首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND CONTEXT: Current surgical trends increasingly emphasize the minimization of surgical exposure and tissue morbidity. Previous research questioned the ability of unilateral pedicle screw instrumentation to adequately stabilize posterior fusion constructs. No study to date has addressed the effects of reduced posterior instrumentation mass on interbody construct techniques. Unilateral surgical exposure for transforaminal lumbar interbody fusion (TLIF) allows ipsilateral pedicle screw placement. Theoretically, percutanous contralateral facet screw placement could provide supplemental construct support without additional surgical exposure. PURPOSE: Identify the biomechanical effects of reduced spinal fusion instrumentation mass on interbody construct stability. STUDY DESIGN: An in vitro biomechanical study using human lumbar spines comparing stability of TLIF constructs augmented by: (1) bilateral pedicle screw fixation, (2) unilateral pedicle screw fixation, or (3) a novel unilateral pedicle screw fixation supplemented with contralateral facet screw construct. METHODS: Seven fresh frozen human cadaveric specimens were tested in random construct order in flexion/extension, lateral bending, and axial rotation using +/-5.0 Nm torques and 50 N axial compressive loads. Analysis of torque rotation curves determined construct stability. Using paired statistical methods, comparison of construct stiffness and total range of motion within each specimen were performed using the Wilcoxon signed ranks test with a Holm-Sidák multiple comparison procedure (alpha=0.05). RESULTS: In flexion/extension, lateral bending, and axial rotation, there were no measurable differences in either stiffness or range of motion between the standard bilateral pedicle screw and the novel construct after TLIF. After TLIF, the unilateral pedicle screw construct provided only half of the improvement in stiffness compared with bilateral or novel constructs and allows for significant off-axis rotational motions, which could be detrimental to stability and the promotion for fusion. CONCLUSIONS: All tested TLIF constructs with posterior instrumentation decreased segmental range of motion and increased segmental stiffness. While placing unilateral posterior instrumentation decreases overall implant bulk and dissection, it allows for significantly increased segmental range of motion, less stiffness, and produces off-axis movement. The technique of contralateral facet screw placement provides the surgical advantages of unilateral pedicle screw placement with stability comparable to TLIF with bilateral pedicle screws.  相似文献   

2.
T H Lim  J G Kim  A Fujiwara  T T Yoon  S C Lee  J W Ha  H S An 《Spine》2001,26(22):2498-2503
STUDY DESIGN: Flexibility tests and finite element analyses were performed for the biomechanical evaluation of diagonal transfixation in pedicle screw instrumentation. OBJECTIVE: To assess the biomechanical advantages of diagonal transfixation compared with conventional horizontal transfixation. SUMMARY AND BACKGROUND DATA: A few pedicle screw instrumentation systems allow the use of cross-links in the diagonal direction. Such a diagonal transfixation is anticipated to improve the surgical construct stability, but its biomechanical qualities have not been completely evaluated. METHODS: Flexibility tests were performed on 10 calf lumbar spines (L2-L5). Specimens were subjected to pure moments up to 8.2 Nm in flexion, extension, lateral bending, and extension while the resulting movements of L3 and L4 were measured by a three-dimensional motion analysis system. The tested cases included (1) intact, (2) pedicle screw fixation without transfixation after total removal of the L3-L4 disc, (3) pedicle screw fixation with diagonal transfixation, and (4) pedicle screw fixation with horizontal transfixation. Three-dimensional finite element models of the tested surgical constructs were also developed by use of three-dimensional beam elements to investigate the effect of diagonal transfixation and horizontal transfixation on the construct stability and the corresponding stress changes in the screws. RESULTS: When compared with no transfixation, horizontal transfixation significantly improved the lateral bending and axial rotation stability by 15.7% and 13.9%, respectively, but there was no improvement of stability in flexion and extension. By contrast, diagonal transfixation significantly improved the flexion and extension stability by 12% and 10.7%, respectively, but not the lateral bending and axial rotation stability in comparison with no transfixation. Comparison between horizontal transfixation and diagonal transfixation showed that the stabilizing effect of diagonal transfixation was greater in flexion and extension (13% and 11%, P < 0.01) than that of horizontal transfixation but smaller in lateral bending (11%, P < 0.05) and axial rotation (6.6%, P > 0.1). Finite element model predictions of the motion changes were similar to the changes observed in flexibility tests. In horizontal transfixation, the load changes, compared with no transfixion, were a 0.02% increase in flexion-extension, a 27.5% increase in lateral bending, and a 58% decrease in axial rotation, and the magnitudes of the moments applied on both the right and left pedicle screws were identical. However, when diagonal transfixation was achieved by connecting the left superior screw and the right inferior screw, the loads in the left screw were increased by 11.5% in flexion-extension, 43.6% in lateral bending, and 7.9% in axial rotation, whereas the loads in the right screw were decreased by 10.9% in flexion-extension, increased by 0.06% in lateral bending, and decreased by 18.1% in axial rotation. CONCLUSIONS: The results of this study showed that diagonal transfixation provides more rigid fixation in flexion and extension but less in lateral bending and axial rotation in comparison with horizontal transfixation. Furthermore, greater stresses in the pedicle screws were predicted in the diagonal transfixation model. These limitations of diagonal transfixation should be considered carefully for clinical application.  相似文献   

