首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Walther W  Stein U 《Drugs》2000,60(2):249-271
The efficient delivery of therapeutic genes and appropriate gene expression are the crucial issues for clinically relevant gene therapy. Viruses are naturally evolved vehicles which efficiently transfer their genes into host cells. This ability made them desirable for engineering virus vector systems for the delivery of therapeutic genes. The viral vectors recently in laboratory and clinical use are based on RNA and DNA viruses processing very different genomic structures and host ranges. Particular viruses have been selected as gene delivery vehicles because of their capacities to carry foreign genes and their ability to efficiently deliver these genes associated with efficient gene expression. These are the major reasons why viral vectors derived from retroviruses, adenovirus, adeno-associated virus, herpesvirus and poxvirus are employed in more than 70% of clinical gene therapy trials worldwide. Among these vector systems, retrovirus vectors represent the most prominent delivery system, since these vectors have high gene transfer efficiency and mediate high expression of therapeutic genes. Members of the DNA virus family such as adenovirus-, adeno-associated virus or herpesvirus have also become attractive for efficient gene delivery as reflected by the fast growing number of clinical trials using these vectors. The first clinical trials were designed to test the feasibility and safety of viral vectors. Numerous viral vector systems have been developed for ex vivo and in vivo applications. More recently, increasing efforts have been made to improve infectivity, viral targeting, cell type specific expression and the duration of expression. These features are essential for higher efficacy and safety of RNA- and DNA-virus vectors. From the beginning of development and utilisation of viral vectors it was apparent that they harbour risks such as toxicities, immunoresponses towards viral antigens or potential viral recombination, which limit their clinical use. However, many achievements have been made in vector safety, the retargeting of virus vectors and improving the expression properties by refining vector design and virus production. This review addresses important issues of the current status of viral vector design and discusses their key features as delivery systems in gene therapy of human inherited and acquired diseases at the level of laboratory developments and of clinical applications.  相似文献   

2.
Although most research in the field of somatic gene therapy has investigated the use of recombinant viruses for transferring genes into somatic target cells, various methods for nonviral gene delivery have also been proposed. Both types of gene delivery systems have advantages and drawbacks. Schematically, viral vectors are particularly efficient for gene delivery, whereas nonviral systems are free of the difficulties associated with the use of recombinant viruses but need to be further optimized to reach their full potential. In order to bridge the gap between viral vectors and synthetic reagents, we discuss here some specific features of the viral vector systems of today that could advantageously be taken into account for the design of improved nonviral gene delivery systems. Indeed, although nonviral systems differ fundamentally from viral systems, one possible approach towards enhanced artificial reagents aims at developing ‘artificial viruses' that mimic the highly efficient processes of viral infection.  相似文献   

3.
Plants viruses are versatile vectors that allow the rapid and convenient production of recombinant proteins in plants. Compared with production systems based on transgenic plants, viral vectors are easier to manipulate and recombinant proteins can be produced more quickly and in greater yields. Over the last few years, there has been much interest in the development of plant viruses as vectors for the production of vaccines, either as whole polypeptides or epitopes displayed on the surface of chimeric viral particles. Several viruses have been extensively developed for vaccine production, including tobacco mosaic virus, potato virus X and cowpea mosaic virus. Vaccine candidates have been produced against a range of human and animal diseases, and in many cases have shown immunogenic activity and protection in the face of disease challenge. In this review, we discuss the advantages of plant virus vectors, the development of different viruses as vector systems, and the immunological experiments that have demonstrated the principle of plant virus-derived vaccines.  相似文献   

4.
In the late 1970s, it was predicted that gene therapy would be applied to humans within a decade. However, despite some success, gene therapy has still not become a routine practise in medicine. In this review, we will examine the problems, both experimental and clinical, associated with the use of viral material for transgenic insertion. We shall also discuss the development of viral vectors involving the most important vector types derived from retroviruses, adenoviruses, herpes simplex viruses and adeno-associated viruses.  相似文献   

