首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of toxins or the altered metabolism of dopamine may lead to oxidative stress in substantia nigra, thereby inducing dopamine cell death and the onset of Parkinson's disease. Postmortem studies showing a depletion of reduced glutathione and increased mitochondrial superoxide dismutase activity suggest the occurrence of an ongoing toxic process in substantia nigra involving free radical mechanisms. Indeed there is a selective impairment of complex I of the mitochondrial respiratory chain in substantia nigra in Parkinson's disease, mimicking the mode of action of the selective nigral toxin MPTP. The increased formation of free radical species in substantia nigra in patients with Parkinson's disease may be accelerated by an accumulation of iron within this brain region. Altered iron metabolism and impaired mitochondrial function are not apparent in the early stages of the illness and therefore may act as accelerators of some other primary pathologic process.  相似文献   

2.
Nigro-striatal neurons release dopamine not only from their axon terminals in the striatum, but also from somata and dendrites in the substantia nigra. Somatodendritic dopamine release in the substantia nigra can facilitate motor function by mechanisms that may act independently of axon terminal dopamine release in the striatum. The dopamine neurons in the substantia nigra receive a cholinergic input from the pedunculopontine nucleus. Despite recent efforts to introduce this nucleus as a potential target for deep brain stimulation to treat motor symptoms in Parkinson's disease; and the well-known antiparkinsonian effects of anticholinergic drugs; the cholinergic influence on somatodendritic dopamine release is not well understood. The aim of this study was to investigate the possible regulation of locomotor-induced dopamine release in the substantia nigra by endogenous acetylcholine release. In intact and 6-OHDA hemi-lesioned animals alike, the muscarinic antagonist scopolamine, when perfused in the substantia nigra, amplified the locomotor-induced somatodendritic dopamine release to approximately 200% of baseline, compared to 120-130% of baseline in vehicle-treated animals. A functional importance of nigral muscarinic receptor activation was demonstrated in hemi-lesioned animals, where motor performance was significantly improved by scopolamine to 82% of pre-lesion performance, as compared to 56% in vehicle-treated controls. The results indicate that muscarinic activity in the substantia nigra is of functional importance in an animal Parkinson's disease model, and strengthen the notion that nigral dopaminergic regulation of motor activity/performance is independent of striatal dopamine release.  相似文献   

3.
To clarify the role of neuronal complex 1 activity in idiopathic Parkinson's disease (IPD), expression of mitochondrial mRNA encoding the ND1 subunit of mitochondrial complex I was examined by semiquantitative in situ hybridization histochemistry in melanized neurons of human substantia nigra in IPD cases and control subjects. Expression of mRNA encoding the glycolytic enzyme, aldolase C, was also examined in substantia nigra and other neurons of the midbrain and brain stem. ND1 mRNA expression was strong in melanized substantia nigra neurons but undetectable in nigral glia. Levels of expression in nigral neurons were higher than in neurons of the red nucleus or cranial nerve nuclei, but similar values were obtained in pontine neurons. ND1 mRNA expression was reduced by about 25% in melanized neurons in IPD. There was no relationship between ND1 expression per cell and disease duration or L-DOPA dosage in the IPD group. No change in ND1 expression was observed in pontine neurons in IPD, and ND1 expression in the locus ceruleus was also unchanged. Melanized nigral neurons expressed lower levels of aldolase C mRNA than other midbrain or brain stem populations in both control and IPD material. These findings suggest that dopamine neurons are more strongly dependent on mitochondrial energy metabolism and oxidative phosphorylation than other brain stem populations. Because mitochondrial complex I activity is significantly reduced in IPD, intrinsically low expression of glycolytic enzymes, together with disease-related reduction in complex I activity, may be a contributory factor predisposing nigral neurons  相似文献   

