共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We tested the effects of dehydroevodiamine.Cl (DHED) on field excitatory postsynaptic potentials (fEPSPs) evoked by the electrical stimulation of Schaffer collaterals-commissural fibres in the CA1 region of rat hippocampal slices. Bath applications of 10 microM DHED for 20 or 40 min induced long-lasting facilitation of fEPSPs, which outlasted the presence of DHED. A 10 min treatment with a higher concentration (100 microM) also induced long-lasting facilitation. The long-lasting facilitation was blocked either by 10 microM atropine, the muscarinic receptor antagonist, or by 50 microM D-2-amino-5-phosphonopentanoic acid (D-AP5), an NMDA receptor antagonist. These results show that DHED produces long-lasting facilitation of synaptic transmission, and that this facilitation depends upon the activation of both the muscarinic and NMDA receptors. 相似文献
3.
We directly measured fast excitatory postsynaptic potentials (EPSPs) along the dendrites of hippocampal CA1 pyramidal neurons by employing an optical method to study how synaptic potentials spread along the dendrites. Rat hippocampal slices were stained with a fluorescent voltage-sensitive dye JPW1114 and optical signals were monitored with a 16 x 16 photodiode array system. A stimulating electrode was placed either at stratum lacunosum moleculare to activate perforant fibers that make synaptic contacts to the distal apical dendrites or at stratum oriens to induce EPSPs at the basal dendrites of CA1 pyramidal cells. CNQX-sensitive components of the optical signals, which were assumed to be population EPSPs, were isolated. Propagation and attenuation of the CNQX components were successfully observed with the optical method. At the cell body layer, the peak of the CNQX-sensitive component was delayed by 17.08 +/- 1.64 ms from the input sites. Additionally we performed a simulation study to estimate the passive membrane parameters of the apical dendrites. Estimated apparent specific internal axial resistance (Ri) following stratum lacunosum moleculare stimulation was 76.0 +/- 4.2 Omega.cm and apparent specific membrane resistance (Rm) was 27.8 +/- 2.1 kOmega.cm2 (assuming the specific membrane capacitance of dendrites Cm = 1.6 microF/cm2). These values are comparable to those previously reported. When synaptic inputs were applied at stratum oriens, these apparent passive membrane parameters were different (high Ri and low Rm), suggesting that nonuniform dendritic membrane conductance or voltage-dependent conductances which are active near the resting potential may contribute to the measured passive membrane properties. 相似文献
4.
Field potentials from area CA1 evoked by stimulation of the Schaffer collaterals were compared in dorsal and ventral hippocampal slices of rat brain. Responses were categorized into 5 response types on the basis of their morphology, ranging from simple (single spike component) to complex (multiple spike components). A higher percentage of ventral slices, compared to dorsal slices, responded with a complex morphology under normal and increased K+ concentrations. Thus, there was a significantly greater tendency for cells within the ventral hippocampus to generate burst responses. 相似文献
5.
The effects of extracellular acidification on the synaptic function and neuronal excitability were investigated on the hippocampal CA1 neurons. A decrease of extracellular pH from 7.4 to 6.7 did not alter either the resting membrane potential or the neuronal membrane input resistance. Extracellularly recorded field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) were significantly reduced by acidosis. Additionally, the amplitude of presynaptic fiber volley was also reduced. The sensitivity of postsynaptic neurons to N-methyl-D-aspartate, but not to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, was depressed by acidosis. Lowering of extracellular pH did not significantly affect the magnitude of paired-pulse facilitation (PPF) of synaptic transmission. Acidosis also reversibly limited the sustained repetitive firing (RF) of Na(+)-dependent action potentials elicited by injection of depolarizing current pulses into the pyramidal cells. The limitation of RF by extracellular acidification was accompanied by the reduction of the maximal rate of rise (;V(max)) of the action potentials and the amplitude of afterhyperpolarization. Neither the Na (+)/H (+) antiporter blocker 5-(N -ethyl -N -isopropyl)-amiloride nor the selective adenosine A (1) receptor antagonist 1,3-dipropyl -8-cyclopentylxanthine, however, affected the acidosis -induced synaptic depression. It was also found that acidosis did not affect either the induction r maintenance of long -term potentiation (LTP) at Schaffer collateral -CA 1 synapses. These results suggest that the extracellular acidosis -induced synaptic depression is likely to result from an inhibition of presynaptic Na (+) conductance, thereby decreasing the amplitude of action potentials in individual afferent fibers or the number of afferent fiber activation to stimuli and then indirectly affecting the signaling processes contributing to trigger neurotransmitter release. 相似文献
6.
