共查询到20条相似文献,搜索用时 13 毫秒
1.
Winsauer PJ Filipeanu CM Bailey EM Hulst JL Sutton JL 《Pharmacology, biochemistry, and behavior》2012,102(3):442-449
Marijuana abuse during adolescence may alter its abuse liability during adulthood by modifying the interoceptive (discriminative) stimuli produced, especially in females due to an interaction with ovarian hormones. To examine this possibility, either gonadally intact or ovariectomized (OVX) female rats received 40 intraperitoneal injections of saline or 5.6 mg/kg of Δ9-THC daily during adolescence, yielding 4 experimental groups (intact/saline, intact/Δ9-THC, OVX/saline, and OVX/Δ9-THC). These groups were then trained to discriminate Δ9-THC (0.32-3.2 mg/kg) from saline under a fixed-ratio (FR) 20 schedule of food presentation. After a training dose was established for the subjects in each group, varying doses of Δ9-THC were substituted for the training dose to obtain dose-effect (generalization) curves for drug-lever responding and response rate. The results showed that: 1) the OVX/saline group had a substantially higher mean response rate under control conditions than the other three groups, 2) both OVX groups had higher percentages of THC-lever responding than the intact groups at doses of Δ9-THC lower than the training dose, and 3) the OVX/Δ9-THC group was significantly less sensitive to the rate-decreasing effects of Δ9-THC compared to other groups. Furthermore, at sacrifice, western blot analyses indicated that chronic Δ9-THC in OVX and intact females decreased cannabinoid type-1 receptor (CB1R) levels in the striatum, and decreased phosphorylation of cyclic adenosine monophosphate response element binding protein (p-CREB) in the hippocampus. In contrast to the hippocampus, chronic Δ9-THC selectively increased p-CREB in the OVX/saline group in the striatum. Extracellular signal-regulated kinase (ERK) was not significantly affected by either hormone status or chronic Δ9-THC. In summary, these data in female rats suggest that cannabinoid abuse by adolescent human females could alter their subsequent responsiveness to cannabinoids as adults and have serious consequences for brain development. 相似文献
2.
In an attempt to identify the possible role of brain biogenic amines and adrenocorticotrophic hormone (ACTH) release in the behavioral and physiological effects of
9-tetrahydrocannabinol (THC), the time course of drug action was studied. THC (20 mg/kg) was administered daily for 1, 4, 21, or 42 days to Sprague-Dawley rats that were examined for changes in body temperature, food and water intake, rearing and walking activity, compulsive motor routines, and mouse killing. Four hours after the last THC administration the animals were killed and concentrations of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in telencephalon, striatum, diencephalon, mesencephalon, and cerebellum, corticosterone in blood plasma, and epinephrine in the adrenal glands were determined. After initial THC administrations a marked hypothermia, anorexia, adipsia, and depression in locomotion were observed, all of which disappeared within 1 week of treatment. The reduced growth rate and decreased rearing activity persisted throughout the 42-day THC treatment. Compulsive motor routines and mouse killing were induced in a significant proportion of rats treated with THC for more than 3 weeks. Level of 5-HT was increased by 16–37% in all brain regions of rats given THC for 21–42 days. Plasma corticosterone was greatly increased after a single THC injection and remained elevated, to a lesser degree, for 42 days. Adrenal epinephrine was decreased after a single THC administration and increased after 42 days. None of the currently investigated biochemical changes correlated with the marked behavioral and physiological changes after initial THC administration to which tolerance develops. The syndrome of compulsive motor routines after prolonged THC treatment might be mediated by elevated brain 5-HT activity. 相似文献
3.