3.
Our objective was to compare the stiffness of lateral mass screws versus two different spinous process wiring constructs in a cadaveric model of plated anterior cervical pseudoarthrosis. When treating an anterior plated pseudoarthrosis via a posterior approach, it is unclear whether the added expense, muscle exposure, and risk of lateral mass fixation are justified biomechanically versus a simpler, cheaper, and potentially less morbid wiring technique, because the presence of the anterior plate likely reduces motion over the unplated situation. Seven cadaveric cervical spines were loaded in compression, flexion, extension, lateral bending, and torsion. Each load sequence was applied to: 1) the intact spine; 2) after application of a plated ACDF construct (pACDF); and 3) after the insertion of lateral mass (LM) screws, ``modified' triple wiring (TW), or Roger's wiring (RW), in alternating order for each specimen. For each sequence, load deformation curves and stiffness were obtained. Supplemental LM fixation significantly (p ≤ 0.05) increased stiffness versus pACDF in all six modes tested. TW significantly increased stiffness versus pACDF in compression, flexion, and torsion, but not in extension, or lateral bending. RW significantly increased stiffness versus pACDF only in axial torsion. When comparing LM to the wiring constructs, LM fixation was significantly stiffer than RW in flexion, extension, and lateral bending; LM fixation was stiffer than TW in lateral bending. LM fixation produced the stiffest overall constructs in stabilizing a plated pseudarthrosis ACDF model. It was significantly stiffer in more modes versus RW than TW.  相似文献   

4.
Wood KB  Wentorf FA  Ogilvie JW  Kim KT 《Spine》2000,25(15):1893-1898
STUDY DESIGN: A biomechanical study of the rigidity of various scoliosis constructs instrumented with and without caudal pedicle screw anchors and with none, one, or two cross-link devices. OBJECTIVES: To determine whether the increased torsional rigidity provided by distal pedicle screw fixation might make cross-linking unnecessary. SUMMARY OF BACKGROUND DATA: Pedicle screws and cross-linking devices have been shown to increase the structural rigidity of spinal constructs. Their relative contributions to scoliosis construct rigidity has not been determined. METHODS: "Short" (T2-T11) and "long" (T2-L3) scoliosis constructs were mounted on an industrially fabricated spine model and tested in a hydraulic testing machine. Four different short and four different long constructs were tested: hooks only, hooks with concave side thoracic sublaminar wires, hooks with distal pedicle screw anchors, and hooks, distal pedicle screw anchors, and concave thoracic sublaminar wires. There were four iterations for each construct tested: no cross-links, one superior cross-link at T4-T5, one inferior cross-link at T9-T10, and two cross-links. Torsional rigidity was tested by applying a rotational torque at T2. Vertebral body motion was recorded with a three-dimensional video analysis system. RESULTS: Constructs with distal pedicle screws were statistically more rigid in torsion than those with hooks as distal anchors. The additional torsional rigidity from one or more cross-links was negligible compared with that provided by pedicle screws. CONCLUSIONS: With pedicle screws as distal anchors in scoliosis constructs, cross-linking with one or two devices adds very little additional rotational stiffness and may be unnecessary in many cases.  相似文献   