Behavior‐driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus 下载免费PDF全文
M. K. Chawla V. L. Sutherland K. Olson B. L. McNaughton C. A. Barnes 《Hippocampus》2018,28(2):178-185
Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal–ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior‐driven cells across the dorsal–ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two‐ to‐threefold reduction in spatial behavior‐driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self‐motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non‐spatial information within the hippocampus along its dorso‐ventral axis. 相似文献
7.
Inhibitory processes mediated by gamma-aminobutyric acid (GABA) were studied in immature rat hippocampal slices using the whole-cell patch clamp technique. Orthodromically evoked hyperpolarizing inhibitory postsynaptic potentials (IPSPs) were observed in CA1 neurons of postnatal 2-5 (P2-5) and 7-13 (P7-13) day old rats under conditions of low internal [Cl-]. In the whole-cell voltage-clamp mode, applications of GABA evoked outwards currents which reversed at -55 mV and -62 mV in P2-5 and P7-13 CA1 neurons, respectively, with comparable reversal potential for the IPSPs for each age. An increase in internal [Cl-] caused a depolarizing shift of the GABA reversal potential which followed the Nernst equation. In both groups of neurons, the IPSPs and GABA currents were blocked with the bath applications of bicuculline (10 microM) and picrotoxin (100 microM). We conclude that the GABAA-mediated inhibitory synaptic process exists in P2-5 CA1 neurons and hypothesize that the absence of such IPSPs noted in previous studies of immature CA1 neurons was likely due to higher internal [Cl-] in the more immature neurons. 相似文献
8.
Long-term potentiation (LTP) was examined in the CA1 region of rat hippocampal slices at postnatal day 9 (P9), P15, P30, P60, P90, P120, and P300. A single 100 Hz × 1 sec tetanus failed to induce LTP in P9 slices, while similar degrees of LTP were observed at P15, P30, and P60. At P30, changes in population spike (PS) amplitudes were accurately predicted by changes in dendritic excitatory postsynaptic potentials (EPSPs). However, at P15, the predicted increase in PS calculated from corresponding changes in dendritic EPSPs was significantly less than the observed increase, suggesting that EPSP-PS dissociation (ES-dissociation) plays a substantial role in LTP at P15. Additionally, the corresponding changes in somatic EPSP height measured in the CA1 cell layer did not predict the E-S dissociation at P15, suggesting that the E-S dissociation arises largely from changes in the excitability of the soma. Using a single 100 Hz × 1 sec tetanus, LTP proved difficult to induce in slices from rats ≥ P90, with slices showing initial enhancement that faded over 60 min of monitoring. © 1995 Wiley-Liss, Inc. 相似文献
9.
Cysteamine pre-treatment reduces pentylenetetrazol-induced plasticity and epileptiform discharge in the CA1 region of rat hippocampal slices 总被引:2,自引:0,他引:2
Rostampour M Fathollahi Y Semnanian S Hajizadeh S Mirnajafizadeh J Shafizadeh M 《Brain research》2002,955(1-2):98-103
The effects of prior treatment of cysteamine, a somatostatin inhibitor, on pentylenetetrazol (PTZ) induced epileptic and plastic changes in CA1 excitability were examined. Population spikes were evoked by activation of Schaffer collaterals with a range of stimulation intensities. Changes in the population spike and epileptiform amplitudes were used as indices to quantify the effects of PTZ exposure in the control and cysteamine pre-treated slices. Cysteamine pre-treatment decreased baseline CA1 population spike amplitude following high intensity stimulation of Schaffer collaterals. Following PTZ application directly to the slices, cysteamine diminished the increased population spike and epileptiform amplitudes which were normally observed following collateral stimulation. Magnesium-free medium induced epileptiform activity was also significantly reduced with cysteamine pre-treatment. It is concluded that somatostatin may be involved in PTZ-induced epileptic and plastic changes in CA1 excitability. 相似文献
10.