Arachidonic acid, a fatty acid component of neuronal cell membranes, forms the backbone of endogenous ligands of the endocannabinoid system. The lipid nature of this system may make it particularly susceptible to changes in fat content of the diet, which may, in turn, affect endocannabinoid tone and subsequent changes in receptor expression or activity. The latter would also be expected to affect responses to exogenous cannabinoids. The purpose of the present study was to determine the effects of a high-fat diet on sensitivity to the pharmacological effects of Δ9-tetrahydrocannabinol (Δ9-THC). Male and female Long-Evans rats were fed either a diet of standard rodent chow or chow enhanced with corn oil. Subsequently, they were repeatedly assessed for Δ9-THC-induced hypomobility, catalepsy and hypothermia. Female rats that received the high-fat diet beginning in adolescence or in adulthood became significantly less sensitive to the effects of Δ9-THC on motor behavior, but not its hypothermic effects, with faster development of decreased sensitivity in female rats that began the high-fat diet as adults. In contrast, diet-induced differences either did not occur, or were less pronounced, in male rats of both ages. After acute injection, brain and blood levels of Δ9-THC and its two primary metabolites were similar regardless of diet. Combined with the fact that diet differentially affected only some of the measures, these results suggest that pharmacokinetic differences cannot fully account for the effects of the high-fat diet on response to Δ9-THC. Further, these results suggest that dietary fat content may represent an important consideration in predicting the effects of marijuana in females. 相似文献
4.
Acute treatment of rats either by high doses of morphine or 9-tetrahydrocannabinol (THC) decreased locomotor activity. Naloxone reversed morphine-induced depression completely and reversed THC-induced depression only partially. On day 3 of treatment, tolerance developed to the locomotor inhibitory action of THC or morphine and partial cross-tolerance was observed to the depressant action of THC. Naloxone slightly depressed locomotor activity in THC-tolerant rats, but increased motor activity in morphine-tolerant rats. 相似文献
5.
Cannabis is the most popular illicit drug used by adolescents. Yet, there are only a few studies that have examined the effects of cannabis use on learning and memory during this sensitive and important neurodevelopmental stage. Male adolescent Sprague-Dawley rats were treated with Δ(9)-tetrahydrocannabinol (THC, 6 mg/kg) daily for 27 days and concurrently trained in a spatial learning and memory task. The chronic effects of cannabis use were specifically examined by assessing animal behaviour during the 'postacute' period (17 h after drug exposure), when minimal acute drug burden is expected to be present. The postacute period is a good model for cannabis use patterns in human adolescents. In addition, we investigated whether the hierarchical organization of working memory (chunking) was impaired by THC-treatment. We show that THC exposure impairs adolescent learning when tested in the postacute period, and that THC impairs the ability of animals to use a chunking strategy. 相似文献
6.
James J Burston Jenny L Wiley Abimbola A Craig Dana E Selley Laura J Sim-Selley 《British journal of pharmacology》2010,161(1):103-112
BACKGROUND AND PURPOSE
Disruption of the substantial re-organization of the brain during adolescence may be induced by persistent abuse of marijuana. The aim of this study was to determine whether adolescent and adult rats exhibit differential adaptation of brain cannabinoid (CB1) receptors after repeated exposure to Δ9-tetrahydrocannabinol (THC).EXPERIMENTAL APPROACH
Rats of both ages and sexes were dosed with 10 mg kg−1 THC or vehicle twice daily for 9.5 days. Subsequently, CB1 receptor function and density were assessed.KEY RESULTS
In all brain regions, THC treatment produced desensitization and down-regulation of CB1 receptors. While the magnitude of down-regulation did not differ across groups, greater desensitization was evident in the brains of THC-treated female adolescent rats for most regions. Adolescent females showed greater desensitization than adult females in the prefrontal cortex, hippocampus, periaqueductal gray (PAG) and ventral midbrain. In contrast, adolescent males exhibited less desensitization in the prefrontal cortex, hippocampus and PAG, an effect opposite to that seen in females. With the exception of the PAG, sex differences were seen only in adolescents, with greater desensitization in the prefrontal cortex, striatum, hippocampus, PAG, and ventral midbrain of females.CONCLUSIONS AND IMPLICATIONS
These results suggest that the brains of adolescent females may be particularly vulnerable to disruption of CB1 receptor signalling by marijuana abuse. Alternatively, increased desensitization may reflect protective adaptation. Given the extensive re-organization of the brain during adolescence, this disruption has potential long-term consequences for maturation of the endocannabinoid system. 相似文献7.
