首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Usher syndrome (USH) is a clinically and genetically heterogeneous autosomal recessive disorder in which sensorineural hearing loss is associated with retinitis pigmentosa. Usher syndrome type 1, the most severe form, is characterized by profound congenital deafness, vestibular dysfunction, and prepubertal onset of retinitis pigmentosa. Six different USH1 genes have so far been mapped, of which two have already been identified. MYO7A, encoding the unconventional myosin VIIA, underlies USH1B. Recently, the USH1C gene was shown to encode harmonin, a PDZ domain-containing protein. A previous screening of 18 unrelated USH1 patients, without a detected MYO7A mutation, for the three USH1C mutations described to date had demonstrated the presence of the 238-239insC mutation in the heterozygous state in four of them. A complete USH1C mutation screening in these four carriers of the 238-239insC mutation resulted in the detection of the second mutation in all the individuals, and the identification of three novel mutations, namely two splice site mutations (IVS1+1G>T and IVS5+1G>A) and a nonsense mutation (R31X). Thirty-one polymorphisms were detected in the USH1C gene. We observed that the E519D substitution is non-pathogenic, which is of particular interest for molecular diagnosis. Our analysis indicated that all the carriers of the 238-239insC mutation share a common haplotype. A different common haplotype was found in the two IVS1+1G>T carriers. Future studies of additional carriers and non-carriers should document the here proposed founder effect of these two mutations.  相似文献   

2.
Congenital hearing loss affects approximately one child in 1000. About 10% of the deaf population have Usher syndrome (USH). In USH, hearing loss is complicated by retinal degeneration with onset in the first (USH1) or second (USH2) decade. In most populations, diagnostic testing is hampered by a multitude of mutations in nine genes. We have recently shown that in French Canadians from Quebec, USH1 largely results from a single USH1C founder mutation, c.216G>A ('Acadian allele'). The genetic basis of USH2 in Canadians of French descent, however, has remained elusive. Here, we have investigated nine USH2 families from Quebec and New Brunswick (the former Acadia) by haplotype analyses of the USH2A locus and sequencing of the three known USH2 genes. Seven USH2A mutations were identified in eight patients. One of them, c.4338_4339delCT, accounts for 10 out of 18 disease alleles (55.6%). This mutation has previously been reported in an Acadian USH2 family, and it was found in homozygous state in the three Acadians of our sample. As in the case of c.216G>A (USH1C), a common haplotype is associated with c.4338_4339delCT. With a limited number of molecular tests, it will now be possible in these populations to estimate whether children with congenital hearing impairment of different degrees will develop retinal disease - with important clinical and therapeutic implications. USH2 is the second example that reveals a significant genetic overlap between Quebecois and Acadians: in contrast to current understanding, other genetic disorders present in both populations are likely based on common founder mutations as well.  相似文献   

3.
Denaturing high-performance liquid chromatography (DHPLC) was used to screen 14 UK patients with Usher syndrome type 1, in order to assess the contribution of mutations in USH1C to type 1 Usher. In addition, 16 Caucasian sib pairs and two small consanguineous families with non-syndromic deafness, who were concordant for haplotypes around DFNB18, were also screened for mutations in the USH1C gene. Two Usher type 1 patients were found to have the 238-239insC mutation reported previously; one of Greek Cypriot origin was homozygous for the mutation and another Caucasian was heterozygous. This indicates that mutations in the USH1C gene make a greater contribution to Usher syndrome type 1 than originally thought, which has implications for the genetic testing of families with Usher syndrome in the UK. Analysis using intragenic single nucleotide polymorphisms (SNPs) revealed that the haplotypic background bearing this common mutation was not consistent across the gene in two families, and that there are either two haplotypes on which the mutation has arisen or that there has been a recombination on a single haplotype. We found no evidence of mutations in USH1C in the patients with non-syndromic deafness, suggesting that the gene is not a major contributor to autosomal-recessive non-syndromic deafness in the UK.  相似文献   