5.
Modulation of gene expression by siRNA in hematopoietic cells   总被引:2,自引:0,他引:2  
RNA interference (RNAi) has been established as a powerful tool for identifying gene function in many biological processes and can be used for genome-wide functional genetic screens in mammalian cells. For such purposes, expression cassettes encoding RNAi triggers can be efficiently introduced into the host cell genome utilizing viral vector systems, resulting in long-term silencing of target gene expression. Transient gene silencing can also be induced by exogenous delivery of suitable RNAi triggers to target cells. However, similarly to other reverse genetic tools, there are technical challenges and limitations associated with RNAi, some of which are specific to hematopoietic cells. In this review we discuss the rational design of effective RNAi triggers, different approaches for their efficient delivery, and the value of RNAi both as a potential therapeutic strategy and as a tool for functional genomics and target validation in hematopoietic cells.  相似文献   

6.
Silencing of gene expression by RNA interference (RNAi) has become a powerful tool for functional genomics in mammalian cells. Furthermore, RNAi holds promise as a simple, fast and cost-effective approach to studying mammalian gene function in vivo and as a novel therapeutic approach. This review provides an overview of the progress of RNAi in vivo, with emphasis on systemic/local siRNA delivery, viral shRNA vectors, shRNA vector transgenic mice and conditional systems to control shRNA vectors. Taken together, the data from 80 in vivo studies show that RNAi is a useful tool that offers new opportunities for functional genomics in mice.  相似文献   

7.
Recombinant adenoviruses are attracting a great deal of attention as a highly efficient gene delivery technology and used for in vitro and in vivo gene expression in science. However, among traditional methods, there have been many difficulties and no simple procedure to generate recombinant adenoviruses. Since almost of all these methods involve the process of homologous recombination in a mammalian packaging cell line, the problems are low efficiency of homologous recombination, the need for complicated techniques and the demand for a long time to generate recombinant viruses. These problems have prevented widespread use of adenovirus technology as effective gene transfer tools. In the last few years, there have been several significant and innovative advances in adenoviral technologies, which include a new generation of vectors, the ease of vector manipulation and improvement of the viral production system with homologous recombination in E. coli. Here, we describe the easier and more efficient viral production systems and provide a practical manual for generating recombinant adenoviruses based on one of such systems.  相似文献   

8.
9.
Nonviral systems for nucleic acid delivery offer a host of potential advantages compared with viruses, including reduced toxicity and immunogenicity, increased ease of production and less stringent vector size limitations, but remain far less efficient than their viral counterparts. In this article we review recent advances in the delivery of nucleic acids using polymeric and inorganic vectors. We discuss the wide range of materials being designed and evaluated for these purposes while considering the physical requirements and barriers to entry that these agents face and reviewing recent novel approaches towards improving delivery with respect to each of these barriers. Furthermore, we provide a brief overview of past and ongoing nonviral gene therapy clinical trials. We conclude with a discussion of multifunctional nucleic acid carriers and future directions.  相似文献   

10.
The concept of gene therapy includes not only the addition of normal genes to genetically deficient cells, but also the use of transgenes encoding several peptides that function to enhance the capacity of normal cells or to regulate cell differentiation. The application of gene therapy has been widely considered for various diseases, as well as for the field of tissue engineering. To overcome the problems with viral vectors, a broad range of nonviral systems for gene delivery have been developed, including systems composed of cationic lipids (lipoplexes) and cationic polymers (polyplexes). However, most of these systems are still much less efficient than viral vectors, especially for in vivo gene delivery. Paradoxically, to achieve a maximum transgene expression in the targeted cells, there is no question that natural viruses are the most effective nanocarriers. In this article, we highlight the approaches currently being taken to improve nonviral gene delivery systems so that they better replicate the typical structures and mechanisms of viruses, such as DNA (RNA) condensation in the core, surrounding structures with targeting molecules for specific receptors, as well as the toxic and immunogenic problems which should be avoided, with the ultimate goal of bringing these systems into a clinical setting.  相似文献   

11.
The ability of viruses to transfer macromolecules between cells makes them attractive starting points for the design of biological delivery vehicles. Virus-based vectors and sub-viral systems are already finding biotechnological and medical applications for gene, peptide, vaccine and drug delivery. Progress has been made in understanding the cellular and molecular mechanisms underlying virus entry, particularly in identifying virus receptors. However, receptor binding is only a first step and we now have to understand how these molecules facilitate entry, how enveloped viruses fuse with cells or non-enveloped viruses penetrate the cell membrane, and what happens following penetration. Only through these detailed analyses will the full potential of viruses as vectors and delivery vehicles be realised. Here we discuss aspects of the entry mechanisms for several well-characterised viral systems. We do not attempt to provide a fully comprehensive review of virus entry but focus primarily on enveloped viruses.  相似文献   