Klein C Karanges E Spiro A Wong A Spencer J Huynh T Gunasekaran N Karl T Long LE Huang XF Liu K Arnold JC McGregor IS 《Psychopharmacology》2011,218(2):443-457
Rationale
The interactions between ??9-tetrahydrocannabinol (THC) and cannabidiol (CBD) during chronic treatment, and at equivalent doses, are not well characterised in animal models.Objectives
The aim of this study is to examine whether the behavioural effects of THC, and blood and brain THC levels are affected by pre-treatment with equivalent CBD doses.Methods
Adolescent rats were treated with ascending daily THC doses over 21?days (1 then 3 then 10?mg/kg). Some rats were given equivalent CBD doses 20?min prior to each THC injection to allow examination of possible antagonistic effects of CBD. During dosing, rats were assessed for THC and CBD/THC effects on anxiety-like behaviour, social interaction and place conditioning. At the end of dosing, blood and brain levels of THC, and CB1 and 5-HT1A receptor binding were assessed.Results
CBD potentiated an inhibition of body weight gain caused by chronic THC, and mildly augmented the anxiogenic effects, locomotor suppressant effects and decreased social interaction seen with THC. A trend towards place preference was observed in adolescent rats given CBD/THC but not those given THC alone. With both acute and chronic administration, CBD pre-treatment potentiated blood and brain THC levels, and lowered levels of THC metabolites (THC-COOH and 11-OH-THC). CBD co-administration did not alter the THC-induced decreases in CB1 receptor binding and no drug effects on 5-HT1A receptor binding were observed.Conclusions
CBD can potentiate the psychoactive and physiological effects of THC in rats, most likely by delaying the metabolism and elimination of THC through an action on the CYP450 enzymes that metabolise both drugs. 相似文献8.
Marijuana (Cannabis sativa) remains one of the most widely used illegal drugs, with adolescents being particularly vulnerable to its use and abuse. In spite of this, most studies are conducted in adult animals even though the effects might be quite different in adolescents. Additionally, the use of marijuana often precedes the use of other psychoactive drugs including cocaine, especially when marijuana exposure begins during early adolescence. The purpose of this study was to examine the effects of repeated Δ9-tetrahydrocannabinol (THC), the major active ingredient in marijuana, in adolescents compared to adults and to determine its subsequent effects on cocaine-stimulated activity. To this end, adolescent (postnatal day PND 34) and adult (PND 66) rats were administered 3 mg/kg/day THC for 8 days and locomotor activity was measured on days 1, 2, 7 and 8 after dosing. On day 12 (4 days after the last dose of THC), rats were injected with escalating doses of cocaine and behavior was recorded. Results show that THC depressed locomotor activity in adult rats but not in adolescents. However, following a cocaine challenge, adolescents exposed to THC showed increased locomotor responses to cocaine compared to chronic vehicle-injected controls. This was not seen in adults. These results show that the effects of cocaine are enhanced after THC in adolescents, but not adults, and that this might account for the greater transition to cocaine after early, as opposed to later, marijuana use. 相似文献
9.
Michael Böhm Ulrike Mende Wilhelm Schmitz Hasso Scholz 《Naunyn-Schmiedeberg's archives of pharmacology》1986,333(3):284-289
Summary The effects of phenylephrine, isoprenaline and adenosine, (–)-N6-phenylisopropyladenosine (PIA) or carbachol alone and in the presence of isoprenaline on force of contraction were studied in isolated electrically driven papillary muscles of spontaneously hypertensive rats (SHR) and age-matched Wistar control rats. In SHR an increased heart to body weight ratio was observed when blood pressure was not yet elevated. During this stage of the syndrome (i.e. between the 27th and 35th day of life) phenylephrine was about 3.4 times more potent to increase force of contraction in SHR (mean EC50: 2.8 mol l–1) than in control rats (mean EC50: 9.4 mol l–1). The positive inotropic effect of isoprenaline was similar in SHR and control rats. Also no difference could be detected in the isoprenaline-antagonistic effect of adenosine, the adenosine receptor agonist PIA or carbachol. We conclude that an increased sensitivity to cardiac -adrenoceptor stimulation might be related to prehypertensive cardiac hypertrophy in SHR. 相似文献
10.