4.
The most common mutation in the USH2A gene (Usherin), 2299delG, causes both typical Usher (USH) syndrome type II and atypical USH syndrome, two autosomal recessive disorders, characterised by moderate to severe sensorineural hearing loss and retinitis pigmentosa (RP). Furthermore, the C759F mutation in the USH2A gene has been described in 4.5% of patients with nonsyndromic recessive RP. We have investigated the presence of the 2299delG and/or the C759F mutations in 191 unrelated Spanish patients with different syndromic and nonsyndromic retinal diseases, or with nonsyndromic hearing impairment. The 2299delG mutation was observed in patients with clinical signs of USHII or of atypical USH syndrome, whereas the C759F mutation, regardless of being associated with the 2299delG mutation or not, was identified in cases with nonsyndromic RP, as well as in patients with RP associated with a variability of hearing impairment. The comparative analysis of both phenotypic and genotypic data supports the hypothesis that sensorineural hearing loss in patients with RP may depend on the nature and on the association of the USH2A allele variants present.  相似文献   

5.
The Usher syndromes are autosomal recessive hereditary disorders characterized by hearing impairment and progressive visual loss due to Retinitis Pigmentosa (RP). Moderate to severe sensorineural hearing loss and progressive RP characterizes Usher syndrome type IIa (USH2A), which maps to the long arm of chromosome 1q41. Recently, three deletions carried by USH2 patients, which were found in a novel gene isolated from the critical 1q41 region, defined this gene as responsible for USH2A. The USH2A gene is predicted to encode a 1546 amino acid protein which possesses domains that are observed in basal lamina and extracellular matrix proteins and in cell adhesion molecules. Affected individuals and additional members from eleven USH2 Israeli families of diverse ethnic origin were screened for the presence of changes in all 20 coding exons of the USH2A gene. Three novel mutations (239-242insCGTA, R334W, T1515M) were identified in three families of Jewish Moroccan and Jewish Iranian origins. Twelve polymorphisms were found in the families, four of which are novel. None of the known USH2 mutations were identified in the families studied in this work. Hum Mutat 15:388, 2000.  相似文献   

6.
Usher syndrome type II is an autosomal recessive disorder characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa (RP). We carried out a mutation screening of the USH2A gene in 88 probands with Usher syndrome type II to determine the frequency of USH2A mutations as a cause for USH2. Six mutations, including 2299delG, 921-922insCAGC, R334W, N346H, R626X, and N357T were identified, with 2299delG mutation being the most frequent (16.5% of alleles), accounting for 77.5% of the pathologic alleles. Thirty-five percent (31/88) of the probands had a USH2A mutation. Nine of them carried two pathogenic mutations: six cases were homozygotes and three were compound heterozygotes. Twenty-two probands (25%) were found to carry only single USH2A mutations. One new missense mutation (N357T) occuring within the laminin N-terminal (type VI) domain of usherin was identified. Eight polymorphisms were found, five of which are novel. Our data support the view that the 2299delG is the most common mutation in USH2A.  相似文献   

7.
Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.  相似文献   

8.
Usher syndrome type II (USH2) is characterised by moderate to severe high-frequency hearing impairment, progressive visual loss due to retinitis pigmentosa and intact vestibular responses. Three loci are known for USH2, however, only the gene for USH2a (USH2A) has been identified. Mutation analysis of USH2A was performed in 70 Dutch USH2 families. Ten mutations in USH2A were detected, of which three are novel, c.949C>A, c.2242C>T (p.Gln748X) and c.4405C>T (p.Gln1468X). Including 9 previously published Dutch USH2a families, estimates of the prevalence of USH2a in the Dutch USH2 population were made. Mutations were identified in 62% of the families. In 28% both mutated alleles were identified, whereas in 34% the mutation in only one allele was found. It is estimated that about 28% of the Dutch USH2 families have a different causative gene. Analysis of deduced haplotypes suggests that c.1256G>T (p.Cys419Phe) is a Dutch ancestral mutation, occurring in 16% of the alleles.  相似文献   

9.
Usher syndrome (USH) is characterised by hearing impairment and progressive pigmentary retinopathy. USH can be divided into three subtypes based on the severity and progression of the major clinical findings. These subtypes are genetically heterogeneous, with at least six loci for USH1, three for USH2 and one for USH3. In the present study, five unrelated consanguineous families with USH1 were analysed for linkage to markers flanking the six USH1 loci. Two of these families, one Pakistani and one Turkish, demonstrated linkage to the USH1D locus. In another family, haplotype segregation was consistent with linkage to USH1C. The remaining families were not linked to any of the six USH1 loci, providing support for the existence of at least one additional USH1 locus. Analysis of these two new USH1D families allowed us to narrow the USH1D candidate region to a 7.3-cM interval with a telomeric flanking marker at D10S1752. Comparison of the affected haplotypes in our Pakistani family with the original Pakistani USH1D family yielded no evidence for a founder effect. The identification of two additional affected families suggests that the USH1D may be a more common form of USH1 than originally suspected. The USH1D (CDH23) gene has recently been cloned. Mutation analysis has shown two different CDH23 mutations in the two Pakistani USH1D families studied, which confirmed our finding that there was no evidence for a founder effect by haplotype analysis. The interesting correlations between genotype and phenotype in CDH23 are also summarised.  相似文献   