4.
We examined the substantia nigra of 8 patients with Parkinson's disease immunohistochemically using antisera against complexes I, II, III, and IV of the mitochondrial electron transport system. In the patients with Parkinson's disease, a fair proportion of the nigral neurons showed reduced staining against the complex I antibody. The proportion of the neurons with reduced staining ranged from 12.7 to 74.1% of the melanized nigral neurons. Although neurons with reduced immunostaining for complex I were also observed in control subjects, the proportion among the nigral neurons was significantly smaller than in parkinsonian patients. Staining for complexes III and IV appeared normal. Staining of substantia nigra for complex II was decreased in 3 parkinsonian patients. These results are consistent with our findings that there is a deletion of gene coding for the four subunits in the mitochondrial DNA located in the striata of parkinsonian patients.  相似文献   

5.
Brain tissue from normal individuals with incidental Lewy bodies and cell loss in pigmented substantia nigra neurons (asymptomatic Parkinson's disease) and age-matched control subjects without nigral Lewy bodies was examined biochemically. There was no difference in dopamine levels or dopamine turnover in the caudate and putamen of individuals with incidental Lewy body disease compared to control subjects. There were no differences in levels of iron, copper, manganese, or zinc in the substantia nigra or other brain regions from the individuals with incidental Lewy body disease compared to those from control subjects. Similarly, ferritin levels in the substantia nigra and other brain areas were unaltered. There was no difference in the activity of succinate cytochrome c reductase (complexes II and III) or cytochrome oxidase (complex IV) between incidental Lewy body subjects and control subjects. Rotenone-sensitive NADH coenzyme Q1 reductase activity (complex I) was reduced to levels intermediate between those in control subjects and those in patients with overt Parkinson's disease, but this change did not reach statistical significance. The levels of reduced glutathione in substantia nigra were reduced by 35% in patients with incidental Lewy body disease compared to control subjects. Reduced glutathione levels in other brain regions were unaffected and there were no changes in oxidized glutathione levels in any brain region. Altered iron metabolism is not detectable in the early stages of nigral dopamine cell degeneration. There may be some impairment of mitochondrial complex I activity in the substantia nigra in Parkinson's disease. The marked reduction in nigral reduced glutathione levels suggests this to be an important early change in the process of oxidative stress underlying Parkinson's disease.  相似文献   

6.
The ability of transdermal administration of the dopamine D2/D3 agonist piribedil (1-[3,4-methylenedioxybenzyl)]-4-[(2-pyrimidinyl)]piperazine) to reverse hypokinesia and other motor deficits observed in MPTP-treated common marmosets was investigated. Piribedil (2.5-10.0 mg/animal), applied directly to the skin of the abdomen as a paste, produced a long-lasting and concentration-dependent reversal of motor deficits. The antiparkinsonian actions of piribedil occurred within 10 minutes of drug administration and lasted as long as 10 hours. Transdermally applied piribedil produced a pattern of locomotor activity characteristic of normal motor behavior in this species. Symptoms of nausea (marked excessive salivation, retching, and/or vomiting) were not observed after transdermal application of piribedil. Additionally, pretreatment with the peripheral dopamine antagonist domperidone enhanced the antiparkinsonian effects of piribedil. Application to the skin of monolayer or bilayer patches impregnated with piribedil also produced a marked increase in locomotor activity and reversal of motor deficits. After application of various patch fractions (whole, one-half, or one-fourth), the increase in locomotor activity and reversal of disability correlated well with the surface area of skin covered. Measurement of serum levels of piribedil after single application of bilayer patches showed a positive relationship between drug levels and antiparkinsonian activity. Repeated daily application of piribedil bilayer patches for 5 days to MPTP-treated common marmosets primed to show dyskinesia by previous exposure to L-Dopa produced antiparkinsonian activity accompanied by dyskinetic movements. Transdermal administration of dopamine agonists such as piribedil may provide a useful means of producing a long-lasting reversal of motor deficits in Parkinson's disease while avoiding acute adverse effects such as nausea.  相似文献   