Δ(9)-Tetrahydrocannabinol (THC) discrimination in rodents is a behavioral assay that has been used to probe differences among classes of cannabinoids in rats. The purpose of this study was to determine whether traditional and anandamide-like cannabinoids were distinguishable in cannabinoid discrimination procedures in mice. Male mice were trained to discriminate 30 mg/kg THC or 70 mg/kg methanandamide from vehicle in a two-lever milk-reinforced drug discrimination procedure. After acquisition, agonist tests with THC, methanandamide, CP 55940, and anandamide were conducted, as were antagonism tests with rimonabant. Substitution (agonism) and antagonism tests were also carried out in female mice trained to discriminate THC. THC and CP 55940 fully substituted in THC-trained mice of both sexes. Further, THC substitution was rimonabant reversible. In contrast, mice injected with methanandamide or anandamide failed to respond substantially on the THC lever, even up to doses that decreased overall responding. In methanandamide-trained mice, methanandamide fully generalized to the methanandamide training dose. Rimonabant did not reverse this generalization. Although THC, CP 55940, and anandamide also increased responding on the methanandamide lever, the magnitude of substitution was less than for methanandamide. These results suggest incomplete overlap in the underlying mechanisms mediating endocannabinoid pharmacology and marijuana intoxication. Further, they suggest that methanandamide discrimination may involve a non-CB(1) receptor mechanism that is particularly prominent at higher doses. 相似文献
11.
Lynch WJ Sughondhabirom A Pittman B Gueorguieva R Kalayasiri R Joshua D Morgan P Coric V Malison RT 《Psychopharmacology》2006,188(3):306-314
Rationale Drug discrimination can be used to examine tolerance and dependence in agonist-treated animals by establishing an appropriate antagonist as a discriminative stimulus.Objective Establish intravenous SR 141716A as a discriminative stimulus in four rhesus monkeys pretreated with a relatively small dose of Δ9-tetrahydrocannabinol (Δ9-THC).Methods Rhesus monkeys received i.v. Δ9-THC (0.32 mg/kg) and discriminated i.v. SR 141716A (1 mg/kg) from vehicle while responding under a fixed ratio (FR) 5 schedule of stimulus-shock termination.Results The discriminative stimulus effects of SR 141716A were dose-dependent (ED50=0.33 mg/kg) and were mimicked by the CB1 antagonist AM 251 (ED50=0.98 mg/kg), but not by a benzodiazepine (midazolam) or an N-methyl-D-aspartate antagonist (ketamine). An additional dose (0.32 mg/kg in addition to 0.32 mg/kg administered before the session) of Δ9-THC shifted the SR 141716A dose–effect curve 3-fold rightward. Omitting Δ9-THC before test sessions resulted in responding on the SR 141716A lever that was attenuated by subsequent administration of Δ9-THC (ED50=0.13 mg/kg), CP 55940 (ED50=0.013 mg/kg), and WIN 55212-2 (ED50=0.35 mg/kg); midazolam and ketamine did not attenuate responding on the SR 141716A lever. SR 141716A (1 mg/kg) shifted the Δ9-THC and CP 55940 dose–effect curves 3.4-fold rightward; the WIN 55212-2 dose–effect curve was not significantly modified by a dose of 1 mg/kg of SR 141716A.Conclusions SR 141716A can be established as a discriminative stimulus in animals pretreated with Δ9-THC, and this assay is selective for cannabinoid activity. Differential antagonism of cannabinoids by SR 141716A might indicate that the mechanism of action of WIN 55212-2 is not identical to other cannabinoids. This study demonstrates that, under the appropriate conditions, drug discrimination has utility for examining cannabinoid dependence and withdrawal. 相似文献
12.
Walentiny DM Gamage TF Warner JA Nguyen TK Grainger DB Wiley JL Vann RE 《European journal of pharmacology》2011,656(1-3):63-67
The endogenous cannabinoid system has been noted for its therapeutic potential, as well as the psychoactivity of cannabinoids such as Δ9-tetrahydrocannabinol (THC). However, less is known about the psychoactivity of anandamide (AEA), an endocannabinoid ligand. Thus, the goals of this study were to establish AEA as a discriminative stimulus in transgenic mice lacking fatty acid amide hydrolase (i.e., FAAH -/- mice unable to rapidly metabolize AEA), evaluate whether THC or oleamide, a fatty acid amide, produced AEA-like responding, and assess for CB(1) mediation of AEA's discriminative stimulus. Mice readily discriminated between 6mg/kg AEA and vehicle in a two-lever drug discrimination task. AEA dose-dependently generalized to itself. THC elicited full AEA-like responding, whereas oleamide failed to substitute. The CB(1) antagonist rimonabant attenuated AEA- and THC-induced AEA-appropriate responding, demonstrating CB(1) mediation of AEA's discriminative stimulus. These findings suggest that, in the absence of FAAH, AEA produces intoxication comparable to THC, and consequently to marijuana. 相似文献
13.