12.
13.
陈欢  魏利军 《药学进展》2022,46(11):839-847
RNA疗法通过将外源性的RNA引入特定细胞来调控基因表达,是一种非常有潜力的疾病治疗策略。然而,由于存在体内稳定性差、难以高效进入靶细胞等问题,RNA药物的递送需借助合适的药物递送系统。与病毒载体相比,非病毒载体具有更高的安全性,已成为本领域的研究热点。主要介绍脂质纳米颗粒递送系统、生物偶联递送系统以及外泌体递送系统这3种可帮助RNA疗法进入临床的非病毒载体递送系统,并对其技术进展和难点进行分析与总结。  相似文献   

14.
Design of retroviral vectors and helper cells for gene therapy   总被引:7,自引:0,他引:7  
During the past decade, gene therapy has been applied to the treatment of disease in hundreds of clinical trials. Various tools have been developed to deliver genes into human cells; among them, genetically engineered retroviruses are currently the most popular tool for gene delivery. Most of the systems contain vectors that are capable of accommodating genes of interest and helper cells that can provide the viral structural proteins and enzymes to allow for the generation of vector-containing infectious viral particles. Retroviridae is a family of retroviruses that differs in nucleotide and amino acid sequence, genome structure, pathogenicity, and host range. This diversity provides opportunities to use viruses with different biological characteristics to develop different therapeutic applications. Currently, a variety of retroviruses that provide distinct advantages for gene delivery has been modified and used in clinical trials. In this review, the genome structures of oncoviruses, lentiviruses, and spumaviruses are reviewed and examples of vectors derived from these viruses are described. As with any delivery tool, the efficiency, the ability to target certain tissue or cell type, the expression of the gene of interest, and the safety of retroviral-based systems are important for successful application of gene therapy. Significant efforts have been dedicated to these areas of research in recent years. Various modifications have been made to retroviral-based vectors and helper cells to alter gene expression, target delivery, improve viral titers, and increase safety. The principles and design of these modifications are discussed in this review.  相似文献   

15.
Experimental studies of viral gene delivery generally support the principle that virus-mediated gene transfer is indeed possible. However, the field of gene therapy has not yet been realised as a practicable clinical intervention. The delay in translation of laboratory work to clinical utility largely reflects the inability of gene delivery vectors to convey adequate genetic material to a desired location, with adequate durability and low enough toxicity to be effective. Current studies of viral gene therapy vehicles have focused on re-engineering viruses being tested as vectors at present, treating the host to facilitate viral gene transfer and the development of new vectors. Initial enthusiasm for oncoretroviral and adenoviral vectors has cooled, while adeno-associated virus and lentiviral vectors are attracting more interest. Experimental studies with modified SV40-based vectors have also been very promising. The future of gene therapy will probably entail using an array of gene delivery vehicles, each with its own strengths and weaknesses. The vector systems will probably be as diverse as the applications to which they will be put.  相似文献   

16.
Experimental studies of viral gene delivery generally support the principle that virus-mediated gene transfer is indeed possible. However, the field of gene therapy has not yet been realised as a practicable clinical intervention. The delay in translation of laboratory work to clinical utility largely reflects the inability of gene delivery vectors to convey adequate genetic material to a desired location, with adequate durability and low enough toxicity to be effective. Current studies of viral gene therapy vehicles have focused on re-engineering viruses being tested as vectors at present, treating the host to facilitate viral gene transfer and the development of new vectors. Initial enthusiasm for oncoretroviral and adenoviral vectors has cooled, while adeno-associated virus and lentiviral vectors are attracting more interest. Experimental studies with modified SV40-based vectors have also been very promising. The future of gene therapy will probably entail using an array of gene delivery vehicles, each with its own strengths and weaknesses. The vector systems will probably be as diverse as the applications to which they will be put.  相似文献   

