首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alzheimer's disease is characterized by neuronal degeneration in the cerebral cortex and hippocampus and subcortical neuronal degeneration in such nuclei as the locus coeruleus (LC). Transgenic mice overexpressing mutant human amyloid precursor protein V717F, PDAPP mice, develop several Alzheimer's disease-like lesions. The present study sought to determine whether there is also loss of LC noradrenergic neurons or evidence of degenerative changes in these animals. PDAPP hemizygous and wild-type littermate control mice were examined at 23 months of age, at a time when there are numerous amyloid-beta (Abeta) plaques in the neocortex and hippocampus. Tissue sections were stained immunohistochemically with an antibody against tyrosine hydroxylase (TH) to identify LC neurons. Computer imaging procedures were used to count the TH-immunoreactive somata in sections through the rostral-caudal extent of the nucleus. There was no loss of LC neurons in the hemizygous mice. In a second experiment, homozygous PDAPP and wild-type mice were examined, at 2 months and 24 months of age. Again there was no age-related loss of neurons in the homozygous animals. In the portion of the LC where neurons reside that project to the cortex and hippocampus, however, the neurons were decreased in size selectively in the 24-month-old transgenic animals. These data indicate that overt LC cell loss does not occur following abundant overexpression of Abeta peptide. However, the selective size reduction of the LC neuronal population projecting to cortical and hippocampal regions containing Abeta-related neuropathology implies that these cells may be subjected to a retrograde-mediated stress.  相似文献   

2.
Accumulation of beta-amyloid protein (Abeta) in the brain is a hallmark of Alzheimer's disease (AD), and Abeta-mediated pathogenesis could result from increased production of Abeta or insufficient Abeta clearance by microglia, astrocytes, or the vascular system. Cell-surface receptors, such as scavenger receptors, might play a critical role in the binding and clearing of Abeta; however, the responsible receptors have yet to be identified. We show that scavenger receptor with C-type lectin (SRCL), a member of the scavenger receptor family containing coiled-coil, collagen-like, and C-type lectin/carbohydrate recognition domains, is expressed in cultured astrocytes and microglia. In contrast to the low expression of SRCL in the wild-type mouse brain, in a double transgenic mouse model of AD (Tg-APP/PS1), immunohistochemistry showed that SRCL was markedly induced in Abeta-positive astrocytes and Abeta-positive vascular/perivascular cells, which are associated closely with cerebral amyloid angiopathy. In patients with AD, the distribution of SRCL was similar to that seen in the Tg-APP/PS1 temporal cortex. The presence of a large number of SRCL/Abeta double-positive particles in the intracellular compartments of reactive astrocytes and vascular/perivascular cells in Tg-APP/PS1 mice and AD patients suggests a role for SRCL in Abeta clearance. Moreover, CHO-K1 cells transfected with SRCL isoforms were found to bind fibrillar Abeta(1-42). These findings suggest that SRCL could be the receptor involved in the binding or clearing of Abeta by glial and vascular/perivascular cells in AD.  相似文献   

3.
The beta-amyloid protein precursor (APP) has been extensively studied for its role in amyloid production and the pathogenesis of Alzheimer's disease (AD). However, little is known about the normal function of APP and its biological interactions. In this Mini-Review, the role of the cytoplasmic domain of APP in APP trafficking and proteolysis is described. These studies suggest that proteins that bind to the cytoplasmic domain may be important targets for drug development in AD.  相似文献   

4.
The beta-amyloid protein (Abeta) is derived by proteolytic processing of the amyloid protein precursor (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APP-CTFbeta), which is subsequently cleaved by gamma-secretase to produce Abeta. Our previous studies have shown that the proteasome can cleave the C-terminal cytoplasmic domain of APP. To identify proteasome cleavage sites in APP, two peptides homologous to the C-terminus of APP were incubated with recombinant 20S proteasome. Cleavage of the peptides was monitored by reversed phase high-performance liquid chromatography and mass spectrometry. Proteasome cleaved the APP C-terminal peptides at several sites, including a region around the sequence YENPTY that interacts with several APP-binding proteins. To examine the effect of this cleavage on Abeta production, APP-CTFbeta and mutant forms of APP-CTFbeta terminating on either side of the YENPTY sequence were expressed in CHO cells. Truncation of APP-CTFbeta on the N-terminal side of the YENPTY sequence at residue 677 significantly decreased the amount of Abeta produced, whereas truncation on the C-terminal side of residue 690 had little effect. The results suggest that proteasomal cleavage of the cytosolic domain of APP at the YENPTY sequence decreases gamma-secretase processing, and consequently inhibits Abeta production. Therefore, the proteasome-dependent trafficking pathway of APP may be a valid therapeutic target for altering Abeta production in the Alzheimer's disease brain.  相似文献   