14.
Michael A Taffe Kevin M Creehan Sophia A Vandewater 《British journal of pharmacology》2015,172(7):1783-1791
Background and Purpose
Growing evidence shows cannabidiol (CBD) modulates some of the effects of Δ9-tetrahydrocannabinol (THC). CBD is a constituent of some strains of recreational cannabis but its content is highly variable. High CBD strains may have less memory-impairing effects than low-CBD strains and CBD can reverse behavioural effects of THC in monkeys. CBD/THC interactions in rodents are more complicated as CBD can attenuate or exacerbate the effects of THC. This study was undertaken to determine if CBD could reverse hypothermia or hypolocomotor effects caused by THC in rats.Experimental Approaches
Male Sprague-Dawley rats were prepared with radiotelemetry devices and then given doses of THC (10–30 mg·kg−1, i.p.) with or without CBD. Experiments determined the effect of simultaneous or 30 min pretreatment with CBD in a 1:1 ratio with THC, as well as the effect of CBD in a 3:1 ratio. Additional experiments determined the effects of pretreatment with the cannabinoid CB1 receptor antagonist SR141716 (rimonabant).Key Results
CBD did not attentuate THC-induced hypothermia or hypolocomotion but instead exaggerated these effects in some conditions. The antagonist SR141716 blocked hypolocomotor effects of THC for the first hour after injection and the hypothermia for 6 h; thus validating the pharmacological model.Conclusions and Implications
There is no evidence from this study that elevated CBD content in cannabis could provide protection from the physiological effects of THC, in rats. 相似文献15.
16.
The effects of Δ?-tetrahydrocannabinol (Δ?-THC; 0.3, 1, 3 and 10 mg/kg), and the fatty acid amide hydrolysis inhibitor URB-597 (0.1 and 0.3 mg/kg), on auditory and olfactory go/no-go discrimination tasks were examined in rats. The aims were to assess (i) whether simple olfactory and auditory discrimination tasks are sensitive to cannabinoid interference and (ii) whether manipulation of endogenous cannabinoid levels with URB-597 might have adverse effects on perceptual and cognitive functions. Thirsty rats were trained to nose poke at a 'sniff port', where odours were briefly presented. After one odour (S+, lemon), licks made at an adjacent tube were rewarded with water, whereas licks after a second odour (S-, strawberry) were unrewarded. In an analogous auditory task, nose pokes produced an auditory S+ (beep) or S- (white noise). Δ?-THC and URB-597 impaired performance on the auditory but not the olfactory discrimination task. Auditory performance was still affected on the day after Δ?-THC (3 and 10 mg/kg) and URB-597 (0.3 mg/kg) exposure. Δ?-THC and URB-597 markedly impaired olfactory discrimination reversals without disrupting acquisition of the original discrimination. Rimonabant (CB1 antagonist; 3 mg/kg) reversed all Δ?-THC and URB-597 effects on auditory discriminations and olfactory discrimination reversals. These results confirm impairment of cognitive flexibility (reversal learning) by cannabinoids and show remarkable sensitivity of auditory discrimination performance to Δ?-THC and the augmented endocannabinoid signalling produced by URB-597. 相似文献
17.
RATIONALE: Repeated treatment experiments with high and low efficacy agonists provide critical insight into possible mechanisms underlying development of opioid tolerance. OBJECTIVE: Experiments in a tail-withdrawal assay tested the hypothesis that magnitude of tolerance to antinociceptive effects is inversely related to agonist relative efficacy in rats intermittently treated with etonitazene. morphine, or buprenorphine. METHODS: The antinociceptive effects of five mu opioid agonists were tested in male, Sprague-Dawley rats in a warm-water tail-withdrawal assay. To induce tolerance, escalating doses of the higher efficacy agonist etonitazene, the high efficacy agonist morphine, or the lower efficacy agonist buprenorphine were administered twice daily for 2-8 weeks. RESULTS: Etonitazene, etorphine, morphine, buprenorphine, and GPA 1657 [(1)-beta-2'-hydroxy-2,9-dimethyl-5-phenyl-6,7-benzomorphan] produced dose-dependent increases in tail-withdrawal latency until 100% maximum possible effect (%MPE) was obtained. Treatment with escalating doses of etonitazene, morphine, or buprenorphine produced greater tolerance to the lower efficacy agonists buprenorphine and GPA 1657 than to the higher efficacy agonists etonitazene, etorphine, and morphine. Treatment with buprenorphine, a lower efficacy agonist, produced greater tolerance than did treatment with equivalent doses of the higher efficacy agonists morphine or etonitazene. CONCLUSIONS: Taken together, these data suggest that magnitude of antinociceptive tolerance is inversely related to relative efficacy of mu agonists, with lower efficacy agonists being more susceptible to tolerance than are higher efficacy agonists under these intermittent dosing conditions. 相似文献
18.