5.
Background contextC2 intralaminar screws offer the advantage of avoiding the vertebral artery; however, biomechanical studies have demonstrated inferiority of C2 intralaminar screw fixation compared with C2 intrapedicular fixation in the presence of an odontoid fracture. Addition of a transverse cross-link may improve stability afforded by the lamina screws but will require the use of offset connectors to complete the construct.PurposeThe aims of this project were to evaluate whether transverse cross-links can add adequate stability to atlantoaxial constructs using C1 lateral mass and C2 intralaminar screw fixation. The secondary objective was to determine the biomechanical contribution of the C2 offset connectors.Study designIn vitro human cadaveric biomechanical study.MethodsTen cadaveric specimens were obtained and instrumented with C1 lateral mass, C2 pedicle, and C2 intralaminar screws. After intact spine testing, each C1–C2 construct was nondestructively evaluated under axial rotation (AR), flexion extension (FE), and lateral bending (LB). Intralaminar fixation was tested with and without offset connectors, which allowed for cross-link addition to the construct. After normal state evaluation, the odontoid was resected and analyses were repeated.ResultsPostreconstruction range of motion in AR, FE, and LB showed no significant differences between the four fixation constructs in the stable specimens. Transpedicular fixation at C2 proved superior to intralaminar techniques without a cross-link in AR and LB after destabilization with an odontoidectomy. The addition of a cross-link to the intralaminar construct improved segmental AR and LB stability to the level afforded by the transpedicular fixation. Offset connectors appeared to marginally weaken the intralaminar fixation, but the findings were not significant.ConclusionsCoupled with an offset connector and a cross-link, C2 intralaminar screws offer similar segmental stability to intrapedicular fixation in the presence of an unstable dens fracture. Lateral offset connectors at C2 do not significantly compromise stability of C1 lateral mass—C2 intralaminar fixation.  相似文献   

6.
BACKGROUND CONTEXT: Locking posterior instrumentation in the cervical spine can be attached using 1) pedicle screws, 2) lateral mass screws, or 3) laminar hooks. This order of options is in order of decreasing technical difficulty and decreasing depth of fixation, and is thought to be in order of decreasing stability. PURPOSE: We sought to determine whether substantially different biomechanical stability can be achieved in a two-level construct using pedicle screws, lateral mass screws, or laminar hooks. Secondarily, we sought to quantify the differential and additional stability provided by an anterior plate. STUDY DESIGN: In vitro biomechanical flexibility experiment comparing three different posterior constructs for stabilizing the cervical spine after three-column injury. METHODS: Twenty-one human cadaveric cervical spines were divided into three groups. Group 1 received lateral mass screws at C5 and C6 and pedicle screws at C7; Group 2 received lateral mass screws at C5 and C6 and laminar hooks at C7; Group 3 received pedicle screws at C5, C6, and C7. Specimens were nondestructively tested intact, after a three-column two-level injury, after posterior C5-C7 rod fixation, after two-level discectomy and anterior plating, and after removing posterior fixation. Angular motion was recorded during flexion, extension, lateral bending, and axial rotation. Posterior hardware was subsequently failed by dorsal loading. RESULTS: Laminar hooks performed well in resisting flexion and extension but were less effective in resisting lateral bending and axial rotation, allowing greater range of motion (ROM) than screw constructs and allowing a significantly greater percentage of the two-level ROM to occur across the hook level than the screw level (p<.03). Adding an anterior plate significantly improved stability in all three groups. With combined hardware, Group 3 resisted axial rotation significantly worse than the other groups. Posterior instrumentation resisted lateral bending significantly better than anterior plating in all groups (p<.04) and resisted flexion and axial rotation significantly better than anterior plating in most cases. Standard deviation of the ROM was greater with anterior than with posterior fixation. There was no significant difference among groups in resistance to failure (p=.74). CONCLUSIONS: Individual pedicle screws are known to outperform lateral mass screws in terms of pullout resistance, but they offered no apparent advantage in terms of construct stability or failure of whole constructs. Larger standard deviations in anterior fixation imply more variability in the quality of fixation. In most loading modes, laminar hooks provided similar stability to lateral mass screws or pedicle screws; caudal laminar hooks are therefore an acceptable alternative posteriorly. Posterior two-level fixation is less variable and slightly more stable than anterior fixation. Combined instrumentation is significantly more stable than either anterior or posterior alone.  相似文献   