5.
Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.  相似文献   

6.
7.
This article focuses on beta-amyloid (Abeta) peptide production and secretion in the regulated secretory pathway and how this process relates to accumulation of toxic Abeta in Alzheimer's disease. New findings are presented demonstrating that most of the Abeta is produced and secreted, in an activity-dependent manner, through the regulated secretory pathway in neurons. Only a minor portion of cellular Abeta is secreted via the basal, constitutive secretory pathway. Therefore, regulated secretory vesicles contain the primary beta-secretases that are responsible for producing the majority of secreted Abeta. Investigation of beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells demonstrated that cysteine proteases account for the majority of the beta-secretase activity. BACE 1 is present in regulated secretory vesicles but provides only a small percentage of the beta-secretase activity. Moreover, the cysteine protease activities prefer to cleave the wild-type beta-secretase site, which is relevant to the majority of AD cases. In contrast, BACE 1 prefers to cleave the Swedish mutant beta-secretase site that is expressed in a minor percentage of the AD population. These new findings lead to a unifying hypothesis in which cysteine proteases are the major beta-secretases for the production of Abeta in the major regulated secretory pathway and BACE 1 is the beta-secretase responsible for Abeta production in the minor constitutive secretory pathway. These results indicate that inhibition of multiple proteases may be needed to decrease Abeta production as a therapeutic strategy for Alzheimer's disease.  相似文献   

8.
Neurodegenerative dementias other than Alzheimer's disease (AD) are complex disorders with diverse causes. Recently, there has been tremendous progress in the pathobiology and genetics of several of these diseases, some of which are associated with pathological alterations in tau and α-synuclein. These findings have led to the generation of murine and invertebrate transgenic tau and α-synuclein animal models of these disorders to facilitate elucidation of mechanisms underlying these disorders and for discovery of novel therapeutic interventions to treat them. The focus of this review will be to provide an overview of diseases that have been modeled by these transgenic animals and to highlight the findings of these studies. Overall, transgenic models have supported the notion that tau and α-synuclein play central roles in the pathobiology of many non-AD dementias and have provided important insights into the mechanisms that lead to these disorders thereby setting the stage for identifying novel targets for pharmacological interventions as well as proof of concept studies of compounds with therapeutic potential in patients.  相似文献   

9.
Soluble amyloid beta protein (Abeta) oligomers have been considered recently to be responsible for the cognitive dysfunction that sets in prior to senile plaque formation in the Alzheimer's disease (AD) brain. By using the newly prepared antibody against oligomer Abeta, rather than fibrillar or monomer Abeta, we observed that oligomer Abeta in AD brains was localized as clusters ofdot-likeimmunostains in the neurons in a manner different from that in senile plaques. The relationship of oligomer Abeta with synaptophysin, a synaptic molecular marker, was examined because oligomer Abeta is widely believed to be related to synaptic failure. We observed that immunostainings for synaptophysin were absent near neurons bearing clusters of oligomer Abeta. The present study provides morphological evidence to support the idea that accumulated oligomer Abeta, but not fibrillar Abeta, is closely associated with synaptic failure, which is the major cause of cognitive dysfunction.  相似文献   

10.
The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated both in age-related neurodegenerative disease and in apoptosis. Previous in vitro studies suggest an interaction between GAPDH and the beta-amyloid precursor protein (beta-APP), a protein directly involved in Alzheimer's disease (AD). New studies indicate that GAPDH is a multidimensional protein with diverse membrane, cytoplasmic, and nuclear functions; each is distinct from its role in glycolysis. The nuclear functions of GAPDH include a role in apoptosis that requires its translocation to the nucleus. Accordingly, beta-APP-GAPDH interactions, altering GAPDH structure in vivo, may affect energy generation, inducing hypometabolism, a characteristic AD phenotype. Because GAPDH is a multifunctional protein, pleiotropic effects may also occur in a variety of fundamental cellular pathways in AD cells. This may include unique GAPDH-RNA interactions. We report here the identification of a high-molecular-weight (HMW) GAPDH species present exclusively in the postnuclear fraction of AD cells. The latter is characterized by reduced GAPDH activity. The HMW GAPDH species was not detected in postnuclear age-matched control (AMC) fractions nor in AD whole-cell preparations. Each is characterized by normal GAPDH activity. By definition, the preparation of whole-cell extracts entails the destruction of subcellular structure. The latter findings indicate that the dissociation of the GAPDH protein from the HMW species restores its enzymatic activity. Thus, these results reveal a new, unique intracellular phenotype in AD cells. The functional consequences of subcellular alteration in GAPDH structure in AD cells are considered.  相似文献   