Skelton MR Graham DL Schaefer TL Grace CE Braun AA Burns LN Amos-Kroohs RM Williams MT Vorhees CV 《The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP)》2012,15(6):811-824
Previous findings showed allocentric and egocentric learning deficits in rats after MDMA treatment from postnatal days (PD) 11-20 but not after treatment from PD 1-10. Shorter treatment periods (PD 1-5, 6-10, 11-15, or 16-20) resulted in allocentric learning deficits averaged across intervals but not for any interval individually and no egocentric learning deficits individually or collectively. Whether this difference was attributable to treatment length or age at the start of treatment was unclear. In the present experiment rat litters were treated on PD 1-10, 6-15, or 11-20 with 0, 10, or 15 mg/kg MDMA q.i.d. at 2-h intervals. Two male/female pairs/litter received each treatment. One pair/litter received acoustic startle with prepulse inhibition, straight channel swimming, Cincinnati water maze (CWM), and conditioned fear in a latent inhibition paradigm. The other pair/litter received locomotor activity, straight channel swimming, Morris water maze (MWM), and locomotor activity retest with MK-801 challenge. MDMA impaired CWM learning following PD 6-15 or 11-20 exposure. In MWM acquisition, all MDMA-treated groups showed impairment. During reversal and shift, the PD 6-15 and PD 11-20 MDMA-treated groups were significantly impaired. Reductions in locomotor activity were most evident after PD 6-15 treatment while increases in acoustic startle were most evident after PD 1-10 treatment. After MK-801 challenge, MDMA-treated offspring showed less locomotion compared to controls. Region-specific changes in brain monoamines were also observed but were not significantly correlated with behavioural changes. The results show that PD 11-20 exposure to MDMA caused the largest long-term cognitive deficits followed by PD 6-15 exposure with PD 1-10 exposure least affected. Other effects, such as those upon MK-801-stimulated locomotion showed greatest effects after PD 1-10 MDMA exposure. Hence, each effect has a different window of developmental susceptibility. 相似文献
19.
《European neuropsychopharmacology》2019,29(4):566-576
Cigarette (CIG) smoking often precedes the use of illegal drugs. Electronic-cigarettes (e-CIGs) have been promoted as a means of stopping smoking and reducing the harmful effects of CIGs on the population. However, although e-CIGs eliminate some of the morbidity associated with combustible tobacco, they are still nicotine-delivery devices. In order to study whether the nicotine delivered via e-CIG acts as “a gateway drug” to the use of cannabis, we analysed the behavioural and molecular effects of 7 weeks’ pre-exposure to air (AIR), e-CIGs or CIGs on addiction-related conditioned place preference (CPP) in mice using a sub-threshold (0.01 mg/kg) dose of delta-9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of cannabis. After 8 and 66 days of withdrawal, this Δ9-THC dose was ineffective in inducing CPP in mice pre-exposed to pump-driven AIR, but very effective in mice pre-exposed to e-CIGs or CIGs. Exposure to e-CIGs or CIGs increases the expression of ΔFosB in the nucleus accumbens (NAc), which remains high during short-term e-CIG or CIG withdrawal and long-term CIG withdrawal and is not influenced by treatment with Δ9-THC. At the end of e-CIG or CIG exposure and during withdrawal, the mice also had a higher AMPA receptors GluA1/GluA2-3 ratio in the NAc. Chronic nicotine exposure increases sensitivity to rewarding effects of Δ9-THC in mice and produces long-lasting neurobiological changes regardless of the delivery method (CIG vs. e-CIG). The exposure to passive tobacco smoke or e-CIG vapours can similarly increase vulnerability to the effects of cannabis and possibly other drugs of abuse. 相似文献
20.