10.
Usher syndrome (USH) is a hereditary disorder associated with sensorineural hearing impairment, progressive loss of vision attributable to retinitis pigmentosa (RP) and variable vestibular function. Three clinical types have been described with type I (USH1) being the most severe. To date, six USH1 loci have been reported. We ascertained two large Pakistani consanguineous families segregating profound hearing loss, vestibular dysfunction, and RP, the defining features of USH1. In these families, we excluded linkage of USH to the 11 known USH loci and subsequently performed a genome-wide linkage screen. We found a novel USH1 locus designated USH1H that mapped to chromosome 15q22-23 in a 4.92-cM interval. This locus overlaps the non-syndromic deafness locus DFNB48 raising the possibility that the two disorders may be caused by allelic mutations.  相似文献   

11.
Usher syndrome type II is an autosomal recessive disorder, characterised by stable hearing impairment from childhood and progressive retinitis pigmentosa from the late teens. Mutations in the USH2A gene, located on 1q41, were recently shown to be responsible for Usher syndrome type IIa. We have investigated the molecular pathology of Usher type II by screening the USH2A gene for mutations in 31 unrelated patients from Denmark and Norway. Besides the frequent 2299delG mutation, which accounted for 44% of the disease alleles, a heterogeneous spectrum of mutations was identified. Sixteen new, putative disease-causing mutations were detected, of which 12 were private and four were shared by unrelated patients. The disease-causing mutations were scattered throughout the gene and included six nonsense and seven missense mutations, two deletions and one small insertion. In addition, six non-pathogenic polymorphisms were identified. All missense mutations resulted in major amino acid side-chain alterations. Four missense mutations affected the N-terminal part of USH2A, whereas three missense mutations affected the laminin-type epidermal growth factor-like (LE) domain. The structural consequences of the mutations affecting the LE domain are discussed in relation to the three-dimensional structure of a LE-module of the mouse laminin gamma1 chain.  相似文献   

12.
We have systematically analyzed the two known minor genes involved in Usher syndrome type 2, DFNB31 and GPR98, for mutations in a cohort of 31 patients not linked to USH2A. PDZD7, an Usher syndrome type 2 (USH2) related gene, was analyzed when indicated. We found that mutations in GPR98 contribute significantly to USH2. We report 17 mutations in 10 individuals, doubling the number of GPR98 mutations reported to date. In contrast to mutations in usherin, the mutational spectrum of GPR98 predominantly results in a truncated protein product. This is true even when the mutation affects splicing, and we have incorporated a splicing reporter minigene assay to show this, where appropriate. Only two mutations were found which we believe to be genuine missense changes. Discrepancy in the mutational spectrum between GPR98 and USH2A is discussed. Only two patients were found with mutations in DFNB31, showing that mutations of this gene contribute to only a very small extent to USH2. Close examination of the clinical details, where available, for patients in whom no mutation was found in USH2A, GPR98, or DFNB31, showed that most of them had atypical features. In effect, these three genes account for the vast majority of USH2 patients and their analysis provide a robust pathway for routine molecular diagnosis.  相似文献   

13.
Usher syndrome type I (USH1) is the most frequent cause of hereditary deaf-blindness in humans. Seven genetic loci (USH1A-G) have been implicated in this disease to date, and four of the corresponding genes have been identified: USH1B, C, D and F. We carried out fine mapping of USH1G (chromosome 17q24-25), restricting the location of this gene to an interval of 2.6 Mb and then screened genes present within this interval for mutations. The genes screened included the orthologue of the Sans gene, which is defective in the Jackson shaker deaf mutant and maps to the syntenic region in mice. In two consanguineous USH1G-affected families, we detected two different frameshift mutations in the SANS gene. Two brothers from a German family affected with USH1G were found to be compound heterozygotes for a frameshift and a missense mutation. These results demonstrate that SANS underlies USH1G. The SANS protein contains three ankyrin domains and a sterile alpha motif, and its C-terminal tripeptide presents a class I PDZ-binding motif. We showed, by means of co-transfection experiments, that SANS associates with harmonin, a PDZ domain-containing protein responsible for USH1C. In Jackson shaker mice the hair bundles, the mechanoreceptive structures of inner ear sensory cells, are disorganized. Based on the known interaction between USH1B (myosin VIIa), USH1C (harmonin) and USH1D (cadherin 23) proteins and the results obtained in this study, we suggest that a functional network formed by the USH1B, C, D and G proteins is responsible for the correct cohesion of the hair bundle.  相似文献   