17.
Alphaviruses are positive-strand RNA viruses that are being developed as a high level transient expression vectors. Although most work so far has centered on their use as vaccine vectors, they do have potential as tumor therapy agents. The region of the genome coding for non-structural proteins induces rapid apoptosis in most infected cells, leaving the multiple cloning site (MCS) of the vector free for other purposes. Two types of vector have been developed: recombinant suicide particles capable of only one round of replication and expression, and replication competent vectors which carry an extra viral 26S subgenomic promoter. Sindbis virus vectors may be capable of targeting at least some tumor cells. A new enhanced Semliki Forest virus (SFV) expression vector is now available and this is particularly effective when used in combination with pro-inflammatory cytokines such as IL-12 or anti-angiogenic treatment based on the induction of autoimmunity to tumor endothelial cell antigen (vascular endothelial growth factor receptor 2). Such treatments can result in the inhibition of metastasis formation as well as inhibition of primary tumor growth. It is concluded that the alphavirus vector systems have potential for the treatment of rapidly growing, otherwise untreatable tumors. Patents have been published for the basic vector systems, for targeting vectors to tumor tissue and for the use of replication competent vectors for cancer treatment.  相似文献   

18.
Transient expression levels, vector dissemination and toxicities associated with adenoviral vectors have prompted the usage of matrices for localized and controlled gene delivery. Two recombinant silk-elastinlike protein polymer analogues, SELP-47K and SELP-415K, consisting of different lengths and ratios of silk and elastin units, were previously shown to be injectable hydrogels capable of matrix-mediated controlled adenoviral gene delivery. Reported here is a study of spatiotemporal control over adenoviral gene expression with these SELP analogues in a human tumor xenograft model of head and neck cancer using whole animal imaging. Real-time images of viral expression levels indicate that polymer concentration and polymer structure are predominant factors that affect viral release and, thus, viral transfection. Decrease in polymer concentration and increase in polymer elastin content results in greater release, probably due to changes in the network structure of the hydrogel. To better understand this relationship, macro- and microstructural properties of the hydrogels were analyzed using dynamic mechanical analysis (DMA) and transmission electron microscopy (TEM). The results confirm that the concentration and the elastin content of the protein polymer affect the pore size of the hydrogel by changing the physical constraints of the SELP fibril network and the degree of hydration of the SELP fibrils. The potential to modulate viral release using SELP hydrogel delivery vehicles that can be injected intratumorally by minimally invasive techniques holds significant promise for the delivery of therapeutic viruses.  相似文献   

19.
Gene delivery is one of the biggest challenges in the field of gene therapy. It involves the efficient transfer of transgenes into somatic cells for therapeutic purposes. A few major drawbacks in gene delivery include inefficient gene transfer and lack of sustained transgene expression. However, the classical method of using viral vectors for gene transfer has circumvented some of these issues. Several kinds of viruses, including retrovirus, adenovirus, adeno-associated virus, and herpes simplex virus, have been manipulated for use in gene transfer and gene therapy applications. The transfer of genetic material into lacrimal epithelial cells and tissues, both in vitro and in vivo, has been critical for the study of tear secretory mechanisms and autoimmunity of the lacrimal gland. These studies will help in the development of therapeutic interventions for autoimmune disorders such as Sj?gren's syndrome and dry eye syndromes which are associated with lacrimal dysfunction. These studies are also critical for future endeavors which utilize the lacrimal gland as a reservoir for the production of therapeutic factors which can be released in tears, providing treatment for diseases of the cornea and posterior segment. This review will discuss the developments related to gene delivery and gene therapy in the lacrimal gland using several viral vector systems.  相似文献   

20.
Introduction: Gene delivery from hydrogel biomaterials provides a fundamental tool for a variety of clinical applications including regenerative medicine, gene therapy for inherited disorders and drug delivery. The high water content and mild gelation conditions of hydrogels support their use for gene delivery by preserving activity of lentiviral vectors and acting to shield vectors from any host immune response.

Areas covered: Strategies to control lentiviral entrapment within and retention/release from hydrogels are reviewed. The authors discuss the ability of hydrogel design parameters to control the transgene expression profile and the capacity of hydrogels to protect vectors from (and even modulate) the host immune response.

Expert opinion: Delivery of genetic vectors from scaffolds provides a unique opportunity to capitalize on the potential synergy between the biomaterial design for cell processes and gene delivery. Hydrogel properties can be tuned to directly control the events that determine the tissue response to controlled gene delivery, which include the extent of cell infiltration, preservation of vector activity and vector retention. While some design parameters have been identified, numerous opportunities for investigation are available in order to develop a complete model relating the biomaterial properties and host response to gene delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号