11.
Recent evidence has suggested a role for soluble oligomeric Aβ species in the pathology of Alzheimer's disease (AD). Fibrillar plaque deposits are present in non-demented individuals and levels of soluble Aβ correlate better with cognitive dysfunction in AD and transgenic mouse models. We have previously reported that there are at least two conformationally distinct types of Aβ oligomers: prefibrillar oligomers that are kinetic intermediates in fibril assembly reactions and are specifically recognized by A11 antibody and fibrillar oligomers that may represent fibril seeds or small pieces of fibrils and are recognized by a fibril specific antibody, OC. We have examined the levels of these two types of oligomers in the PBS soluble fraction of brain tissue from control cases, cases with senile degenerative changes (SDC) and AD patients. We found that the levels of soluble fibrillar oligomers detected by OC antibody are significantly elevated in multiple brain regions of AD patients. The elevated fibrillar oligomer levels were found not to be an artifact of tissue homogenization, nor a result of increased Aβ or APP levels. The concentration of fibrillar oligomers in adjacent brain regions of the same patient can vary widely and were not detected in post-mortem cerebrospinal fluid. In contrast, the level of prefibrillar oligomers are variable in both AD and age matched controls, indicating that they are not correlated with cognitive dysfunction and suggesting that they precede dementia in AD. Significant correlations were found between the levels of fibrillar oligomers and cognitive decline (MMSE scores) as well as the neuropathological hallmarks of AD. These results indicate that fibrillar oligomers may play a key role in the pathology of AD and may be a new target for diagnostic and therapeutic development.  相似文献   

12.
The use of conformation-specific ligands has been closely linked to progress in the molecular characterization of neurodegenerative diseases. Deposition of misfolded or misprocessed proteins is now recognized as a hallmark of all neurodegenerative diseases. Initially, dyes like Congo red and thioflavin T were used as crudely conformation-specific ligands for staining the beta-sheeted protein components of amyloid deposits in neurodegenerative diseases such as Alzheimer disease (AD) and prion disease, the two diseases in which protein conformations were distinguished early on. This conformational characterization of extracellular protein deposits with dyes ultimately led to the identification of key players in the disease processes. The recent discovery of intermediate conformational species, i.e., soluble oligomers for AD and PK-sensitive PrP(Sc) for prion disease, whose conformation and assembly are thought to be distinct from both the physiological and the fibrillar conformational states, replaced the former notion that the microscopic protein deposits themselves caused disease. This insight and the generation of conformation-specific monoclonal antibodies to these conformers further advanced diagnosis and the understanding of molecular mechanisms of AD and are likely to do so in other neurodegenerative diseases. Here we review how conformer distinction performed by a variety of different techniques, including biophysical, biochemical, and antibody-based methods, led to the current molecular concepts of AD and the prion diseases. We provide an outlook on the application of these techniques in advancing the understanding of molecular mechanisms of other neurodegenerative diseases or degenerative brain conditions.  相似文献   

13.
Aluminum, NO, and nerve growth factor neurotoxicity in cholinergic neurons.   总被引:2,自引:0,他引:2  
Several neurotoxic compounds, including Al, NO, and beta-amyloid may contribute to the impairment or loss of brain cholinergic neurons in the course of various neurodegenerative diseases. Genotype and phenotypic modifications of cholinergic neurons may determine their variable functional competency and susceptibility to reported neurotoxic insults. Hybrid, immortalized SN56 cholinergic cells from mouse septum may serve as a model for in vitro cholinotoxicity studies. Differentiation by various combinations of cAMP, retinoic acid, and nerve growth factor may provide cells of different morphologic maturity as well as activities of acetylcholine and acetyl-CoA metabolism. In general, differentiated cells appear to be more susceptible to neurotoxic signals than the non-differentiated ones, as evidenced by loss of sprouting and connectivity, decreases in choline acetyltransferase and pyruvate dehydrogenase activities, disturbances in acetyl-CoA compartmentation and metabolism, insufficient or excessive acetylcholine release, as well as increased expression of apoptosis markers. Each neurotoxin impaired both acetylcholine and acetyl-CoA metabolism of these cells. Activation of p75 or trkA receptors made either acetyl-CoA or cholinergic metabolism more susceptible to neurotoxic influences, respectively. Neurotoxins aggravated detrimental effects of each other, particularly in differentiated cells. Thus brain cholinergic neurons might display a differential susceptibility to Al and other neurotoxins depending on their genotype or phenotype-dependent variability of the cholinergic and acetyl-CoA metabolism.  相似文献   

14.
We have investigated immunohistochemically the expression of CD40 in post-mortem human brain tissues. In control brain, the blood vessels were stained weakly for CD40. Vascular expression of CD40 was enhanced in the lesions of Alzheimer's disease and some other neurological diseases. In such diseases, reactive microglia were also positive for CD40. The results of this study suggest that CD40 expression by microglia is up-regulated upon a variety of brain insults and is not limited to lesions with amyloid beta-protein deposits.  相似文献   