14.
Usher syndrome is a group of autosomal recessive disorders characterised by progressive visual loss from retinitis pigmentosa and moderate to severe sensorineural hearing loss. Usher syndrome is estimated to account for 6-10% of all congenital sensorineural hearing loss. A gene locus in Usher type II (USH2) families has been assigned to a small region on chromosome 1q41 called the UHS2A locus. We have investigated two families with Usher syndrome from different isolated populations. One family is a Norwegian Saami family and the second family is from the Cayman Islands. They both come from relatively isolated populations and are inbred families suitable for linkage analysis. A lod score of 3.09 and 7.65 at zero recombination was reached respectively in the two families with two point linkage analysis to the USH2A locus on 1q41. Additional homozygosity mapping of the affected subjects concluded with a candidate region of 6.1 Mb. This region spans the previously published candidate region in USH2A. Our study emphasises that the mapped gene for USH2 is also involved in patients from other populations and will have implications for future mutation analysis once the USH2A gene is cloned.  相似文献   

15.
We describe nine novel mutations and polymorphisms occurring on the major allele of the human alanine:glyoxylate aminotransferase gene in patients with primary hyperoxaluria type 1, an autosomal recessive disease resulting from a deficiency of the liver peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT; EC 2.6.1.44). The PH1 mutations include two small frameshift mutations, 327delG and 117_118insCA, a large deletion spanning exon 9 and portions of the flanking introns, a splice junction mutation, IVS6+5G>C, and two missense mutations, G161R and S218L. Expression studies of the two missense mutations indicated very little enzymatic activity associated with either of them. Three polymorphisms in the coding sequence were also identified, I279T, A280V, and T235T. Expression studies of I279T and A280V suggested essentially normal AGT activity. I279T, found in two cases, was located on a 33_34insC allele. A280V and T235T were both located on the same allele as IVS6+5G>C. We have also identified recurrences of previously reported rare mutations, 33delC, IVS7-1G>C, and IVS4-1G>A. Five of the six novel PH1 mutations occurred in a compound heterozygous state with either of two common PH1 mutations, G170R or 33_34insC. S218L was apparently homozygous in two individuals. These findings contribute to our overall picture of heterogeneity of mutations in PH1 and the AGT major allele.  相似文献   

16.
Usher syndrome type III is an autosomal recessive disorder clinically characterized by the association of retinitis pigmentosa (RP), variable presence of vestibular dysfunction and progressive hearing loss, being the progression of the hearing impairment the critical parameter classically used to distinguish this form from Usher syndrome type I and Usher syndrome type II. Usher syndrome type III clinical subtype is the rarest form of Usher syndrome in Spain, accounting only for 6% of all Usher syndrome Spanish cases. The gene responsible for Usher syndrome type III is named clarin-1 and it is thought to be involved in hair cell and photoreceptor cell synapses. Here, we report a screening for mutations in clarin-1 gene among our series of Usher syndrome Spanish patients. Clarin-1 has been found to be responsible for the disease in only two families: the first one is a previously reported family homozygous for Y63X mutation and the second one, described here, is homozygous for C40G. This accounts for 1.7% of Usher syndrome Spanish families. It is noticeable that, whereas C40G family is clinically compatible with Usher syndrome type III due to the progression of the hearing loss, Y63X family could be diagnosed as Usher syndrome type I because the hearing impairment is profound and stable. Thus, we consider that the progression of hearing loss is not the definitive key parameter to distinguish Usher syndrome type III from Usher syndrome type I and Usher syndrome type II.  相似文献   

