医疗信息集成中大规模运用dcm4che提供了研究基础。  相似文献   

3.
The use of digitized histopathologic specimens (also known as whole-slide images (WSIs)) in clinical medicine requires compatibility with the Digital Imaging and Communications in Medicine (DICOM) standard. Unfortunately, WSIs usually exceed DICOM image object size limit, making it impossible to store and exchange them in a straightforward way. Moreover, transmitting the entire DICOM image for viewing is ineffective for WSIs. With the JPEG2000 Interactive Protocol (JPIP), WSIs can be linked with DICOM by transmitting image data over an auxiliary connection, apart from patient data. In this study, we explored the feasibility of using JPIP to link JPEG2000 WSIs with a DICOM-based Picture Archiving and Communications System (PACS). We first modified an open-source DICOM library by adding support for JPIP as described in the existing DICOM Supplement 106. Second, the modified library was used as a basis for a software package (JVSdicom), which provides a proof-of-concept for a DICOM client–server system that can transmit patient data, conventional DICOM imagery (e.g., radiological), and JPIP-linked JPEG2000 WSIs. The software package consists of a compression application (JVSdicom Compressor) for producing DICOM-compatible JPEG2000 WSIs, a DICOM PACS server application (JVSdicom Server), and a DICOM PACS client application (JVSdicom Workstation). JVSdicom is available for free from our Web site (), which also features a public JVSdicom Server, containing example X-ray images and histopathology WSIs of breast cancer cases. The software developed indicates that JPEG2000 and JPIP provide a well-working solution for linking WSIs with DICOM, requiring only minor modifications to current DICOM standard specification.  相似文献   

4.
目的:应用Java技术开发一个基于Web技术的操作简易、通用性强的医学图像发布环境。方法:采用Web服务器来查询和提取存储在DICOM服务器中的医学图像,客户端使用嵌有JavaApplet小程序的Web浏览器来访问Web服务器,完成客户端对服务器端医学图像的提取,JavaApplet小程序利用Web浏览器实现其图像操作。结果:我们使用Java技术开发一个基于Web技术的医学图像发布环境,完成了客户机通过Intemet对服务器端医学图像的读取操作,实现了异地专家的在线交流。结论:与大多数传统的PACS相比.基于Web技术的PACS系统易于安装和维护,与运行平台无关,可以高效的显示、处理医学图像,容易和使用Web技术构建的PACS系统整合。设置适当的安全防范措施,用户可以在医院外部实现对该系统的访问。Intemet技术的简易性和可扩展性使得该系统与传统PACS系统相比有着更大的优越性。  相似文献   

5.
The use of clinical imaging modalities within the pharmaceutical research space provides value and challenges. Typical clinical settings will utilize a Picture Archive and Communication System (PACS) to transmit and manage Digital Imaging and Communications in Medicine (DICOM) images generated by clinical imaging systems. However, a PACS is complex and provides many features that are not required within a research setting, making it difficult to generate a business case and determine the return on investment. We have developed a next-generation DICOM processing system using open-source software, commodity server hardware such as Apple Xserve®, high-performance network-attached storage (NAS), and in-house-developed preprocessing programs. DICOM-transmitted files are arranged in a flat file folder hierarchy easily accessible via our downstream analysis tools and a standard file browser. This next-generation system had a minimal construction cost due to the reuse of all the components from our first-generation system with the addition of a second server for a few thousand dollars. Performance metrics were gathered and the system was found to be highly scalable, performed significantly better than the first-generation system, is modular, has satisfactory image integrity, and is easier to maintain than the first-generation system. The resulting system is also portable across platforms and utilizes minimal hardware resources, allowing for easier upgrades and migration to smaller form factors at the hardware end-of-life. This system has been in production successfully for 8 months and services five clinical instruments and three pre-clinical instruments. This system has provided us with the necessary DICOM C-Store functionality, eliminating the need for a clinical PACS for day-to-day image processing.  相似文献   

6.
This article provides an overview on the literature published on the topic of cybersecurity for PACS (Picture Archiving and Communications Systems) and medical imaging. From a practical perspective, PACS specific security measures must be implemented together with the measures applicable to the IT infrastructure as a whole, in order to prevent incidents such as PACS systems exposed to access from the Internet. Therefore, the article first offers an overview of the physical, technical and organizational mitigation measures that are proposed in literature on cybersecurity in healthcare information technology in general, followed by an overview on publications discussing specific cybersecurity topics that apply to PACS and medical imaging and present the “building blocks” for a secure PACS environment available in the literature. These include image de-identification, transport security, the selective encryption of the DICOM (Digital Imaging and Communications in Medicine) header, encrypted DICOM files, digital signatures and watermarking techniques. The article concludes with a discussion of gaps in the body of published literature and a summary.  相似文献   