7.
BACKGROUND CONTEXT: Different atlantoaxial fusion techniques are used for instability. Transarticular screws are biomechanically superior to wiring techniques and equivalent to C1 lateral mass to C2 pedicle (C1LM-C2P) fixation. Recently, C1 lateral mass to C2 laminar (C1LM-C2L) fixation has been shown to have flexibility similar to C1LM-C2P fixation in flexion, extension, lateral bending, and axial rotation. PURPOSE: Compare the stiffness of C1LM-C2P with C1LM-C2L screw rod fixation. STUDY DESIGN: In vitro biomechanical study. OUTCOME MEASURES: Stiffness in flexion/extension, lateral bending, axial rotation, and anterior-posterior (AP) translation. METHODS: Eight fresh-frozen human cadaveric cervical spines (C1-C3) were tested intact and, after a type II odontoid fracture, were instrumented and tested with two fixation constructs: C1LM-C2P screws and C1LM-C2L screws. The testing involved flexion, extension, lateral bending, AP translation, and axial rotation. Stiffness was measured and compared with a repeated-measures analysis. RESULTS: C1LM-C2P was significantly stiffer than the intact in AP translation (p<.001), lateral bending (p=.001), and axial rotation (p=.002) and equivalent in flexion/extension (p=.09). C1LM-C2L was significantly stiffer than the intact in AP translation (p<.01) and axial rotation (p<.004) and equivalent in lateral bending (p<.71) and flexion/extension (p=.22). C1LM-C2P was stiffer than C1LM-C2L in right/left lateral bending (p<.001) and axial rotation (p=.009) and equivalent in AP translation (p=.06) and flexion/extension (p=.74). CONCLUSION: C1LM-C2P fixation is equivalent to C1LM-C2L fixation in flexion/extension and AP translation and superior in lateral bending and axial rotation.  相似文献   

8.
OBJECT: Stabilization with rigid screw/rod fixation is the treatment of choice for craniocervical disorders requiring operative stabilization. The authors compare the relative immediate stiffness for occipital plate fixation in concordance with transarticular screw fixation (TASF), C-1 lateral mass and C-2 pars screw (C1L-C2P), and C-1 lateral mass and C-2 laminar screw (C1L-C2L) constructs, with and without a cross-link. METHODS: Ten intact human cadaveric spines (Oc-C4) were prepared and mounted in a 7-axis spine simulator. Each specimen was precycled and then tested in the intact state for flexion/extension, lateral bending, and axial rotation. Motion was tracked using the OptoTRAK 3D tracking system. The specimens were then destabilized and instrumented with an occipital plate and TASF. The spine was tested with and without the addition of a cross-link. The C1L-C2P and C1L-C2L constructs were similarly tested. RESULTS: All constructs demonstrated a significant increase in stiffness after instrumentation. The C1L-C2P construct was equivalent to the TASF in all moments. The C1L-C2L was significantly weaker than the C1L-C2P construct in all moments and significantly weaker than the TASF in lateral bending. The addition of a cross-link made no difference in the stiffness of any construct. CONCLUSIONS: All constructs provide significant immediate stability in the destabilized occipitocervical junction. Although the C1L-C2P construct performed best overall, the TASF was similar, and either one can be recommended. Decreased stiffness of the C1L-C2L construct might affect the success of clinical fusion. This construct should be reserved for cases in which anatomy precludes the use of the other two.  相似文献   