17.
Usher syndrome type II (USH2) is an autosomal recessive disorder, characterised by moderate to severe high-frequency hearing impairment, normal balance function and progressive visual impairment due to retinitis pigmentosa. Usher syndrome type IIa, the most common subtype, is defined by mutations in the USH2A gene encoding a short and a recently discovered long usherin isoform comprising 21 and 73 exons, respectively. More than 120 different disease-causing mutations have been reported, however, most of the previous reports concern mutations restricted to exons 1-21 of the USH2A gene. To explore the spectrum of USH2A disease-causing mutations among Scandinavian USH2 cases, patients from 118 unrelated families of which 27 previously had been found to carry mutations in exons 1-21 were subjected to extensive DNA sequence analysis of the full size USH2A gene. Altogether, 122 USH2A DNA sequence alterations were identified of which 57 were predicted to be disease-causing, 7 were considered to be of uncertain pathogenicity and 58 were predicted to be benign variants. Of 36 novel pathogenic USH2A mutations 31 were located in exons 22-73, specific to the long isoform. USH2A mutations were identified in 89/118 (75.4%) families. In 79/89 (88.8%) of these families two pathogenic mutations were identified whereas in 10/89 (11.2%) families the second mutation remained unidentified. In 5/118 (4.2%) families the USH phenotype could be explained by mutations in the USH3A gene. The results presented here provide a comprehensive picture of the genetic aetiology of Usher syndrome type IIA in Scandinavia as it is known to date.  相似文献   

18.
Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A , which accounts for 74–90% of USH2 cases. This is the first study reporting the results of scanning for USH2A mutations in Japanese patients with USH2. In 8 of 10 unrelated patients, we identified 14 different mutations. Of these mutations, 11 were novel. Although the mutation spectrum that we identified differed from that for Caucasians, the incidence of mutations in USH2A was 80% for all patients tested, which is consistent with previous findings. Further, c.8559-2A>G was identified in four patients and accounted for 26.7% of mutated alleles; it is thus a frequent mutation in Japanese patients. Hence, mutation screening for c.8559-2A>G in USH2A may prove very effective for the early diagnosis of USH2.  相似文献   

19.
Mutations in the human gene encoding cadherin23 (CDH23) cause Usher syndrome type 1D (USH1D) and nonsyndromic hearing loss. Individuals with Usher syndrome type I have profound congenital deafness, vestibular areflexia and usually begin to exhibit signs of RP in early adolescence. In the present study, we carried out the mutation analysis in all 69 exons of the CDH23 gene in 56 Usher type 1 probands already screened for mutations in MYO7A. A total of 18 of 56 subjects (32.1%) were observed to have one or two CDH23 variants that are presumed to be pathologic. Twenty one different pathologic genome variants were observed of which 15 were novel. Out of a total of 112 alleles, 31 (27.7%) were considered pathologic. Based on our results it is estimated that about 20% of patients with Usher syndrome type I have CDH23 mutations.  相似文献   

20.
Usher syndrome (USH) is a group of autosomal recessive sensory disorders characterized by progressive retinitis pigmentosa (RP) and sensorineural hearing impairment. Usher syndrome type 1 (USH1), with additional vestibular dysfunction, represents the most severe form and shows extensive allelic and non-allelic heterogeneity. At least six USH1 loci exist (USH1A-F), and four of the underlying genes have been identified. Recently, a novel gene, cadherin 23 (CDH23), was shown to be mutated in USH1D. We performed mutation screening by single strand conformation polymorphism (SSCP) analysis and direct sequencing on 33 USH1 patients previously excluded for USH1B and USH1C. On eight disease alleles of four patients, four different mutations were identified, three of them novel (c.6933delT, c.5712G-->A, and IVS45-9G-->A). Exon trapping experiments were performed with two mutations. In the case of a c.5712G-->A transition of the last base of exon 42, that is an apparently synonymous mutation, skipping of exon 42 was observed. By the mutation IVS45-9G-->A, a novel splice acceptor site was created and the insertion of 7 intronic bp was observed. Two mutations, IVS45-9G-->A and the previously described IVS51+5G-->A, were each found in more than one patient. Haplotype analysis by SNPs within CDH23 suggests common ancestors for each of the mutations. Among the total of 52 USH1 cases studied by us, CDH23 mutations account for about 10% of all disease alleles. Our results further suggest that in patients with a typical USH1D phenotype, a significant portion of CDH23 mutations leads to premature termination of translation or loss of numerous amino acid residues, with a high frequency of changes causing aberrant splicing of CDH23 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号