A fundamental property of small neuronal ensembles is their ability to be selectively activated by distinct stimuli. One cellular mechanism by which neurons achieve this input selectivity is by modulating the temporal dynamics of excitation and inhibition. We explored the interplay of excitation and inhibition in synapses between pyramidal neurons of cornu ammonis field 3 of the hippocampal formation (CA3) in cultured rat hippocampal slices, where activation of a single excitatory cell can readily recruit local interneurons. Simultaneous whole-cell recordings from pairs of CA3 pyramidal neurons revealed that the strength of connections was neither uniform nor balanced. Rather, stimulation of presynaptic neurons elicited distinct combinations of excitatory postsynaptic current–inhibitory postsynaptic current (EPSC–IPSC) amplitudes in the postsynaptic neurons. EPSC–IPSC sequences with small EPSCs had large IPSCs and sequences that contained large EPSCs had small IPSCs. In addition to differences in the amplitudes of the responses, the kinetics of the EPSCs were also different, creating distinct temporal dynamics of excitation and inhibition. Weaker EPSCs had significantly slower kinetics and were efficiently occluded by IPSCs, thereby further limiting their contribution to depolarizing the postsynaptic membrane. Our data suggest that hippocampal pyramidal cells may use an imbalance between excitation and inhibition as a filter to enhance selectivity toward preferential excitatory connections. 相似文献
11.
The effects of arginine8-vasopressin (AVP) on the excitability of 47 pyramidal cells of the CA1 region of the hippocampus were determined by using intracellular recording techniques in a submerged slice preparation. Addition of 10−6 M AVP to the bathing medium evoked an increase in spike discharge which was slow in onset and only gradually reversible. The discharge was accompanied by an increase in excitatory postsynaptic potentials without significant change of the resting input resistance. AVP-induced excitation was found in 81% of ventral and 29% of dorsal hippocampal CA1 pyramidal cells. In low Ca2+, high Mg2+ solution this excitatory action by AVP was blocked. Microiontophoretic application of AVP onto apical or basal dendrites or the cell body did not result in excitation. These observations suggest that the action of AVP on CA1 pyramidal cells is transsynaptic and is more pronounced in ventral than dorsal CA1. 相似文献
12.
The transient property of the dipyridamole-induced depression of excitatory synaptic transmission was analyzed using field EPSPs (fEPSPs) recorded from the CA1 region in rat hippocampal slices. The fEPSPs were depressed by 1 microM dipyridamole and then gradually recovered to the control level. The depression was antagonized by aminophylline or DPCPX, although it was not significantly affected by DMPX. The results suggest that the fEPSP depression is induced by a mechanism through the A(1) receptor. 相似文献
13.
Reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices 总被引:3,自引:0,他引:3
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes was studied in the CA1 region of rat hippocampal slices. The field excitatory postsynaptic potential (fEPSP) and population spikes (PS) were recorded from strata radiatum and pyramidale, respectively, following stimulation of Schaffer collaterals. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at test-pulse intensity failed to reverse the PTZ potentiation. However, the same stimulation at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minutes of PTZ application. Prior application of high-intensity TPS also decreased the amount of PTZ potentiation, whereas it had no long-lasting effect on baseline synaptic responses. High-intensity TPS induced reversal was blocked by adenosine A1 receptor antagonist and, furthermore, was reduced by protein phosphatase 1 inhibitor. The results suggest that mechanism of PTZ-induced LTP reversal involves activation of adenosine receptors and protein phosphatases. 相似文献
14.
