首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
An increased ratio of T helper type 2 (Th2)- vs Th1-like cells contributes to the immune dysregulation in allergic disease situations and in many chronic infections, including AIDS. Th2-type immune responses are characterized by Th cells that produce increased levels of interleukin-4 (IL-4) and decreased levels of interferon gamma (IFN- gamma). The induction of either a Th1- or a Th2-like phenotype may be critically controlled by the antigen-presenting cells and their cytokines, e.g., IFN-alpha. In this study we have determined the frequencies of potential IL-4- and/or IFN-gamma-producing T cells in the peripheral blood of randomly selected healthy individuals, and analyzed whether IFN-alpha controls IL-4 and/or IFN-gamma production. Purified CD4+ or CD8+ T cells were stimulated for 24 h via the T cell receptor/CD3 complex in the presence or absence of IFN-alpha, and single IL-4- and IFN-gamma-secreting cells were detected in enzyme- linked immunospot assays. In the absence of IFN-alpha, CD4 cells produced IFN-gamma at frequencies of 1:50-300, and produced IL-4 at frequencies of 1:110-<1:100,000. Addition of IFN-alpha during the activation of CD4 cells increased the levels of IFN-gamma mRNA. As a consequence, the numbers of IFN-gamma-producing CD4 cells and the amounts of secreted IFN-gamma increased 10-fold. In contrast, IFN-alpha did not increase the frequency of IL-4-secreting CD4 cells. In the absence of IFN-alpha, addition of exogenous IL-4 to cultures of CD4 cells suppressed IFN-gamma secretion by 70%. However, in the presence of IFN-alpha, IL-4 did not display any suppressive effect. Compared with CD4 cells, CD8 cells produced IFN-gamma more frequently (1:5-10) but IL-4 less frequently (1:5,300 to < 1:100,000). IFN-alpha did not display any effect on the frequency of either IFN-gamma or IL-4 production by CD8 cells. Taken together the results indicate that IFN- alpha increases the frequency of IFN-gamma-secreting CD4 Th cells and antagonizes the suppressive effect of IL-4 on IFN-gamma production. As a consequence, IFN-alpha may favor the induction and maintenance of Th1- like cells and thereby counteract Th2-driven allergic immune responses.  相似文献   

3.
Naive T cells in the periphery mainly secrete interleukin (IL) 2 upon activation. After stimulation in the presence of appropriate costimulators, both CD4+ and CD8+ T cells differentiate into effector cells secreting distinct T helper (Th) 1- and Th2-like cytokine patterns. Subsequent to differentiation, both CD4+ (Th1 and Th2) and CD8+ (TC1 and TC2) cells are stable and cannot be induced to differentiate into the opposite pattern or revert to the naive cytokine secretion pattern. We now show that IL-4 caused committed TC1 bulk populations or clones to lose the ability to synthesize IL-2. The cells retained the ability to secrete interferon (IFN) gamma, granulocyte/macrophage colony-stimulating factor, and tumor necrosis factor, did not synthesize any Th2 cytokines, and did not alter cell surface marker expression. IL-4 rapidly inhibited IL-2-synthesizing ability in the absence or presence of antigen-presenting cells, thus demonstrating that IL-4 acted directly on TC1 cells. The defect in IL-2 synthesis could not be reversed by subsequent stimulation with potent antigen-presenting cells in the presence of IL-2 and anti-IL-4, or with anti-CD3 plus anti-CD28 antibodies. Both IL-2+ and IL-2- TC1 cells were strongly cytotoxic toward allogeneic but not syngeneic targets. However, IL-2- TC1 cells were unable to proliferate unless exogenous IL- 2 was provided. TC1 cells that lose IL-2 synthesis but retain IFN-gamma synthesis and cytotoxicity may be similar to the "anergic" cells induced by stimulation of CD4+ or CD8+ cells in the absence of costimulators. These results suggest that during a mixed type 1/type 2 response in vivo, IL-4 may induce the IL-2+ TC1-->IL-2-TC1 conversion, and thus curtail the expansion of the TC1 response without impairing short-term effector function.  相似文献   

