首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Balanced steady-state free precession (SSFP) magnetic resonance (MR) imaging is feasible for cine cardiac images because of the high contrast between myocardium and blood pool and robustness to rapid blood flow. Nonetheless, the flow artifacts are often observed because of off-resonance effects and to in-flow effects of the blood flow. Although reshimming the gradients or readjusting the center frequency reduces the artifacts, the technique can be susceptible for respiratory and cardiac motion and operator-dependent. The purpose of this study is to use another MR imaging technique for the reduction in the flow artifacts in the heart: odd-even interleaved data acquisition in segmented balanced SSFP imaging. The flow artifacts in the ventricle, ghost outside the heart, and visualization of the myocardial border were visually compared between sequential and odd-even interleaved k-space data acquisitions in cine balanced SSFP cardiac MR imaging. The odd-even interleaved k-space data acquisition significantly reduced dark flow artifacts in the left ventricle, improved the visualization of the myocardial border, and was easily installed. This imaging technique should be applied to cine segmented balanced SSFP cardiac MR imaging.  相似文献   

3.
The purpose of this study was the simulation and measurement of balanced steady-state free precession (bSSFP) slice profiles for a detailed analysis of the influence of off-resonance effects on slice profile shape and bSSFP signal intensity. Due to the frequency response function of the bSSFP sequence, measurements that are not on-resonance result in broadened effective slice profiles with different off-resonance-dependent shapes and signal intensities. In this study, bSSFP slice profile effects and their dependence on off-resonance were investigated based on bSSFP signal simulations of phantom data as well as blood and tissue. For a better assessment of the similarity of measured and simulated slice profiles the field map was integrated in the slice profile simulations. The results demonstrate that simulations can accurately predict bSSFP slice profiles. Both measurements and simulations indicate that there is a substantial increase in signal intensity close to the banding artifacts, i.e., at spatial locations with off-resonance frequencies corresponding to a dephasing/TR = +/- pi resulting in signal void (bands). For routine bSSFP imaging, off-resonance-dependent slice broadening may thus result in a substantial difference between nominal and true slice thickness and lead to spatially varying slice thickness and signal intensities across the imaging slice.  相似文献   

4.
Cardiac MRI in neonates holds promise as a tool that can provide detailed functional information in this vulnerable group. However, their small size, rapid heart rate, and inability to breath‐hold, pose particular challenges that require prolonged high‐contrast and high‐SNR methods. Balanced‐steady state free precession (SSFP) offers high SNR efficiency and excellent contrast, but is vulnerable to off‐resonance effects that cause banding artifacts. This is particularly problematic in the blood‐pool, where off‐resonance flow artifacts severely degrade image quality. Methods: In this article, we explore active frequency stabilization, combined with image‐based shimming, to achieve prolonged SSFP imaging free of banding artifacts. The method was tested using 2D multislice SSFP cine acquisitions on 18 preterm infants, and the functional measures derived were validated against phase‐contrast flow assessment. Results: Significant drifts in the resonant frequency (165 ± 23Hz) were observed during 10‐min SSFP examinations. However, full short‐axis stacks free of banding artifacts were achieved in 16 subjects with stabilization; the cardiac output obtained revealed a mean difference of 9.0 ± 8.5% compared to phase‐contrast flow measurements. Conclusion: Active frequency stabilization has enabled the use of prolonged SSFP acquisitions for neonatal cardiac imaging at 3T. The findings presented could have broader implications for other applications using prolong SSFP acquisitions. Magn Reson Med 70:776–784, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Balanced steady-state free precession (SSFP) sequences are useful in cardiac imaging because they achieve high signal efficiency and excellent blood-myocardium contrast. Spiral imaging enables the efficient acquisition of cardiac images with reduced flow and motion artifacts. Balanced SSFP has been combined with spiral imaging for real-time interactive cardiac MRI. New features of this method to enable scanning in a clinical setting include short, first-moment nulled spiral trajectories and interactive control over the spatial location of banding artifacts (SSFP-specific signal variations). The feasibility of spiral balanced SSFP cardiac imaging at 1.5 T is demonstrated. In observations from over 40 volunteer and patient studies, spiral balanced SSFP imaging shows significantly improved contrast compared to spiral gradient-spoiled imaging, producing better visualization of cardiac function, improved localization, and reduced flow artifacts from blood.  相似文献   