7.
Parkinson's disease results from the death of the dopamine-containing neurons in the substantia nigra pars compacta (SNC). This is accompanied by a loss of dopamine in brain regions, such as the corpus striatum, which receives input from dopaminergic neurons in the substantia nigra (SN). Since the corpus striatum is the primary target for these dopaminergic neurons, it has long been thought that the corpus striatum is the principal region affected. It was, therefore, natural to assume that replenishing dopamine in the striatum might be an effective treatment for Parkinson's disease. In fact, the dopamine precursor L-dihydroxyphenylalanine (L-dopa), the current drug of choice for treatment of Parkinson's disease, is believed to exert its therapeutic effect by replenishing dopamine levels in the corpus striatum via enzymatic decarboxylation within the synaptic terminals of surviving nigrostriatal neurons (Hornykiewicz, 1974). However, dopamine is also synthesized, stored, and released from the dendrites of SNC neurons that arborize in the substantia nigra pars reticulata (SNR) (Cheramy et al., 1981). Using a classic animal model for Parkinson's disease (rats with a unilateral 6-hydroxydopamine lesion of the SN), we show that L-dopa is also converted to dopamine in significant amounts within the 6-OHDA-lesioned SN. Furthermore, in contrast to the situation in the striatum where dopamine levels are only elevated for a short time, dopamine levels in the SN remain elevated until the behavioral effects of L-dopa have subsided. This elevation of nigral dopamine levels produces rotation that can be blocked by injecting a selective D1 dopamine receptor antagonist (SCH 23390, 2 micrograms in 1 microliter) directly into the SN pars reticulata. Infusion of SCH 23390 into the ipsilateral striatum produced only a modest reduction in L-dopa-induced circling behavior. These results suggest that D1 dopamine receptors in the SN may be at least as important as D1 dopamine receptors in the striatum as a site for the effects of L-dopa. This may have important implications for the therapy of Parkinson's disease.  相似文献   

8.
Brain derived neurotrophic factor (BDNF) expression is significantly reduced in the Parkinson's disease substantia nigra. This neurotrophin has potent affects on dopaminergic neuron survival protecting them from the neurotoxins MPTP and 6-hydroxydopamine (6-OHDA) commonly used to create animal models of Parkinson's disease and also promoting dopaminergic axonal sprouting. In this study, we demonstrate that an antisense oligonucleotide infusion (200 nM for 28 days) to prevent BDNF production in the substantia nigra of rats mimics many features of the classical animal models of Parkinson's disease. 62% of antisense treated rats rotate (P < or = 0.05) in response to dopaminergic receptor stimulation by apomorphine. 40% of substantia nigra pars compacta tyrosine hydroxylase immunoreactive neurons are lost (P < or = 0.00001) and dopamine uptake site density measured by (3)H-mazindol autoradiography is reduced by 34% (P < or = 0.005). Loss of haematoxylin and eosin stained nigral neurons is significant (P < or = 0.0001) but less extensive (34%). These observations indicate that loss of BDNF expression leads both to down regulation of the dopaminergic phenotype and to dopaminergic neuronal death. Therefore, reduced BDNF mRNA expression in Parkinson's disease substantia nigra may contribute directly to the death of nigral dopaminergic neurons and the development of Parkinson's disease.  相似文献   

9.
Autoradiographic studies reveal densities of binding to somatostatin, neurotensin, mu-opiate, and benzodiazepine receptors in substantia nigra specimens from neurologically normal human brains. Binding to nigral angiotensin converting enzyme is also dense, whereas more modest densities of kappa-opiate, dopamine, and serotonin receptors are noted. In nigral specimens taken from patients with idiopathic Parkinson's disease, substantial reductions in somatostatin, neurotensin, mu-opiate and kappa-opiate receptors contrast with more modest reductions in dopamine and benzodiazepine I receptor subtypes. Angiotensin converting enzyme, serotonin, and benzodiazepine II binding are virtually unaltered. These results underscore the likelihood of strong peptidergic influences on normal and pathologically altered human nigrostriatal circuitry.  相似文献   