4.
It has recently been shown that interleukin (IL)-21 is produced by Th17 cells, functions as an autocrine growth factor for Th17 cells, and plays critical roles in autoimmune diseases. In this study, we investigated the differentiation and characteristics of IL-21-producing CD4(+) T cells by intracellular staining. Unexpectedly, we found that under Th17-polarizing conditions, the majority of IL-21-producing CD4(+) T cells did not produce IL-17A and -17F. We also found that IL-6 and -21 potently induced the development of IL-21-producing CD4(+) T cells without the induction of IL-4, IFN-gamma, IL-17A, or IL-17F production. On the other hand, TGF-beta inhibited IL-6- and IL-21-induced development of IL-21-producing CD4(+) T cells. IL-2 enhanced the development of IL-21-producing CD4(+) T cells under Th17-polarizing conditions. Finally, IL-21-producing CD4(+) T cells exhibited a stable phenotype of IL-21 production in the presence of IL-6, but retained the potential to produce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions. These results suggest that IL-21-producing CD4(+) T cells exhibit distinct characteristics from Th17 cells and develop preferentially in an IL-6-rich environment devoid of TGF-beta, and that IL-21 functions as an autocrine growth factor for IL-21-producing CD4(+) T cells.  相似文献   

5.
The effects exerted on the in vitro development of antigen-specific T cell lines and T cell clones by addition or neutralization of interleukin 12 (IL-12) in lymphocyte bulk culture were examined. T cell lines specific for Dermatophagoides pteronyssinus group I (Der p I) derived in the presence of IL-12 exhibited reduced ability to produce IL-4 and increased ability to produce interferon gamma (IFN-gamma), and developed into Der p I-specific CD4+ T cell clones showing a T helper type 0 (Th0)- or Th1-, instead of Th2-, like cytokine profile. In contrast, purified protein derivative (PPD)-specific T cell lines derived in the presence of anti-IL-12 antibody exhibited an increased ability to produce IL-4 and developed into PPD-specific CD4+ T cell clones showing a Th0-, instead of Th1-, like profile. The influence of IL-12 on the cytokine secretion profile of Der p I-specific T cell lines was not prevented by addition to lymphocyte bulk cultures of anti- IFN-gamma antibody, but could be at least partially inhibited by the removal from bulk cultures of CD16+ cells. Thus, IL-12 and CD16+ cells appear to have inhibitory effects on the development of IL-4-producing cells and to play an inductive role in promoting Th1-like responses.  相似文献   

6.
In previous studies we demonstrated that, following activation by mitogens or alloantigens, helper T cell precursors proliferate and differentiate in vitro to produce a population of effector cells that secrete high titers of lymphokines upon restimulation. In this report, we demonstrate that a similar effector population develops in vivo following primary antigen stimulation. When restimulated with specific antigen in vitro, CD4+ T cells from mice primed 5 to 7 days previously by subcutaneous administration of keyhole limpet hemocyanin (KLH) in adjuvant, produced high levels of interleukin 2 (IL-2), IL-4, and IL-3, and little or no interferon gamma (IFN-gamma) or IL-5. The effector T cells provided excellent helper activity for in vitro antibody responses of 4-hydroxy-5-iodo-nitrophenyl acetic acid-primed B cells with the production principally of the immunoglobulin G1 (IgG1) and IgM isotypes, small quantities of IgG3, and no detectable IgG2a, or IgG2b. Antigen-specific secretion of IL-2, IL-3, and IL-4 by in vivo effectors was detectable by 12 hours following in vitro restimulation. IFN-gamma and IL-5 were not detected until 48 and 72 hours of culture, respectively, and low levels of these lymphokines were produced. Lymphokine production by primed CD4+ T cells could be induced as early as 3 days following immunization, peaked on day 5, and declined thereafter. The kinetics of in vivo appearance of effector CD4+ T cells that produce lymphokines upon restimulation in vitro were similar for each of the lymphokines examined. Mice depleted of precursor CD4+ T cells by adult thymectomy exhibited limited capacity to generate lymphokine secreting CD4+ T cells in response to primary immunization with KLH, suggesting that the majority of lymphokine producing T cells arise from short-lived and/or precursor cells. Separation of CD4+ T cells from KLH-primed mice on the basis of expression of the lymph node-specific homing receptor, MEL-14, revealed that antigen-specific production of IL-2, IL-3, IL-4, and IFN-gamma was exclusively associated with the MEL-14- subset of CD4+ T cells. Separation on the basis of CD45RB expression, demonstrated that antigen-specific lymphokine production was primarily associated with the minor CD45RB- population, which has been previously associated with memory activity. Our results indicate that primary in vivo immunization leads to the development of a transient population of helper-effectors with a unique phenotype that can produce large quantities of lymphokines and mediate excellent helper activity for B cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The differentiation of CD4(+) T cells into T helper type 1 (Th1) cells is driven by interleukin (IL)-12 through the IL-12 receptor beta2 (IL-12Rbeta2) chain, whereas differentiation into Th2 cells is driven by IL-4, which downregulates IL-12Rbeta2 chain. We reexamined such differentiation using IL-12Rbeta2 chain transgenic mice. We found that CD4(+) T cells from such mice were able to differentiate into Th2 cells when primed with IL-4 or IL-4 plus IL-12. In the latter case, the presence of IL-4 suppressed interferon (IFN)-gamma production 10-100-fold compared with cells cultured in IL-12 alone. Finally, in studies of the ability of IL-12 to convert Th2 cells bearing a competent IL-12R to the Th1 cells, we showed that: (a) T cells bearing the IL-12Rbeta2 chain transgene and primed under Th2 conditions could not be converted to Th1 cells by repeated restimulation under Th1 conditions; and (b) established Th2 clones transfected with the IL-12Rbeta2 chain construct continued to produce IL-4 when cultured with IL-12. These studies show that IL-4-driven Th2 differentiation can occur in the presence of persistent IL-12 signaling and that IL-4 inhibits IFN-gamma production under these circumstances. They also show that established Th2 cells cannot be converted to Th1 cells via IL-12 signaling.  相似文献   