7.
HRPS数字化医院管理系统设计   总被引:7,自引:0,他引:7  
HRPS数字化医院管理系统是对HIS、RIS、PACS和Internet技术的整合和一体化设计。系统采用模块化结构,其中HIS包括HAS、RIS、PACS服务器、管理终端和临床终端,RIS包括各种影像设备、PACS和影像网络中心。硬件构架采用Web的多层体系结构Browse/Server模式,网络采用ATM技术,信息交换标准为DI-COM3.0,数据库为SQL Server6.5/7.0、Oracle,开发工具为PowerBuilder6.5。系统可在一个完整的平台上实现系统功能、管理功能、信息处理功能和通讯功能,具有共享性、安全性、开放性、可扩展等特点。目前已在40余家医院成功应用,实现了数字化、网络化和无胶片的医院现代化管理。  相似文献   

8.
随着医疗信息化的发展,图像归档与通信系统(PACS)、医院信息系统/放射科信息系统(HIS/RIS)等医疗信息管理系统日渐普及和完善,这些系统之间的互操作越发频繁,通过网络由一个封闭的系统走向开放,走向区域化成为必然。而信息的传输安全是使之成为可能的前提条件。基于网络安全的必要性,着重研究了医学数字成像与通信(DICOM)标准和安全传输层(TLS)协议,并结合OpenSSL工具包和DCMTK工具包实现了DICOM医疗信息TLS安全传输。  相似文献   

9.
The United States Department of Veterans Affairs is integrating imaging into the healthcare enterprise by using the Digital Imaging and Communication in Medicine (DICOM) standard protocols. Image management is directly integrated into the VistA Hospital Information System (HIS) software and clinical database. Radiology images are acquired with DICOM and are stored directly in the HIS database. Images can be displayed on low-cost clinician’s workstations throughout the medical center. High-resolution diagnostic quality multimonitor VistA workstations with specialized viewing software can be used for reading radiology images. Two approaches are used to acquire and handle images within the radiology department. Some sites have a commercial Picture Archiving and Communications System (PACS) interfaced to the VistA HIS, whereas other sites use the direct image acquisition and integrated diagnostic display capabilities of VistA itself. A small set of DICOM services has been implemented by VistA to allow patient and study text data to be transmitted to image producing modalities and the commercial PACS, and to enable images and study data to be transferred back. DICOM has been the cornerstone in the ability to integrate imaging functionality into the healthcare enterprise. Because of its openness, it allows the integration of system components from commercial and noncommercial sources to work together to provide functional cost-effective solutions.  相似文献   

10.
The Department of Defense issued a Request for Proposal (RFP) for its next generation Picture Archiving and Communications System in January of 1997. The RFP was titled Digital Imaging Network-Picture Archiving and Communications System (DIN-PACS). Benchmark testing of the proposed vendors' systems occurred during the summer of 1997. This article highlights the methods for test material and test system organization, the major areas tested, and conduct of actual testing. Department of Defense and contract personnel wrote test procedures for benchmark testing based on the important features of the DIN-PACS Request for Proposal. Identical testing was performed with each vendor's system. The Digital Imaging and Communications in Medicine (DICOM) standard images used for the Benchmark Testing included all modalities. The images were verified as being DICOM standard compliant by the Mallinckrodt Institute of Radiology, Electronic Radiology Laboratory. The Johns Hopkins University Applied Physics Laboratory prepared the Unix-based server for the DICOM images and operated it during testing. The server was loaded with the images and shipped to each vendor's facility for on-site testing. The Defense Supply Center, Philadelphia (DSCP), the Department of Defense agency managing the DIN-PACS contract, provided representatives at each vendor site to ensure all tests were performed equitably and without bias. Each vendor's system was evaluated in the following nine major areas: DICOM Compliance; System Storage and Archive of Images; Network Performance; Workstation Performance; Radiology Information System Performance; Composite Health Care System/Health Level 7 communications standard Interface Performance; Teleradiology Performance; Quality Control; and Failover Functionality. These major sections were subdivided into workable test procedures and were then scored. A combined score for each section was compiled from this data. The names of the involved vendors and the scoring for each is contract sensitive and therefore can not be discussed. All of the vendors that underwent the benchmark testing did well. There was no one vendor that was markedly superior or inferior. There was a typical bell shaped curve of abilities. Each vendor had their own strong points and weaknesses. A standardized benchmark protocol and testing system for PACS architectures would be of great value to all agencies planning to purchase a PACS. This added information would assure the purchased system meets the needed functional requirements as outlined by the purchasers PACS Request for Proposal.  相似文献   