Dependence on morphine impairs the induction of long-term potentiation in the CA1 region of rat hippocampal slices 总被引:7,自引:0,他引:7
The effect of chronic morphine treatment on hippocampal CA1-long-term potentiation (LTP) was examined in vitro. The field excitatory postsynaptic potential (fEPSP) was recorded from stratum radiatum of area CA1 following stimulation of Schaffer collaterals in slices taken from control and morphine-dependent rats. To induce LTP, a 100-Hz primed burst stimulation (PBs) was used. Slices from rats exposed to chronic morphine showed no effect on baseline synaptic responses. Slices from control rats or rats exposed to chronic morphine maintained in ACSF with either morphine or naloxone also had no effect on baseline synaptic responses. Control slices perfused with medium containing either morphine or naloxone as well as both drugs exhibited hippocampal CA1 LTP. Similarly, slices from morphine-dependent rats maintained in ACSF with either naloxone or just morphine free ACSF also exhibited hippocampal CA1 LTP. However, slices from morphine-dependent rats maintained in ACSF with morphine significantly attenuated hippocampal CA1 LTP. These findings suggest that hippocampal CA1-LTP can still be achieved in slices from morphine-dependent rats exhibiting morphine withdrawal through mechanisms that may be inhibited by opiate exposure. Such studies can be helpful in understanding the neurophysiological substrate of memory deficits seen in opiate addicts. 相似文献
15.
To estimate the relative contributions of pre- and postsynaptic elements, and of synaptic and action potential-related currents, to the elevation of interstitial potassium ([K+]o) that occurs during neural activation, we measured [K+]o and focal electrical potential (Vec) during ortho- and antidromic stimulation, before and after blocking synaptic transmission, in the CA1 region of hippocampal tissue slices in vitro. Single stimulus pulses could cause delta [K+]o as large as 0.25 mM in stratum (st.) pyramidale and 0.27 mM in st. radiatum; stimulus trains could cause delta [K+]o as large as 10.5 mM in st. pyramidale and 6.25 mM in st. radiatum. Stimulus trains also caused negative Vec shifts; these shifts were related in a linear fashion to delta [K+]o. For a given increase in [K+]o, the change in Vec was greater in st. radiatum than in st. pyramidale. In st. pyramidale, the delta [K+]o evoked by antidromic stimulation was 65% of the delta [K+]o evoked by orthodromic stimulation (with equal population spike amplitudes). Blockade of synaptic transmission by removal of Ca2+ reduced orthodromically evoked delta [K+]o in st. radiatum by 52%; delta [K+]o in st. pyramidale was abolished. Removal of Ca2+ caused an 11% decrease in the delta [K+]o evoked in st. pyramidale by antidromic stimulation. We conclude that in the layer of dendritic trees (st. radiatum), approximately half of the K+ ions released into the interstitial space during orthodromic stimulation come from presynaptic terminals, with the remainder probably resulting from the ion currents of postsynaptic potentials. Among the pyramidal cell bodies (st. pyramidale), almost all of the excess K+ is released by action potential currents. 相似文献
16.
Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices 总被引:8,自引:0,他引:8
Extracellular pH changes were measured in the rat hippocampal slices using the pH-sensitive dye Phenol red. pH changes accompanied artificially evoked synaptic transmission in the dendrite area of dentate gyrus neurones and pyramidal neurones (CA1). Single electrical stimulation of presynaptic pathways produced a rapid acidic pH shift which was followed by a long-lasting alkaline one. The duration (nearly 10 ms) and amplitude of the acidic shift were closely related to the orthodromically evoked population excitatory postsynaptic potential. Population action potential, when elicited antidromically or in conditions of blocked synaptic transmission, did not produce any pH changes which are supposed to be specifically linked to the synaptic transmission. 相似文献
17.
(1) The posterior alveus (PA), the anterior alveus (AA) and the Schaffer collaterals (SCH) evoked field potential components which were organized as parasagittal strips of various widths. Spatially continuous and interactive lamellae are suggested. (2) By correlation with unit activities, the early postsynaptic components evoked by PA, AA and SCH were inferred to be extracellular excitatory postsynaptic potentials (EPSPs) and the late, long-duration components, the inhibitory postsynaptic potentials (IPSPs). The hypothesis that interneurons as well as pyramidal cells generate the field is proposed and discussed. (3) One- and two-dimensional profiles of deep evoked potentials and current source-sink analysis revealed excitatory synapses in stratum oriens for the PA and AA inputs and in stratum radiatum for the SCH input. The late dipole field evoked by PA and AA possessed current sources in strata radiatum and pyramidale, the sites of the inhibitory synapses. The late dipole field evoked by SCH had another component possibly generated by recurrent activity, afterpotentials or relayed activity through CA3. 相似文献
18.