8.
Interleukin (IL)-4 is known to be the most potent cytokine that can initiate Th2 cell differentiation. Paradoxically, IL-4 instructs dendritic cells (DCs) to promote Th1 cell differentiation. We investigated the mechanisms by which IL-4 directs CD4 T cells toward the Th1 cell lineage. Our study demonstrates that the IL-4-mediated induction of Th1 cell differentiation requires IL-10 production by DCs. IL-4 treatment of DCs in the presence of lipopolysaccharide or CpG resulted in decreased production of IL-10, which was accompanied by enhanced IL-12 production. In IL-10-deficient DCs, the level of IL-12 was greatly elevated and, more importantly, the ability of IL-4 to up-regulate IL-12 was abrogated. Interestingly, IL-4 inhibited IL-10 production by DCs but not by B cells. The down-regulation of IL-10 gene expression by IL-4 depended on Stat6 and was at least partly caused by decreased histone acetylation of the IL-10 promoter. These data indicate that IL-4 plays a key role in inducing Th1 cell differentiation by instructing DCs to produce less IL-10.  相似文献   

9.
Interleukin 4 (IL-4) is essential for the induction of immunoglobulin E (IgE) responses in mice. Recent in vitro studies have suggested that IL- 4 derived from non T helper (Th) cells, in particular from mast cells and basophils, may be essential for triggering of IL-4 expression in Th cells and may directly contribute to IgE isotype switch induction. Here, we have generated mice carrying a functional IL-4 gene only in Th cells or non-Th cells, respectively, by reconstitution of IL-4- deficient mice (IL-4T mice) with CD4+ or CD4- spleen cells from congenic wild-type animals. In mice in which only CD4+ cells are able to express IL-4, antigen-specific IgE is produced in a T cell-dependent immune response. Thus, induction of IL-4 expression in Th cells can occur in the absence of IL-4 from non-Th cells, which suggests that at least some Th cells can express IL-4 in response to another signal which has yet to be identified. No IgE is detectable, however, in mice in which only CD4- cells can express IL-4, suggesting that Th cells are the primary, if not the only source of IL-4 for initial induction of IgE synthesis.  相似文献   

10.
Many vaccination strategies and immune cell therapies aim at increasing the numbers of memory T cells reactive to protective antigens. However, the differentiation lineage and therefore the optimal generation conditions of CD4 memory cells remain controversial. Linear and divergent differentiation models have been proposed, suggesting CD4 memory T cell development from naive precursors either with or without an effector-stage intermediate, respectively. Here, we address this question by using newly available techniques for the identification and isolation of effector T cells secreting effector cytokines. In adoptive cell transfers into normal, nonlymphopenic mice, we show that long-lived virus-specific memory T cells can efficiently be generated from purified interferon gamma-secreting T helper (Th) type 1 and interleukin (IL)-4- or IL-10-secreting Th2 effectors primed in vitro or in vivo. Importantly, such effector-derived memory T cells were functional in viral challenge infections. They proliferated vigorously, rapidly modulated IL-7 receptor expression, exhibited partial stability and flexibility of their cytokine patterns, and exerted differential effects on virus-induced immunopathology. Thus, cytokine-secreting effectors can evade activation-induced cell death and develop into long-lived functional memory cells. These findings demonstrate the efficiency of linear memory T cell differentiation and encourage the design of vaccines and immune cell therapies based on differentiated effector T cells.  相似文献   