10.
Little is currently known concerning the cellular substrates for, and the mechanisms mediating the pathological deposition of, redox-active brain iron in Parkinson's disease. In various subcortical brain regions, populations of astroglia progressively accumulate peroxidase-positive cytoplasmic inclusions derived from effete, iron-laden mitochondria. In the present study, histochemical, ultrastructural, and elemental microanalytical techniques were used to demonstrate the existence of peroxidase-positive astroglia in the substantia nigra of adult rats. At 4 months of age and earlier, few GFAP-positive nigral astroglia contained small, electron-dense cytoplasmic inclusions which exhibited faint endogenous peroxidase activity (diaminobenzidine reaction product) and no detectable iron by microprobe analysis. In contrast, by 14–18 months of age, there was a significant, fourfold increase in numbers of peroxidase-positive astrocyte inclusions in the substantia nigra. The nigral gliosomes in the older animals were heterogeneously electron dense, immunoreactive for ubiquitin and a mitochondrial epitope, and often exhibited X-ray emission peaks for iron. Copper peaks were also detected in a minority of nigral gliosomes. Previousin vitrowork indicated that the iron-mediated peroxidase activity in these cells promotes the bioactivation of dopamine and other catechols to neurotoxic free radical intermediates. Thus, mitochondrial sequestration of redox-active iron in aging nigral astroglia may be one factor predisposing the senescent nervous system to parkinsonism and other neurodegenerative disorders.  相似文献   

11.
Dopamine cytotoxicity is thought to contribute towards the selective loss of substantia nigra pars compacta dopamine neurons and disease progression in Parkinson's disease. However, the long-term toxicity of dopamine in vivo has not previously been established. The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles, a process that, in addition to being important in normal transmission, may also act to keep intracellular levels of monoamine neurotransmitters below potentially toxic thresholds. The homozygous VMAT2-hypomorphic mouse has an insertion in the VMAT2 gene (Slc18a2). Consequently, VMAT2-deficient mice (VD(-/-)) have an approximately 95% reduction in VMAT2 expression and an equivalent level of dopamine depletion in the striatum which results in moderate motor impairment. Here, we show that L-DOPA induces locomotor hyperactivity in VD(-/-) mice and reverses the deficit in motor coordination and balance as tested with the rotarod. We report that evidence for cytosolic accumulation of dopamine in substantia nigra neurons in these mice is two-fold: firstly, there is reduced phosphorylation of tyrosine hydroxylase at the residue associated with catechol feedback inhibition; and, secondly, there are increased rates of dopamine turnover at 6, 12 and 24 months of age. These animals exhibit a progressive decline in striatal monoamine levels and rotarod performance with increasing age. However, despite these data, there was no loss of nigral dopamine neurons as estimated by quantification of tyrosine hydroxylase-immunoreactive cells in the substantia nigra pars compacta of old VD(-/-) mice (24-month-old), implying that these age-dependent manifestations may be due to senescence alone.  相似文献   

12.
Oxidative stress is implicated in the premature death of dopamine neurons in substantia nigra in Parkinson's disease. The incidence of Parkinson's disease is higher in men than in women, and estrogen may provide neuroprotection against oxidative damage. We examined the protective effects of estrogen on rat nigral death after chronic ozone inhalation. Ozone inhalation produced impaired nigral cell morphology and loss of dopamine neurons in ovariectomized rats. This was counteracted after 60 days of 17beta-estradiol treatment, when blood levels were highest. These results indicate that ozone exposure may be a useful Parkinson's disease model and neuroprotection afforded by 17beta-estradiol is dependent on the high levels achieved after its prolonged administration.  相似文献   