11.
In the past decade, digital pathology and whole-slide imaging (WSI) have been gaining momentum with the proliferation of digital scanners from different manufacturers. The literature reports significant advantages associated with the adoption of digital images in pathology, namely, improvements in diagnostic accuracy and better support for telepathology. Moreover, it also offers new clinical and research applications. However, numerous barriers have been slowing the adoption of WSI, among which the most important are performance issues associated with storage and distribution of huge volumes of data, and lack of interoperability with other hospital information systems, most notably Picture Archive and Communications Systems (PACS) based on the DICOM standard.This article proposes an architecture of a Web Pathology PACS fully compliant with DICOM standard communications and data formats. The solution includes a PACS Archive responsible for storing whole-slide imaging data in DICOM WSI format and offers a communication interface based on the most recent DICOM Web services. The second component is a zero-footprint viewer that runs in any web-browser. It consumes data using the PACS archive standard web services. Moreover, it features a tiling engine especially suited to deal with the WSI image pyramids. These components were designed with special focus on efficiency and usability. The performance of our system was assessed through a comparative analysis of the state-of-the-art solutions. The results demonstrate that it is possible to have a very competitive solution based on standard workflows.  相似文献   

12.
Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. “Ordinary” hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.Key words: Data storage, archive, computed tomography, PACS, thin-slice CT  相似文献   

13.
The conception and deployment of cost effective Picture Archiving and Communication Systems (PACS) is a concern for small to medium medical imaging facilities, research environments, and developing countries’ healthcare institutions. Financial constraints and the specificity of these scenarios contribute to a low adoption rate of PACS in those environments. Furthermore, with the advent of ubiquitous computing and new initiatives to improve healthcare information technologies and data sharing, such as IHE and XDS-i, a PACS must adapt quickly to changes. This paper describes Dicoogle, a software framework that enables developers and researchers to quickly prototype and deploy new functionality taking advantage of the embedded Digital Imaging and Communications in Medicine (DICOM) services. This full-fledged implementation of a PACS archive is very amenable to extension due to its plugin-based architecture and out-of-the-box functionality, which enables the exploration of large DICOM datasets and associated metadata. These characteristics make the proposed solution very interesting for prototyping, experimentation, and bridging functionality with deployed applications. Besides being an advanced mechanism for data discovery and retrieval based on DICOM object indexing, it enables the detection of inconsistencies in an institution’s data and processes. Several use cases have benefited from this approach such as radiation dosage monitoring, Content-Based Image Retrieval (CBIR), and the use of the framework as support for classes targeting software engineering for clinical contexts.  相似文献   

14.
DICOM医学图像数据接口的Java实现   总被引:2,自引:0,他引:2  
DICOM3.0标准作为目前通用的医学图像标准 ,最重要的特性之一在于其面向对象性。本研究依据这一重要特性 ,描述了如何使用面向对象的Java语言实现该标准的接口软件。从而解决了DICOM硬件设备与后继PACS处理软件的接口问题。同时 ,为了克服现有PACS系统的硬件瓶颈 ,对数据读入方式采取了优化 ,大大降低了CPU运行时间和内存占用空间 ,提高了系统的运行质量和性能。  相似文献   

15.
We describe the development of software that allows and automates the routine inclusion of nondigital paper-based data directly into DICOM examinations. No human intervention is required. The software works by allowing the direct faxing of nondigital paper-based patient data directly into DICOM imaging examinations and is added as the first series in the examination. The software is effective in any typical PACS/DICOM server environment.  相似文献   

16.
数字医学图像传输协议 ( Digital image comm unication in m edicine,DICOM)主要是由 ACR和 NEMA联合提出的旨在解决医疗设备之间互连的一种通讯标准 ,目前已成为业界公认的标准。把 DICOM应用于远程放射系统具有很重要的意义 ,特别是在幅员辽阔的我国有更加突出的意义。简要地概述了 DICOM3 .0的主要内容及突出特征 ,并就其在 PACS、远程放射系统的开发策略、组成结构和几个关键问题进行了讨论  相似文献   