6.
PURPOSE: To investigate and evaluate a new rapid dark-blood vessel-wall imaging method using random bipolar gradients with a radial steady-state free precession (SSFP) acquisition in carotid applications. MATERIALS AND METHODS: The carotid artery bifurcations of four asymptomatic volunteers (28-37 years old, mean age = 31 years) were included in this study. Dark-blood contrast was achieved through the use of random bipolar gradients applied prior to the signal acquisition of each radial projection in a balanced SSFP acquisition. The resulting phase variation for moving spins established significant destructive interference in the low-frequency region of k-space. This phase variation resulted in a net nulling of the signal from flowing spins, while the bipolar gradients had a minimal effect on the static spins. The net effect was that the regular SSFP signal amplitude (SA) in stationary tissues was preserved while dark-blood contrast was achieved for moving spins. In this implementation, application of the random bipolar gradient pulses along all three spatial directions nulled the signal from both in-plane and through-plane flow in phantom and in vivo studies. RESULTS: In vivo imaging trials confirmed that dark-blood contrast can be achieved with the radial random bipolar SSFP method, thereby substantially reversing the vessel-to-lumen contrast-to-noise ratio (CNR) of a conventional rectilinear SSFP "bright-blood" acquisition from bright blood to dark blood with only a modest increase in TR (approximately 4 msec) to accommodate the additional bipolar gradients. CONCLUSION: Overall, this sequence offers a simple and effective dark-blood contrast mechanism for high-SNR SSFP acquisitions in vessel wall imaging within a short acquisition time.  相似文献   

7.
PURPOSE: To investigate a rapid flow-suppression method for improving the contrast-to-noise ratio (CNR) between the vessel wall and the lumen for cardiovascular imaging applications. MATERIALS AND METHODS: In this study a new dark-blood steady-state free precession (SSFP) sequence utilizing two excitation pulses per TR was developed. The first pulse is applied immediately adjacent to the slice of interest, while the second is a conventional slice-selective pulse designed to excite an SSFP signal for the static spins in the slice of interest. The slice-selective pulse is followed by fully refocused gradients along all three imaging axes over each TR. The signal amplitude (SA) from the moving spins excited by the "saturation" pulse is attenuated since they are not fully refocused at the TE. RESULTS: This work provides confirmation, by both simulation and experiments, that modest adaptations of the basic True-FISP structure can limit unwanted "bright blood" signal within the vessels while simultaneously preserving the contrast and speed advantages of this well-established rapid imaging method. CONCLUSION: Animal imaging trials confirm that dark-blood contrast is achieved with the BASS sequence, which substantially reverses the lumen-to-muscle CNR of a conventional True-FISP "bright blood" acquisition from 14.77 (bright blood) to -13.96 (dark blood) with a modest increase (24.2% of regular TR of SSFP for this implementation) in acquisition time to accommodate the additional slab-selective excitation pulse and gradient pulses.  相似文献   

8.
PURPOSE: To design a multislice double inversion-recovery fast spin-echo (FSE) sequence, with k-space reordered by inversion time at slice position (KRISP) technique, to produce black-blood vessel wall magnetic resonance imaging (MRI). MATERIALS AND METHODS: In this sequence, central k-space sampling for each slice is required at inversion time (TI) of the blood signal. To fill the entire k-space, the peripheral lines are obtained less or greater the TI and using a rotating slice order. Blood flow signal suppression was first evaluated using a phantom. Simulation studies were used to investigate FSE image quality. The final sequence was then applied to the rabbit abdominal aorta MRI at 4.7 T. RESULTS: In the flow phantom study, artifacts from slow-flowing water were substantially reduced by the KRISP technique; residual water spins were dephased by the strong phase-encoding gradient required for peripheral k-space. These dephased spins flowed into the slice plane where the center of k-space was being acquired at the TI of the flowing water signal. Multislice black-blood MR images were successfully obtained in the rabbit abdomen using the sequence with the k-trajectory optimized by the simulation study. CONCLUSION: The KRISP technique was effective both in multislice double inversion-recovery FSE and in blood signal suppression.  相似文献   