9.
Posterior spinal fusions are indicated for a variety of spinal disorders. Transfacet fixation minimizes soft tissue disruption and preserves the adjacent facet joint. This technique is uncommon due to concerns with biomechanical stability and proper implant placement. For these reasons, a length adjustable implant may obviate the clinical concerns but necessitates biomechanical study. This study evaluated the in vitro biomechanical stability between a novel transfacet fixation device compared with standard pedicle screws during cyclic physiologic loading in a human cadaveric model. Cadaveric L4-L5 lumbar motion segments from 16 human spines were tested in cyclic flexion/extension, lateral bending, and torsion after insertion of either transfacet fixation devices or 5.5 mm pedicle screw instrumentation. A load cell was used to measure the compressive forces on the anterior column during testing. Motion segment stiffness and anterior column compression were analyzed with a 1-way analysis of variance (P<0.05). The transfacet device demonstrated a statistically similar stiffness when compared with the pedicle screw system for each test direction. For anterior column loading during physiologic testing, there were no biomechanical differences between stabilization systems. Percutaneous transfacet fixation is an attractive surgical option for single-level spinal fusions. A biomechanical evaluation of a novel device for this application demonstrated similar stability to a pedicle screw system. The length adjustability of the device may alleviate concerns for precise device placement and the biomechanical stability may produce similar rates and quality of posterior spinal fusions.  相似文献   

10.
Oda I  Abumi K  Sell LC  Haggerty CJ  Cunningham BW  McAfee PC 《Spine》1999,24(22):2377-2382
STUDY DESIGN: The stabilizing effects of five different occipitocervical fixations were compared. OBJECTIVES: To evaluate the construct stability provided by five different occipito-atlanto-axial fixation techniques. SUMMARY OF BACKGROUND DATA: Few studies have addressed occipitocervical reconstruction stability and no studies to data have investigated anterior-posterior translational stiffness. METHODS: A total of 21 human cadaveric spines were used. After testing intact spines (CO-C2), a type II dens fracture was created and five different reconstructions were performed: 1) occipital and sublaminar wiring/rectangular rod, 2) occipital screws and C2 lamina claw hooks/rod, 3) occipital screws, foramen magnum screws, and C1-C2 transarticular screws/rod, 4) occipital screws and C1-C2 transarticular screws/Y-plate, and 5) occipital screws and C2 pedicle screws/rod. Biomechanical testing parameters included axial rotation, flexion/extension, lateral bending, and anterior-posterior translation. RESULTS: Pedicle screw fixation demonstrated the highest stiffness among the five reconstructions (P < 0.05). The two types of transarticular screw methods provided greater stability than hook or wiring reconstructions (P < 0.05). The C2 claw hook technique resulted in greater stability than sublaminar wiring fixation in anterior-posterior translation (P < 0.05). However, the wiring procedure did not significantly increase the stiffness levels beyond the intact condition under anterior-posterior translation and lateral bending (P > 0.05). DISCUSSION: C2 transpedicular and C1-C2 transarticular screws significantly increased the stabilizing effect compared to sublaminar wiring and lamina hooks. The improved stability afforded by C2 pedicular and C1-C2 transarticular screws offer many potential advantages including a high rate of bony union, early ambulation, and easy nursing care. CONCLUSION: Occipitocervical reconstruction techniques using C1-C2 transarticular screws or C2 pedicle screws offer biomechanical advantages compared to sublaminar wiring or lamina hooks. Pedicle screw fixation exhibited the highest construct stiffness among the five reconstructions.  相似文献   

11.
STUDY DESIGN: An in vitro test of calf spine lumbar segments to compare biomechanical stabilization of a rigid versus a dynamic posterior fixation device. OBJECTIVES: To compare flexibility of a dynamic pedicle screw fixation device with an equivalent rigid device. SUMMARY OF BACKGROUND DATA: Dynamic pedicle screw device studies are not as prevalent in the literature as studies of rigid devices. These devices contain the potential to enhance load sharing and optimize fusion potential while maintaining stability similar to that of rigid systems. METHODS: Load-displacement tests were performed on intact and stabilized calf spines for the dynamic and rigid devices. Stability across a destabilized L3-L4 segment was restored by insertion of either a 6 mm x 40 mm dynamic or rigid pedicle screw fixation device across the L2-L4 segment. The screws then were removed, 7 mm x 45 mm pedicle screws of the opposite type were inserted, and the construct then was re-tested. Axial pull-out tests were performed to assess the likely effects of pedicle screw replacement on the load-displacement data. RESULTS: Results indicated a 65% reduction in motion in flexion-extension and a 90% reduction in lateral bending across the destabilized level for both devices, compared with intact spine values. Reduction in axial rotation motion was much smaller than in other modes. Axial pull-out tests showed no weakening of the bone-screw interface. CONCLUSIONS: Both devices provided significant stability of similar magnitudes in flexion, extension, and lateral bending. In axial rotation, the devices only could restore stability to levels similar to those in an intact spine. The dynamic device offers a design that may enhance load sharing without sacrificing construct stability.  相似文献   