17.
Data security is a critical issue in an organization; a proper information security management (ISM) is an ongoing process that seeks to build and maintain programs, policies, and controls for protecting information. A hospital is one of the most complex organizations, where patient information has not only legal and economic implications but, more importantly, an impact on the patient’s health. Imaging studies include medical images, patient identification data, and proprietary information of the study; these data are contained in the storage device of a PACS. This system must preserve the confidentiality, integrity, and availability of patient information. There are techniques such as firewalls, encryption, and data encapsulation that contribute to the protection of information. In addition, the Digital Imaging and Communications in Medicine (DICOM) standard and the requirements of the Health Insurance Portability and Accountability Act (HIPAA) regulations are also used to protect the patient clinical data. However, these techniques are not systematically applied to the picture and archiving and communication system (PACS) in most cases and are not sufficient to ensure the integrity of the images and associated data during transmission. The ISO/IEC 27001:2013 standard has been developed to improve the ISM. Currently, health institutions lack effective ISM processes that enable reliable interorganizational activities. In this paper, we present a business model that accomplishes the controls of ISO/IEC 27002:2013 standard and criteria of security and privacy from DICOM and HIPAA to improve the ISM of a large-scale PACS. The methodology associated with the model can monitor the flow of data in a PACS, facilitating the detection of unauthorized access to images and other abnormal activities.  相似文献   

18.
DICOM医学图像采集的方法与实践   总被引:9,自引:0,他引:9  
医学图像采集是PACS的重要环节,也是PACS实用化的关键。本文比较了几种常见的图像采集方法,重点介绍了通过DICOM接口的图像采集,在详细阐明了DICOM网络的概念和DICOM消息交换的规范之后,介绍了我们编写的DICOM医学图像采集软件,本软件是在Windows平台上利用SocketAPI编写而成,提供了DICOM标准定义的验证、存储、查询和检索等服务,测试结果表明,本软件能够顺利地与成像设备连接并采集图像。  相似文献   

19.
This study presents a software technology to transform paper-based 12-lead electrocardiography (ECG) examination into (1) 12-lead ECG electronic diagnoses (e-diagnoses) and (2) mobile diagnoses (m-diagnoses) in emergency telemedicine. While Digital Imaging and Communications in Medicine (DICOM)-based images are commonly used in hospitals, the development of computerized 12-lead ECG is impeded by heterogeneous data formats of clinically used 12-lead ECG instrumentations, such as Standard Communications Protocol (SCP) ECG and Extensible Markup Language (XML) ECG. Additionally, there is no data link between clinically used 12-lead ECG instrumentations and mobile devices. To realize computerized 12-lead ECG examination procedures and ECG telemedicine, this study develops a DICOM-based 12-lead ECG information system capable of providing clinicians with medical images and waveform-based ECG diagnoses via Picture Archiving and Communication System (PACS). First, a waveform-based DICOM-ECG converter transforming clinically used SCP-ECG and XML-ECG to DICOM is applied to PACS for image- and waveform-based DICOM file manipulation. Second, a mobile Structured Query Language database communicating with PACS is installed in physicians’ mobile phones so that they can retrieve images and waveform-based ECG ubiquitously. Clinical evaluations of this system indicated the following. First, this developed PACS-dependent 12-lead ECG information system improves 12-lead ECG management and interoperability. Second, this system enables the remote physicians to perform ubiquitous 12-lead ECG and image diagnoses, which enhances the efficiency of emergency telemedicine. These findings prove the effectiveness and usefulness of the PACS-dependent 12-lead ECG information system, which can be easily adopted in telemedicine.  相似文献   

20.
The integration of images with existing and new health care information systems poses a number of challenges in a multi-facility network: image distribution to clinicians; making DICOM image headers consistent across information systems; and integration of teleradiology into PACS. A novel, Web-based enterprise PACS architecture introduced at Massachusetts General Hospital provides a solution. Four AMICAS Web/Intranet Image Servers were installed as the default DICOM destination of 10 digital modalities. A fifth AMICAS receives teleradiology studies via the Internet. Each AMICAS includes: a Java-based interface to the IDXrad radiology information system (RIS), a DICOM autorouter to tape-library archives and to the Agfa PACS, a wavelet image compressor/decompressor that preserves compatibility with DICOM workstations, a Web server to distribute images throughout the enterprise, and an extensible interface which permits links between other HIS and AMICAS. Using wavelet compression and Internet standards as its native formats, AMICAS creates a bridge to the DICOM networks of remote imaging centers via the Internet. This teleradiology capability is integrated into the DICOM network and the PACS thereby eliminating the need for special teleradiology workstations. AMICAS has been installed at MGH since March of 1997. During that time, it has been a reliable component of the evolving digital image distribution system. As a result, the recently renovated neurosurgical ICU will be filmless and use only AMICAS workstations for mission-critical patient care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号