9.
Cine balanced steady‐state free precession (SSFP) is the most widely used sequence for assessing cardiac ventricular function at 1.5 T because it provides high signal‐to‐noise ratio efficiency and strong contrast between myocardium and blood. At 3 T, the use of SSFP is limited by susceptibility‐induced off‐resonance, resulting in either banding artifacts or the need to use a short‐sequence pulse repetition time that limits the readout duration and hence the achievable spatial resolution. In this work, we apply wideband SSFP, a variant of SSFP that uses two alternating pulse repetition times to establish a steady state with wider band spacing in its frequency response and overcome the key limitations of SSFP. Prospectively gated cine two‐dimensional imaging with wideband SSFP is evaluated in healthy volunteers and compared to conventional balanced SSFP, using quantitative metrics and qualitative interpretation by experienced clinicians. We demonstrate that by trading off temporal resolution and signal‐to‐noise ratio efficiency, wideband SSFP mitigates banding artifacts and enables imaging with approximately 30% higher spatial resolution compared to conventional SSFP with the same effective band spacing. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
PURPOSE: We sought to assess the feasibility of magnetic resonance imaging to evaluate cardiac function at 3.0 T compared with 1.5 T. MATERIAL AND METHODS: In a prospective intraindividual comparative study, 12 volunteers (range, 18-54 years), and 2 patients (range, 43-53 years) underwent cardiac cine magnetic resonance at both 3.0 T and 1.5 T. Data were acquired both with a steady-state free precession sequence (SSFP) and a spoiled gradient echo (SGE) sequence. If necessary, a frequency scout was used to correct for off-resonance artifacts. For both SSFP and SGE imaging, 6-mm thick retrospectively EKG-gated short axis views were acquired with equal matrix size (192 x 163) and comparable repetition time (TR). Cardiac function parameters were determined manually by a single investigator. Cardiac function parameters, signal to noise ratio (SNR), contrast to noise ratio (CNR), and the presence of artifacts were compared between the 2 magnetic field strengths. For statistical analysis, a Pearson's correlation coefficient was calculated, and a paired Student t test was used to test statistical significance. RESULTS: Very good correlations between cardiac function parameters at 1.5 T and 3.0 T (r > 0.84, P < 0.0011) were obtained. Compared with SGE, SSFP more frequently was prone to artifacts. With SSFP/SGE at 3.0 T, a SNR gain of 9.4/16% was achieved compared with 1.5 T. CONCLUSION: Functional cardiac cine magnetic resonance imaging can be regarded as equally accurate at 3.0 T compared with 1.5 T. Compared with SSFP imaging, the SGE sequence benefits more from higher field strengths and is less affected by artifacts.  相似文献   

11.
Balanced steady-state free precession (SSFP) imaging is limited by off-resonance banding artifacts, which occur with periodicity 1/TR in the frequency spectrum. A novel balanced SSFP technique for widening the band spacing in the frequency response is described. This method, called wideband SSFP, utilizes two alternating repetition times with alternating RF phase, and maintains high SNR and T(2)/T(1) contrast. For a fixed band spacing, this method can enable improvements in spatial resolution compared to conventional SSFP. Alternatively, for a fixed readout duration this method can widen the band spacing, and potentially avoid the banding artifacts in conventional SSFP. The method is analyzed using simulations and phantom experiments, and is applied to the reduction of banding artifacts in cine cardiac imaging and high-resolution knee imaging at 3T.  相似文献   

12.

Purpose:

To compare a half‐Fourier single‐shot rapid acquisition with relaxation enhancement (RARE) sequence with a balanced steady‐state free precession (b‐SSFP) sequence in the evaluation of the eye using magnetic resonance (MR) microscopy imaging and to clarify the usefulness of RARE microscopy imaging in evaluating nonoperative glaucoma patients and patients who have undergone surgery for glaucoma or cataract.