Hrabetová S 《Hippocampus》2005,15(4):441-450
Molecular transport in brain extracellular space (ECS) is hindered by the structure of the tissue. Diffusion analysis of small extracellular markers quantifies tissue hindrance, expressed as tortuosity lambda = (D/D*)(1/2), where D is the free diffusion coefficient and D* is the effective diffusion coefficient in tissue. In healthy brain, lambda is approximately 1.6, but the nature of this parameter is poorly understood. We report that the stratum radiatum of the hippocampal CA1 region in vitro, previously shown to be anisotropic (i.e., different along the x-, y-, and z-axes) in in vivo study, is isotropic like somatosensory neocortex but has a reduced lambda. Diffusion of fluorophore-labeled dextran (f-dex, M(r) 3,000) and tetramethylammonium (TMA(+), M(r) 74) was measured in rat brain slices (400 mum) using integrative optical imaging (IOI) and real-time iontophoresis (RTI), respectively. In the stratum radiatum, diffusion of f-dex was similar along the x-, y-, and z-axes (lambda(x), lambda(y); lambda(z) were 1.55, 1.53, and 1.55), but the tortuosity was significantly lower than in the neocortex, where lambda = 1.81. This finding was confirmed by the RTI method, which measured lambda with TMA(+), a much smaller molecule, and determined volume fraction alpha, the proportion of tissue occupied by the ECS. In stratum radiatum, lambda(x), lambda(y), and lambda(z) were 1.47, 1.44, and 1.46, while in neocortex, lambda was 1.65. The ECS volume fraction was similar (0.24) in both regions. It is proposed that in the hippocampus, low lambda reflects a reduced occurrence of concave extracellular microdomains, referred to as dead spaces, which increase tortuosity by transient trapping of markers. Functionally, a low lambda may permit structural plasticity and facilitate extrasynaptic communication. It may also enhance the spread of neuroactive substances and thus contribute to the sensitivity of the hippocampal CA1 region to ischemia and epilepsy. 相似文献
19.
Response of lamina V medullary dorsal horn neurons to noxious thermal and noxious mechanical facial stimuli were challenged with iontophoretically applied cis-2,3-piperidine dicarboxylic acid, a broad spectrum excitatory amino acid antagonist. This antagonist reduced neuronal responses to noxious mechanical stimuli but not responses to noxious thermal stimuli. These results suggest that different neural mechanisms underlie the responses of lamina V neurons to different noxious stimuli, and that responses to noxious mechanical stimuli appear to involve excitatory amino acid receptors. 相似文献
20.
R.David Andrew Charles P. Taylor Robert W. Snow F.Edward Dudek 《Brain research bulletin》1982,8(2):211-222
Intracellular injections of Lucifer Yellow-CH (LY) into CA1 pyramidal cells were made in rat hippocampal slices to study dye transfer between neurons as evidence that these cells are electrotonically coupled. Extensive control procedures were performed which substantially reduced inadvertent staining. Over half of the neurons were dye-coupled after injections in stratus pyramidale. Dye coupling occurred even when spike amplitudes were greater than or equal to 70 mV throughout the impalement and was still present after chemical synapses were blocked with a low Ca2+ solution containing Mn2+. Somata of dye-coupled cells were usually located within 35 micrometers (post-fixation) of the injected cell and showed no preferred orientation. Fast prepotentials and dye coupling occurred independently. Neurons in superior cervical ganglia, which were sliced and injected using similar procedures, showed no dye coupling. Intradendritic injections of LY in stratum radiatum also yielded dye coupling between CA 1 pyramidal cells, although the dye coupling was less frequent. Within stratum radiatum, neither extracellular ejections nor intracellular injections of interneurons were associated with multiple staining. Thus, injection of LY into the soma or dendrite of a single CA1 pyramidal cell often resulted in multiple staining, and in many ensembles the somata were well spaced. Control experiments suggested that such dye transfer is not by an extracellular route. This implied that some CA1 cells are electrotonically coupled. Further electrophysiological and morphological studies are required to resolve the discrepancies among various techniques used to evaluate the amount of coupling in the hippocampus. 相似文献