13.
Since the discovery that L-DOPA could alleviate the symptoms of Parkinson's disease, it has been assumed that the striatum is the site of action of the dopamine formed from L-DOPA. However, for the past 15 years, evidence has accumulated to suggest that dopamine is also released by the dendrites of dopamine neurons in the substantia nigra and D1 dopamine receptors in this region of the brain appear to play an important role in the actions of L-DOPA. Activation of D1 receptors in the substantia nigra may, in part, explain some of the synergistic effects of D1 and D2 agonists in animal models for Parkinson's disease. These effects are discussed in light of recent studies suggesting that dopamine, acting on D1 and D2 dopamine receptor subtypes, activates distinct efferent pathways from the striatum. Clinical studies suggest that these findings may have important implications for the treatment of Parkinson's disease.  相似文献   

14.
Parkinson's disease is a major neurological disorder that primarily affects the nigral dopaminergic cells. Nigral histamine innervation is altered in human postmortem Parkinson's disease brains. However, it is not known if the altered innervation is a consequence of dopamine deficiency. The aim of the present study was to investigate possible changes in the H3 receptor system in a well-characterized model of Parkinson's disease--the 6-hydroxydopamine (6-OHDA) lesioned rats. Histamine immunohistochemistry showed a minor increase of the fibre density index but we did not find any robust increase of histaminergic innervation in the ipsilateral substantia nigra on the lesioned side. In situ hybridization showed equal histidine decarboxylase mRNA expression on both sides in the posterior hypothalamus. H3 receptors were labelled with N-alpha-[3H]-methyl histamine dihydrochloride ([3H] NAMH). Upregulation of binding to H3 receptors was found in the substantia nigra and ventral aspects of striatum on the ipsilateral side. An increase of GTP-gamma-[35S] binding after H3 agonist activation was found in the striatum and substantia nigra on the lesioned side. In situ hybridization of H3 receptor mRNA demonstrated region-specific mRNA expression and an increase of H3 receptor mRNA in ipsilateral striatum. Thus, the histaminergic system is involved in the pathological process after 6-OHDA lesion of the rat brain at least through H3 receptor. On the later stages of the neurotoxic damage, less H3 receptors became functionally active. Increased H3 receptor mRNA expression and binding may, for example, modulate GABAergic neuronal activity in dopamine-depleted striatum.  相似文献   

15.
Parkinson's disease is a progressive neurodegenerative disorder characterized by selective degeneration of dopaminergic neurons in substantia nigra pars compacta leading to marked reduction of dopamine levels in the cerebral cortex. The present study analysed the effect of serotonin, dopamine and norepinephrine as treatment on rotenone induced Hemi-Parkinson's disease in rats and its role in the regulation of dopamine receptor subtypes in the cerebral cortex of the experimental rats. Unilateral stereotaxic single dose infusions of rotenone were administered to the substantia nigra of adult male Wistar rats. Neurotransmitters--serotonin, dopamine and norepinephrine treatments--were given to rotenone induced Hemi-Parkinson's rats. Scatchard analysis of Dopamine D? and D? receptor showed a significant increase (p < 0.001) in the cerebral cortex of the Parkinson's rats compared to control. These altered parameters were reversed to near control in the serotonin and norepinephrine treated Parkinson's disease rats and no change was observed in dopamine treated Parkinson's rats. Real-time PCR results confirmed the receptor data. Our results showed serotonin and norepinephrine functionally reversed the dopamine receptors significantly in rotenone induced Hemi-Parkinson's rat. This has clinical significance in the therapeutic management of Parkinson's disease.  相似文献   

16.
The cause of dopamine cell death in Parkinson's disease remains unknown. Present interest centres on the possible involvement of a toxin mediated mechanism such as that produced, by MPTP. In post-mortem studies there is evidence in the substantia nigra for an on-going toxic process involving increased lipid peroxidation, altered iron metabolism and impairment of mitochondrial function at the level of complex I. Although the precise realtionship between these biochemical changes is not known, present evidence points to oxidative stress as an important factor contributing to neuronal loss. Altered mitochondrial function and increased iron levels may not initiate Parkinson's disease but rather act to accelerate cell death. Future strategies for the treatment of Parkinson's disease should be aimed at preventing oxidative stress and stopping or slowing the progression of the underlying pathology.  相似文献   