Materials and Methods:

One‐mm and 2‐mm slice thickness images of RARE sequence and b‐SSFP sequence using a 1.5 T MR unit and a 23‐mm microscopy coil were obtained in eight healthy volunteers. The signal‐to‐noise (S/N) ratio of aqueous humor in the anterior chamber was measured quantitatively and visualization of the anterior chamber anatomy was assessed qualitatively. Furthermore, we evaluated 21 glaucoma patients (including six postoperative patients) and four patients after cataract surgery with 2‐mm slice thickness RARE MRI.

Results:

The 2‐mm slice thickness RARE imaging had a significantly greater S/N ratio than the 1‐mm slice thickness RARE imaging (P < 0.05) and acquired the best image quality among the four types of images (P < 0.01). Additionally, 2‐mm slice thickness RARE microscopy imaging could depict anterior chamber anatomy of glaucoma eyes and eyes after cataract surgery.

Conclusion:

We believe that optimal fast T2‐weighted MR microimaging might become a useful ophthalmologic examination technique. J. Magn. Reson. Imaging 2010;31:1210–1214. ©2010 Wiley‐Liss, Inc.  相似文献   

13.
In a magnetic resonance imaging system, an RF power amplifier is employed to boost an RF pulse to sufficient strength to excite the nuclear spins in a subject. The nonideal behavior of this amplifier distorts a selective-excitation pulse, and this distortion in turn degrades the slice profile. We have found two types of nonideal behavior particularly troublesome: nonlinearity and incidental phase modulation. One of their effects is the introduction of an unwanted "skirt" in the out-of-slice region of a slice profile. We present an effective method of correction in which a selective-excitation pulse is prewarped to compensate for the distortion.  相似文献   

14.
To compare the image quality of dynamic lung MRI with variations of steady-state free-precession (SSFP) and gradient echo (GRE) cine techniques at 1.5 T and 3 T. Ventilated porcine lungs with simulated lesions inside a chest phantom and four healthy human subjects were assessed with SSFP (TR/TE = 2.9/1.22 ms; 3 ima/s) and GRE sequences (TR/TE = 2.34/0.96 ms; 8 ima/s) as baseline at 1.5 and 3 T. Modified SSFPs were performed with nine to ten images/s (parallel imaging factors 2 and 3). Image quality for representative structures and artifacts was ranked by three observers independently. At 1.5 T, standard SSFP achieved the best image quality with superior spatial resolution and signal, but equal temporal resolution to GRE. SSFP with improved temporal resolution was ranked second best. Further acceleration (PI factor 3) was of no benefit, but increased artifacts. At 3 T, GRE outranged SSFP imaging with high lesion signal intensity, while artifacts on SSFP images increased visibly. At 1.5 T, a modified SSFP with moderate parallel imaging (PI factor 2) was considered the best compromise of temporal and spatial resolution. At 3 T, GRE sequences remain the best choice for dynamic lung MRI.  相似文献   

15.
A new technique to avoid the initial signal fluctuations in steady-state free precession (SSFP)-sequences, such as trueFISP, FIESTA, and refocused FFE, is presented. The "transition into driven equilibrium" (TIDE) sequence uses modified flip angles over the initialization phase of a SSFP experiment, which not only avoids image artifacts but also improves the signal-to-noise ratio (SNR) and contrast behavior compared to conventional approaches. TIDE is demonstrated to be robust against variations of T(1) and T(2), and leads to a monotonous signal evolution for off-resonance spins. The basic principles can also be applied repetitively to optimize continuous 3D acquisitions.  相似文献   

16.
The authors evaluated a three-dimensional Fourier transform implementation of a very short repetition time (TR) (24 msec), steady-state free precession (SSFP) pulse sequence for clinical imaging of the brain and compared it with a conventional two-dimensional Fourier transform long TR/echo time (TE) spin-echo sequence. First, the optimal flip angle of 10 degrees for generating images with contrast similar to that of long TR/TE spin-echo images was determined. Then, 29 patients with suspected brain lesions were studied with both techniques. Although the SSFP images did not exhibit the magnetic susceptibility artifacts that plague other rapid-imaging techniques, the conspicuity of most parenchymal lesions was often less than that on the spin-echo images. Also, the visibility of paramagnetic effects, such as the low signal intensity of brain iron, was less obvious at SSFP imaging. These substantial limitations may relegate the SSFP sequence to an adjunctive role, perhaps mainly demonstration of the cystic nature of mass lesions, because of its extreme sensitivity to slow flow.  相似文献   