15.
gamma-Secretase catalyzes intramembrane proteolysis of various type I membrane proteins, including the amyloid-beta precursor protein and the Notch receptor. Despite its importance in the pathogenesis of Alzheimer's disease and to normal development, this protease has eluded identification until only very recently. Four membrane proteins are now known to be members of the protease complex: presenilin, nicastrin, aph-1, and pen-2. Recent findings suggest that these four proteins are sufficient to reconstitute the active gamma-secretase complex and that together they mediate the cell surface signaling of a variety of receptors via intramembrane proteolysis.  相似文献   

16.
17.
BACKGROUND: Chronic and heavy alcohol abuse or dependence may result in impaired cognition and dementia. The increased risk of Alzheimer's disease (AD) in older individuals interferes with the differential diagnosis, especially when dealing with elderly patients with a long history of alcohol abuse. The aim of the present study was to evaluate the diagnostic value of the putative cerebrospinal fluid (CSF) biomarkers tau, beta-amyloid 1-42 (Abeta42) and their ratio in differentiating alcohol related cognitive disorder (ARCD) from AD. METHODS: Double-sandwich ELISA (Innotest htau antigen and beta-Amyloid (1-42), Innogenetics) were used to quantify the above markers in a total of 20 patients with ARCD, 33 AD patients with mild to moderate dementia and 50 mentally intact subjects. RESULTS: Tau protein successfully differentiated AD from normal ageing with 96% specificity and 93.9% sensitivity and from ARCD with 95% specificity, and 87.9% sensitivity. Abeta42 alone had a specificity of 88% and a sensitivity of 69.7% in differentiating AD from normal ageing, while the corresponding values for differentiating AD from ARCD were 80% and 84.8% respectively. The tau/Abeta42 ratio was better than tau alone for differentiating AD from normal ageing (specificity 94%, sensitivity 97%) and better than any of the candidate markers alone, for differentiating AD from ARCD (specificity 100%, sensitivity 97%). CONCLUSIONS: The combined use of CSF tau and Abeta42 may be a useful tool in the differential diagnosis of ARCD from AD, especially in the early stages, where diagnostic uncertainty is greater.  相似文献   

18.
We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.  相似文献   

19.
Alzheimer's disease (AD) is a dementing neurodegenerative disorder without a cure. The abnormal parenchymal accumulation of β‐amyloid (Aβ) is associated with inflammatory reactions involving microglia and astrocytes. Increased levels of Aβ and Aβ deposition in the brain are thought to cause neuronal dysfunction and underlie dementia. Microglia, the brain resident cells of monocytic origin, have a potential ability to phagocytose Aβ but they also react to Aβ by increased production of proinflammatory toxic agents. Microglia originate from hemangioblastic mesoderm during early embryonic stages and from bone marrow (BM)‐derived monocytic cells that home the brain throughout the neonatal stage of development. Recent studies indicate that BM or blood‐derived monocytes are recruited to the diseased AD brain, associate with the Aβ depositions, and are more efficient phagocytes of Aβ compared with resident microglia. The clearance of Aβ deposition by these cells has been recently under intensive investigation and can occur through several different mechanisms. Importantly, peripheral monocytic cells of patients with AD appear to be deficient in clearing Aβ. This review will summarize the findings on the role of blood‐derived cells in AD and discuss their therapeutic potential for treating patients suffering from this devastating disease. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
In Alzheimer's disease (AD), loss of synapses exceeds neuronal loss and some evidence suggests a role of beta-amyloid protein (Abeta) in synaptic degeneration through a mechanism which may involve intraneuronal Ca2+ dyshomeostasis. Emerging evidence points to the participation of the internal Ca2+ stores in the pathophysiology of neurodegeneration in AD. To test the involvement of intrasynaptic Ca2+ mobilization in A toxicity, we explored the role of ryanodine receptor activation in rat cortical synaptosomes taken as a model system for the central presynapses. Evaluation of synaptosomal mitochondrial redox capacity was assessed by the MTT reduction technique, and ultrastructural changes of synaptosomes after exposure to Abeta and ryanodine were evaluated by electron microscopy. Our results show that Abeta potentiates mitochondrial dysfunction in the presence of ryanodine and induces morphological changes consisting of mitochondrial swelling and intense small synaptic vesicles depletion. These changes were accompanied by a reduction in the content of synaptophysin and actin proteins. The reduction of actin immunoreactivity was reversed in the presence of a wide range caspase inhibitors, suggesting the activation of synaptic apoptotic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号