11.
Nonhealing forms of leishmaniasis in humans are commonly associated with elevated levels of the deactivating cytokine IL-10, and in the mouse, normally chronic infections can be cleared in the absence of IL-10. Using a Leishmania major strain that produces nonhealing dermal lesions in a T helper type 1 (Th1) cell-polarized setting, we have analyzed the cellular sources of IL-10 and their relative contribution to immune suppression. IL-10 was produced by innate cells, as well as CD4(+)CD25(+)Foxp3(+) and CD4(+)CD25(-)Foxp3(-) T cells in the chronic lesion. Nonetheless, only IL-10 production by antigen-specific CD4(+)CD25(-)Foxp3(-) T cells, the majority of which also produced IFN-gamma, was necessary for suppression of acquired immunity in Rag(-/-) reconstituted mice. Surprisingly, Rag(-/-) mice reconstituted with naive CD4(+) T cells depleted of natural T regulatory cells developed more severe infections, associated with elevated levels of IL-10 and, especially, Th2 cytokines in the site. The data demonstrate that IL-10-producing Th1 cells, activated early in a strong inflammatory setting as a mechanism of feedback control, are the principal mediators of T cell-derived IL-10-dependent immune suppression in a chronic intracellular infection.  相似文献   

12.
The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL- 4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.  相似文献   

13.
The outcome of immune responses critically depends on the pattern of lymphokines secreted by CD4+ T cells. CD4+ T cells may differentiate into interleukin 2 (IL-2) and interferon gamma secreting T helper 1 (Th1)-like cells or IL-4/IL-5/IL-10 secreting Th2-like cells. However, the mechanisms that regulate production of IL-4 or other T cell lymphokines in vivo remain unknown. We use the superantigen, Staphylococcus enterotoxin A (SEA), as a model antigen to characterize the signals that regulate the production of IL-4 in vivo. Induction of IL-4 in normal CD4+ T cells required stimulation with both antigen and IL-4. SEA-specific CD4+ T cells produced large amounts of IL-4 when restimulated within 10 d after in vivo priming. Repetitive application of both signals was required to prevent downregulation of IL-4 production. Although controversy exists regarding the susceptibility of Th2-like cells to tolerogenic signals, high doses of superantigen readily abolished the capacity to produce IL-4 in both naive T cells and in T cells already primed for IL-4 production. Infection with the nematode, Nippostrongylus brasiliensis, reversed the established T cell tolerance, whereas the signals which induced IL-4 production in normal T cells, antigen and IL-4, were not capable of reversing superantigen- specific tolerance in vivo. The major parameter that correlated with the capacity of parasitic infection to break tolerance was magnitude of the lymphoproliferation seen during the course of the infection. The capacity to activate or tolerize the IL-4 pathway in an antigen- specific fashion should prove useful in the design of antigen-specific therapies for autoimmune and allergic diseases.  相似文献   

14.
15.
Continuous administration of soluble proteins, delivered over a 10-d period by a mini-osmotic pump implanted subcutaneously, induces a long- lasting inhibition of antigen-specific T cell proliferation in lymph node cells from BALB/c mice subsequently primed with antigen in adjuvant. The decreased T cell proliferative response is associated with a down-regulation of the T helper cell (Th)1 cytokines interleukin (IL)-2 and interferon (IFN)-gamma and with a strong increase in the secretion of the Th2 cytokines IL-4 and IL-5 by antigen specific CD4+ T cells. This is accompanied by predominant inhibition of antigen- specific antibody production of IgG2a and IgG2b, rather than IgG1 isotype. Interestingly, inhibition of Th1 and priming of Th2 cells is also induced in beta(2) microglobulin-deficient BALB/c mice, indicating that neither CD8+ nor CD4+ NK1.1+ T cells, respectively, are required. The polarization in Th2 cells is stably maintained by T cell lines, all composed of CD4+/CD8- cells expressing T cell receptor for antigen (TCR) alpha/beta chains, derived from BALB/c mice treated with continuous antigen administration, indicating that they originate from Th2 cells fully differentiated in vivo. This polarization is induced in BALB/c mice by continuous administration of any protein antigen tested, including soluble extracts from pathogenic microorganisms. Priming of Th2 cells is dose dependent and it is optimal for low rather than high doses of protein. Blocking endogenous IL-4 in vivo inhibits expansion of antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen, indicating the involvement of two independent mechanisms. Consistent with this, Th2 cell development, but not inhibition of Th1 cells, depends on non-major histocompatibility complex genetic predisposition, since the Th2 response is amplified in BALB/c as compared to DBA/2, C3H, or C57BL/6 mice whereas tested. These findings support the hypothesis that continuous release of low amounts of protein antigens from pathogenic microorganisms may polarize the immune response toward a Th2 phenotype in susceptible mouse strains.  相似文献   