12.
To determine the effect of adding pedicle screws at the level of a burst fracture (intermediate screws) on the stiffness of a short segment pedicle fixation, an in vitro biomechanical study was carried out. Six fresh-frozen pig lumbar spine specimens were used. The flexibility of the intact specimens was examined in flexion, extension, lateral bending, and torsion. An unstable burst fracture model was created by the dropped-mass technique. The unstable spine specimens were instrumented with pedicle screws. The flexibility was tested again with and without intermediate screws. The addition of intermediate screws provided a smaller range of motion in flexion-extension (P<0.001), torsion (P<0.001), and lateral bending (P=0.014). The slopes of the load displacement curves increased in flexion (P<0.001), extension (P=0.003), lateral bending (P=0.003), and torsion (P=0.006), signifying a decrease in flexibility. The addition of intermediate screws at the level of a burst fracture significantly increases the stiffness of a short segment pedicular fixation.  相似文献   

13.

Background context

Spinal fusion is a commonly performed surgical procedure. It is used to treat a variety of spinal pathologies, including degenerative disease, trauma, spondylolisthesis, and deformities. A mechanically stable spine provides an ideal environment for the formation of a fusion mass. Instrumented spinal fusion allows early ambulation with minimal need for a postoperative external immobilizer. Several biomechanical and clinical studies have evaluated the stability offered by different posterior instrumentation techniques and the effects of reduced instrumentation.

Purpose

The aim of the study was to compare the biomechanics of a novel pedicle and translaminar facet screw (TLFS) construct. Also, in this study, comparisons were made with the more common pedicle screw/TLFS constructs for posterior fixation.

Study design

Human cadaveric lumbar spines were tested in an in vitro flexibility experiment to investigate the biomechanical stability provided by a novel pedicle and TLFS construct after transforaminal lumbar interbody fusion (TLIF).

Methods

Seven fresh human lumbar spines (L2–L5) were tested by applying pure moments of ±8 Nm. After intact specimen testing, a left-sided TLIF with a radiolucent interbody spacer was performed at L3–L4. Each specimen was then tested for the following constructs: bilateral pedicle screws (BPS) and rods at L3–L4; unilateral pedicle screws (UPS) and rods at L3–L4; UPS and rods and TLFS at L3–L4 (UPS+TLFS); and unilateral single pedicle screw and TLFS and rod at L3–L4 (V construct). The L3–L4 range of motion (ROM) and stiffness for each construct were obtained by applying pure moments in flexion, extension, lateral bending, and axial rotation.

Results

All instrumented constructs significantly reduced ROM in flexion-extension and lateral bending compared with the intact specimen. In axial rotation, only BPS constructs significantly reduced ROM compared with intact specimen. The V construct was able to achieve more reduction in ROM compared with UPS construct and was comparable to UPS+TLFS construct. Unilateral pedicle screws construct was the least stable in all loading modes and was significantly different than BPS construct in lateral bending.

Conclusions

The V construct exhibited enhanced stability compared with UPS construct in all loading modes. It provides bilateral fixation and preserves the anatomic integrity of the superior facet joint. The novel construct may offer advantages of less invasiveness, significant reduction in operation time, duration of hospitalization, and costs of implants, which would require further clinical evaluation.  相似文献   