17.
In Parkinson's disease (PD), the selective depletion of dopamine neurons in the substantia nigra, particular those containing neuromelanin (NM), is the characteristic pathological feature. The role of NM in the cell death of dopamine neurons has been considered either to be neurotoxic or neuroprotective, but the precise mechanism has never been elucidated. In human brain, NM is synthesized by polymerization of dopamine and relating quinones, to which bind heavy metals including iron. The effects of NM prepared from human brain were examined using human dopaminergic SH-SY5Y cells. It was found that NM inhibits 26S proteasome activity through generation of reactive oxygen and nitrogen species from mitochondria. The mitochondrial dysfunction was also induced by oxidative stress mediated by iron released from NM. NM accumulated in dopamine neurons in ageing may determine the selective vulnerability of dopamine neurons in PD.  相似文献   

18.
The direct application of recombinant human glial cell line-derived neurotrophic factor (rhGDNF) to the deep structures of the nigrostriatum has been shown previously to augment dopamine function and inhibit loss of substantia nigra neurons in rodent models of Parkinson's disease. The present studies were designed to determine whether administration of rhGDNF into the lateral ventricle, a more clinically accessible intracranial target, is capable of augmenting dopamine function of the nigrostriatal pathway in normal rats. Single bolus intracerebroventricular (i.c.v.) injections of rhGDNF increased locomotor activity and decreased food and water consumption and body weight gain in a dose-dependent manner. rhGDNF increased concentrations of dopamine and dopamine metabolites in the substantia nigra, ventral tegmental area and hypothalamus, but had no significant effects in the striatum. rhGDNF had no effect on striatal or substantia nigral serotonin (5-HT) and 5-hydroxyindoleacetic acid levels, but these levels were significantly increased in the ventral tegmental area and hypothalamus respectively. The augmentation of the dopamine and 5-HT systems was detected 2 weeks but not 3 days or 6 weeks after rhGDNF administration. After a repeat injection of i.c.v. rhGDNF (6 weeks after the initial injection), substantia nigral dopamine, 5-HIAA and noradrenalin levels were increased. These results indicate that i.c.v. administration of rhGDNF has an influence on adult rat dopamine neurons. This route of administration may be useful for stimulating dopamine neurons in Parkinson's disease.  相似文献   

19.
Environmental or endogenous toxins may cause nigral cell death in Parkinson's disease (PD) due to altered expression of P450 enzymes. In rat brain, immunohistochemistry using anti-peptide antisera showed NADPH-P450 oxidoreductase and CYP2B1/2 in various hypothalamic nuclei and CYP1A1 in the globus pallidus, but neither enzyme was expressed in substantia nigra. No specific immunoreactivity to CYP2D1 or CYP3A1 was found in any brain region examined. In contrast, CYP2E1 was expressed in substantia nigra and in striatal blood vessels. Since CYP2E1 is associated with free radical production, it may contribute to the oxidative stress believed to underlie nigral degeneration.  相似文献   

20.
Parkinson's disease arises from genetic and possibly neurotoxic causes that produce massive cell death of the neuromelanin-containing dopaminergic neurons of the substantia nigra. Loss of these neurons is essential for the diagnostic parkinsonian features. Although many genetic mutations have been suggested as causes or risk factors for Parkinson's disease, the low penetrance of some mutations and the low disease concordance in relatives suggests that there must be interactions between multiple factors. We suggest that 'multiple hits' that combine toxic stress, for example, from dopamine oxidation or mitochondrial dysfunction, with an inhibition of a neuroprotective response, such as loss of function of parkin or stress-induced autophagic degradation, underlie selective neuronal death. We discuss the properties of substantia nigra dopamine neurons that might make them particular targets of such multiple hits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号