16.
Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen- specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN- gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.  相似文献   

17.
Nippostrongylus brasiliensis infection and ovalbumin-induced allergic lung pathology are highly interleukin (IL)-4/IL-13 dependent, but the contributions of IL-4/IL-13 from adaptive (T helper [Th]2 cells) and innate (eosinophil, basophils, and mast cells) immune cells remain unknown. Although required for immunoglobulin (Ig)E induction, IL-4/IL-13 from Th2 cells was not required for worm expulsion, tissue inflammation, or airway hyperreactivity. In contrast, innate hematopoietic cell–derived IL-4/IL-13 was dispensable for Th2 cell differentiation in lymph nodes but required for effector cell recruitment and tissue responses. Eosinophils were not required for primary immune responses. Thus, components of type 2 immunity mediated by IL-4/IL-13 are partitioned between T cell–dependent IgE and an innate non-eosinophil tissue component, suggesting new strategies for interventions in allergic immunity.  相似文献   

18.
The IL-23/IL-17 axis in inflammation   总被引:36,自引:0,他引:36       下载免费PDF全文
IL-23 induces the differentiation of naive CD4(+) T cells into highly pathogenic helper T cells (Th17/Th(IL-17)) that produce IL-17, IL-17F, IL-6, and TNF-alpha, but not IFN-gamma and IL-4. Two studies in this issue of the JCI demonstrate that blocking IL-23 or its downstream factors IL-17 and IL-6, but not the IL-12/IFN-gamma pathways, can significantly suppress disease development in animal models of inflammatory bowel disease and MS (see the related articles beginning on pages 1310 and 1317). These studies suggest that the IL-23/IL-17 pathway may be a novel therapeutic target for the treatment of chronic inflammatory diseases.  相似文献   

19.
Although interferon gamma (IFN-gamma) secretion is essential for control of most intracellular pathogens, host survival often also depends on the expression of interleukin 10 (IL-10), a cytokine known to counteract IFN-gamma effector functions. We analyzed the source of regulatory IL-10 in mice infected with the protozoan parasite Toxoplasma gondii. Unexpectedly, IFN-gamma-secreting T-bet(+)Foxp3(-) T helper type 1 (Th1) cells were found to be the major producers of IL-10 in these animals. Further analysis revealed that the same IL-10(+)IFN-gamma(gamma) population displayed potent effector function against the parasite while, paradoxically, also inducing profound suppression of IL-12 production by antigen-presenting cells. Although at any given time point only a fraction of the cells appeared to simultaneously produce IL-10 and IFN-gamma, IL-10 production could be stimulated in IL-10(-)IFN-gamma(+) cells by further activation in vitro. In addition, experiments with T. gondii-specific IL-10(+)IFN-gamma(+) CD4 clones revealed that although IFN-gamma expression is imprinted and triggered with similar kinetics regardless of the state of Th1 cell activation, IL-10 secretion is induced more rapidly from recently activated than from resting cells. These findings indicate that IL-10 production by CD4(+) T lymphocytes need not involve a distinct regulatory Th cell subset but can be generated in Th1 cells as part of the effector response to intracellular pathogens.  相似文献   

20.
Interleukin (IL)-4 is the most potent factor that causes naive CD4+ T cells to differentiate to the T helper cell (Th) 2 phenotype, while IL-12 and interferon γ trigger the differentiation of Th1 cells. However, the source of the initial polarizing IL-4 remains unclear. Here, we show that IL-6, probably secreted by antigen-presenting cells, is able to polarize naive CD4+ T cells to effector Th2 cells by inducing the initial production of IL-4 in CD4+ T cells. These results show that the nature of the cytokine (IL-12 or IL-6), which is produced by antigen-presenting cells in response to a particular pathogen, is a key factor in determining the nature of the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号