14.
In this study, the authors evaluated the stiffness of motion segments in intact spines in two spine fracture models, and with each of five implant systems used for posterior fixation of thoracolumbar spine fractures. The devices represented a cross-section of types, including those employing sublaminar wires with and without laminar hooks, pedicle screws, plates, and rods. Two spine fracture models, one partially and one totally destabilized, were used in the tests of the instrumentation. Stiffness, or the magnitude of load needed to produce a unit displacement of the construct in the direction of the applied load, was measured in flexion, extension, lateral bending, and torsion in combination with a compressive force. Both horizontal plane shear and angular displacements were measured in the two fracture patterns. All evaluations were made by testing the difference in stiffness for statistical significance among groups. The results showed significant differences in stiffness without instrumentation among intact spines, partly destabilized spines (anterior two-thirds of disk and posterior ligaments removed), and totally destabilized spines (only anterior longitudinal ligament intact). The implant/spine constructs were least stiff relative to the intact spine in torsion, followed in increasing order of stiffness with flexion, lateral bending, and extension. In the Roy-Camille plate with six-screw fixation was found to produce the stiffest construct, followed by wired Harrington rods, C-rods and J-rods, and the Vermont internal fixator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.

Purpose

To determine whether translaminar facet screws can provide stability equivalent to pedicle screws and whether the two posterior instrumentations have the same influence on the adjacent segments in two-level anterior lumbar interbody fusion.

Methods

In a biomechanical study conducted, we used 12 fresh human lumbar spines and tested an intact spine with a stand-alone two-level anterior lumbar interbody fusion and anterior fusion augmented with pedicle screws or translaminar facet screws, under 400 N compressive preloads and 7.5 N m moments in flexion, extension, axial rotation and lateral bending, and measured the stiffness of the operated level, range of motion and intradiscal pressure at the adjacent levels.

Results

We found a significant increase in the stiffness of the segments operated, range of motion and intradiscal pressure at the adjacent superior segment in the stand-alone two-level anterior lumbar interbody fusion during flexion, axial rotation and lateral bending, but a decrease in extension, when compared with the intact spine. The stiffness of operated segments, range of motion and intradiscal pressure in the adjacent segment are significantly higher in the two-level anterior lumbar interbody fusion augmented with posterior instrumentation than in the stand-alone two-level anterior lumbar interbody fusion. There was no significant difference between the two augmented constructs except that, at the adjacent superior segment, the intradiscal pressure was more in the construction augmented with a pedicle screw than with a translaminar facet screw in flexion.

Conclusions

Translaminar facet screws can provide stability equivalent to pedicle screws, but their influence on the adjacent segments is relatively lower; therefore, we suggest that translaminar facet screws be the choice in the optimal posterior instrumentation in a two-level anterior lumbar interbody fusion.  相似文献   

16.
Biomechanical studies have shown hooks to be superior to pedicle screws in pull-out, especially in osteoporosis. This study evaluates the possible increase in stiffness of pedicle screws provided by laminar hooks while applying non-destructive forces to a vertebrectomy model assembled with Compact Cotrel Dubousset (CCD) instrumentation. Synthetic vertebrae were employed in a three-level vertebrectomy model. CCD screw-based three-level constructs with and without sublaminar hooks in the caudal element were tested in flexion, extension, compression, lateral bending, and torsion. There was no statistically significant advantage in adding inferior laminar hooks to a caudal end vertebra that had bilateral pedicle screws in any of the testing modes. Torsional stability, however, was augmented, but not significantly. Torsional instability and osteoporotic bone may be the clinical justifications for adding laminar hooks below screws in the caudal end vertebra.  相似文献   

17.
Regular hooks lack initial fixation to the spine during spinal deformity surgery. This runs the risk of posterior hook dislodgement during manipulation and correction of the spinal deformity, that may lead to loss of correction, hook migration, and post-operative junctional kyphosis. To prevent hook dislodgement during surgery, a self-retaining pedicle hook device (SPHD) is available that is made up of two counter-positioned hooks forming a monoblock posterior claw device. The initial segmental posterior fixation strength of a SPHD, however, is unknown. A biomechanical pull-out study of posterior segmental spinal fixation in a cadaver vertebral model was designed to investigate the axial pull-out strength for a SPHD, and compared to the pull-out strength of a pedicle screw. Ten porcine lumbar vertebral bodies were instrumented in pairs with two different instrumentation constructs after measuring the bone mineral density of each individual vertebra. The instrumentation constructs were extracted employing a material testing system using axial forces. The maximum pull-out forces were recorded at the time of the construct failure. Failure of the SPHD appeared in rotation and lateral displacement, without fracturing of the posterior structures. The average pull-out strength of the SPHD was 236 N versus 1,047 N in the pedicle screws (P < 0.001). The pull-out strength of the pedicle screws showed greater correlation with the BMC compared to the SPHD (P < 0.005). The SPHD showed to provide a significant inferior segmental fixation to the posterior spine in comparison to pedicle screw fixation. Despite the beneficial characteristics of the monoblock claw construct in a SPHD, that decreases the risk of posterior hook dislodgement during surgery compared to regular hooks, the SPHD does not improve the pull-out strength in such a way that it may provide a biomechanically solid alternative to pedicle screw fixation in the posterior spine.  相似文献   