17.
Steady-state free precession (SSFP) cardiac cine images are frequently corrupted by dark flow artifacts, which can usually be eliminated by reshimming and retuning the scanner. A theoretical explanation for these artifacts is provided in terms of spins moving through an off-resonant point in the magnetic field, and the theory is validated using phantom experiments. The artifacts can be reproduced in vivo by detuning the center frequency by an amount in the range of half the inverse repetition time (TR). Since this offset is similar in magnitude to the frequency difference between the water and lipid peaks, a likely cause of the artifacts in vivo is that the center frequency is tuned incorrectly to the lipid peak rather than the water peak.  相似文献   

18.

Purpose

To investigate blood inflow enhancement (or lack thereof) in three‐dimensional (3D) cardiovascular MR for both single phase whole‐heart and cine biventricular functions.

Materials and Methods

A 3D imaging sequence is proposed in which radiofrequency excitation gradient is changed without modifying image acquisition or phase/slice encoding. This imaging sequence enables direct inflow measurement while retaining static voxel signal‐to‐noise ratio. Inflow measurements were performed for both spoiled gradient‐echo (GRE) imaging and balanced steady‐state free precession (SSFP) in 18 healthy subjects.

Results

For single phase imaging, increasing slab thickness from 3 to 10 cm lead to 73% and 59% reductions in contrast‐to‐noise ratio (CNR) with GRE and SSFP, respectively. For cine acquisitions, systolic CNR was reduced by 85% and 50% for the GRE and SSFP acquisitions, respectively, while diastolic CNR was reduced by 64% and 42%.

Conclusion

There is significant loss of CNR between blood and myocardium when using larger 3D slabs due to saturation of inflowing spins. The loss of contrast is less pronounced for SSFP than for GRE, though both acquisition techniques suffer. J. Magn. Reson. Imaging 2008;28:1273–1279. © 2008 Wiley‐Liss, Inc.  相似文献   

19.

Purpose:

To suppress off‐resonance artifacts in coronary artery imaging at 3 Tesla (T), and therefore improve spatial resolution.

Materials and Methods:

Wideband steady state free precession (SSFP) sequences use an oscillating steady state to reduce banding artifacts. Coronary artery images were obtained at 3T using three‐dimensional navigated gradient echo, balanced SSFP, and wideband SSFP sequences.

Results:

The highest in‐plane resolution of left coronary artery images was 0.68 mm in the frequency‐encoding direction. Wideband SSFP produced an average SNR efficiency of 70% relative to conventional balanced SSFP and suppressed off‐resonance artifacts.

Conclusion:

Wideband SSFP was found to be a promising approach for obtaining noncontrast, high‐resolution coronary artery images at 3 Tesla with reliable image quality. J. Magn. Reson. Imaging 2010;31:1224–1229. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
T2-weighted MRI of edema in acute myocardial infarction (MI) provides a means of differentiating acute and chronic MI, and assessing the area at risk of infarction. Conventional T2-weighted imaging of edema uses a turbo spin-echo (TSE) readout with dark-blood preparation. Clinical applications of dark-blood TSE methods can be limited by artifacts such as posterior wall signal loss due to through-plane motion, and bright subendocardial artifacts due to stagnant blood. Single-shot imaging with a T2-prepared SSFP readout provides an alternative to dark-blood TSE and may be conducted during free breathing. We hypothesized that T2-prepared SSFP would be a more reliable method than dark-blood TSE for imaging of edema in patients with MI. In patients with MI (22 acute and nine chronic MI cases), T2-weighted imaging with both methods was performed prior to contrast administration and delayed-enhancement imaging. The T2-weighted images using TSE were nondiagnostic in three of 31 cases, while six additional cases rated as being of diagnostic quality yielded incorrect diagnoses. In all 31 cases the T2-prepared SSFP images were rated as diagnostic quality, correctly differentiated acute or chronic MI, and correctly determined the coronary territory. Free-breathing T2 prepared SSFP provides T2-weighted images of acute MI with fewer artifacts and better diagnostic accuracy than conventional dark-blood TSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号