18.
OBJECT: The stability provided by 3 occipitoatlantal fixation techniques (occiput [Oc]-C1 transarticular screws, occipital keel screws rigidly interconnected with C-1 lateral mass screws, and suboccipital/sublaminar wired contoured rod) were compared. METHODS: Seven human cadaveric specimens received transarticular screws and 7 received occipital keel-C1 lateral mass screws. All specimens later underwent contoured rod fixation. All conditions were studied with and without placement of a structural graft wired between the skull base and C-1 lamina. Specimens were loaded quasistatically using pure moments to induce flexion, extension, lateral bending, and axial rotation while recording segmental motion optoelectronically. Flexibility was measured immediately postoperatively and after 10,000 cycles of fatigue. RESULTS: Application of Oc-C1 transarticular screws, with a wired graft, reduced the mean range of motion (ROM) to 3% of normal. Occipital keel-C1 lateral mass screws (also with graft) offered less stability than transarticular screws during extension and lateral bending (p < 0.02), reducing ROM to 17% of normal. The wired contoured rod reduced motion to 31% of normal, providing significantly less stability than either screw fixation technique. Fatigue increased motion in constructs fitted with transarticular screws, keel screws/lateral mass screw constructs, and contoured wired rods, by means of 19, 5, and 26%, respectively. In all constructs, adding a structural graft significantly improved stability, but the extent depended on the loading direction. CONCLUSIONS: Assuming the presence of mild C1-2 instability, Oc-C1 transarticular screws and occipital keel-C1 lateral mass screws are approximately equivalent in performance for occipitoatlantal stabilization in promoting fusion. A posteriorly wired contoured rod is less likely to provide a good fusion environment because of less stabilizing potential and a greater likelihood of loosening with fatigue.  相似文献   

19.
OBJECT: Anterior lumbar interbody fusion (ALIF) is often supplemented with instrumentation to increase stability in the spine. If anterior plate fixation provided the same stability as posterior pedicle screw fixation (PSF), then a second approach and its associated morbidity could be avoided. METHODS: Seven human cadaveric L4-5 spinal segments were tested under three conditions: ALIF with an anterior plate, ALIF with an anterolateral plate, and ALIF supplemented by PSF. Range of motion (ROM) was calculated for flexion/extension, lateral bending, and axial torsion and compared among the three configurations. RESULTS: There were no significant differences in ROM during flexion/extension, lateral bending, or axial torsion among any of the three instrumentation configurations. CONCLUSIONS: The addition of an anterior plate or posterior PS/rod instrumentation following ALIF provides substantially equivalent biomechanical stability. Additionally, the position of the plate system, either anterior or anterolateral, does not significantly affect the stability gained.  相似文献   

20.
Biomechanical comparison of plates and rods in the unstable thoracic spine   总被引:3,自引:0,他引:3  
Thoracic spine stabilization after trauma or in tumor reconstruction cases frequently is performed with hook and rod internal fixation systems, the use of which is not always possible. Pelvic reconstruction plates with pedicle screw fixation offer an alternative to hooks and rods. In this study, we biomechanically compared a plate construct with a hook and rod system in an acute postoperative, unstable thoracic spine model. We found that the hook and rod system offered more resistance to flexion and extension bending than the plate construct; the opposite was true for lateral bending and axial torsion. We further determined that the addition of pars interarticularis screws to the plate construct provided increased resistance to all loading modes. Our study indicates that plate constructs can effectively stabilize the thoracic spine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号